M. We and G. Tissier, Tarjus for illuminating discussions. [1] M. Henkel, H. Hinrichsen, and S. Lübeck, Non- Equilibrium Phase Transitions, Absorbing Phase Transitions, vol.1, 2008.

L. Canet, B. Delamotte, O. Deloubrì, and N. Wschebor, Quantitative Phase Diagrams of Branching and Annihilating Random Walks, Physical Review Letters, vol.92, issue.25, p.255703, 2004.
DOI : 10.1103/PhysRevLett.92.255703

URL : https://hal.archives-ouvertes.fr/hal-00126065

L. Canet, H. Chaté, B. Delamotte, I. Dornic, and M. A. Muñoz, Nonperturbative Fixed Point in a Nonequilibrium Phase Transition, Physical Review Letters, vol.95, issue.10, p.100601, 2005.
DOI : 10.1103/PhysRevLett.95.100601

URL : https://hal.archives-ouvertes.fr/hal-00380735

L. Canet, H. Chaté, B. Delamotte, and N. Wschebor, Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation, Physical Review Letters, vol.104, issue.15, p.150601, 2010.
DOI : 10.1103/PhysRevLett.104.150601

URL : https://hal.archives-ouvertes.fr/hal-00383018

H. Janssen, F. Van-wijland, O. Deloubrì, and U. C. Täuber, Pair contact process with diffusion: Failure of master equation field theory, Physical Review E, vol.70, issue.5, p.56114, 2004.
DOI : 10.1103/PhysRevE.70.056114

G. Tarjus and M. Tissier, Nonperturbative Functional Renormalization Group for Random-Field Models: The Way Out of Dimensional Reduction, Physical Review Letters, vol.93, issue.26, pp.267008-087202, 2004.
DOI : 10.1103/PhysRevLett.93.267008

URL : https://hal.archives-ouvertes.fr/hal-00003001

F. Smallenburg and G. T. Barkema, Universality class of the pair contact process with diffusion, Physical Review E, vol.78, issue.3, p.31129, 2008.
DOI : 10.1103/PhysRevE.78.031129

G. T. Barkema and E. Carlon, Universality in the pair contact process with diffusion, Physical Review E, vol.68, issue.3, p.36113, 2003.
DOI : 10.1103/PhysRevE.68.036113

R. D. Schram and G. T. Barkema, Critical exponents of the pair contact process with diffusion, Journal of Statistical Mechanics: Theory and Experiment, vol.2012, issue.03, p.3009, 2012.
DOI : 10.1088/1742-5468/2012/03/P03009

S. Park and H. Park, Driven Pair Contact Process with Diffusion, Physical Review Letters, vol.94, issue.6, pp.65701-025105, 2005.
DOI : 10.1103/PhysRevLett.94.065701

S. Park and H. Park, Crossover from the parity-conserving pair contact process with diffusion to other universality classes, Physical Review E, vol.79, issue.5, p.51130, 2009.
DOI : 10.1103/PhysRevE.79.051130

S. Park, arXiv: cond-mat/1202, 2012.

I. Dornic, H. Chaté, and M. Muñoz, arXiv: cond- mat/0505171, Phys. Rev. E, vol.65, p.56113, 2002.

M. Doi, Stochastic theory of diffusion-controlled reaction, Journal of Physics A: Mathematical and General, vol.9, issue.9, p.1479, 1976.
DOI : 10.1088/0305-4470/9/9/009

K. G. Wilson and J. Kogut, The renormalization group and the ?? expansion, Physics Reports, vol.12, issue.2, p.75, 1974.
DOI : 10.1016/0370-1573(74)90023-4

J. Berges, N. Tetradis, and C. Wetterich, Non-perturbative renormalization flow in quantum field theory and statistical physics, Physics Reports, vol.363, issue.4-6, p.223, 2002.
DOI : 10.1016/S0370-1573(01)00098-9

M. Kardar, G. Parisi, and Y. Zhang, Dynamic Scaling of Growing Interfaces, Physical Review Letters, vol.56, issue.9, p.889, 1986.
DOI : 10.1103/PhysRevLett.56.889

L. Canet, H. Chaté, B. Delamotte, and N. Wschebor, Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation, Physical Review Letters, vol.104, issue.15, pp.150601-061128, 2010.
DOI : 10.1103/PhysRevLett.104.150601

URL : https://hal.archives-ouvertes.fr/hal-00383018

M. J. Howard, U. C. Täuber, M. Paessens, and G. M. Schütz, When this reaction is absent the model is soluble but this solution does not help understanding the phase transition we study here, see, J. Phys. A: Math. Gen. J. Phys. A: Math. Gen, vol.30, issue.37, p.4709, 1997.

I. The and K. Problem, the RG flow goes towards the Gaussian fixed point at small initial coupling for d > 2 [29] (the interface is flat), while at large coupling it goes towards a strong coupling fixed point (the interface is rough) [4, 30] and for d < 2 the interface is always rough. Two is thus the critical dimension at small coupling as in PCPD