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ABSTRACT

Context. The advent of deep multiwavelength extragalactic surveys has led to the necessity for advanced and fast methods for photo-
metric analysis. In fact, codes which allow analyses of the same regions of the sky observed at different wavelengths and resolutions
are becoming essential to thoroughly exploit current and future data. In this context, a key issue is the confusion (i.e. blending) of
sources in low-resolution images.
Aims. We present -, a publicly available software package developed within the  project. - is aimed at ex-
tracting accurate photometry from low-resolution images, where the blending of sources can be a serious problem for the accurate
and unbiased measurement of fluxes and colours.
Methods. - can be considered as the next generation to , providing significant improvements over and above it and other
similar codes (e.g. ). - gathers data from a high-resolution image of a region of the sky, and uses this information
(source positions and morphologies) to obtain priors for the photometric analysis of the lower resolution image of the same field.
- can handle different types of datasets as input priors, namely i) a list of objects that will be used to obtain cutouts from the real
high-resolution image; ii) a set of analytical models (as .fits stamps); iii) a list of unresolved, point-like sources, useful for example
for far-infrared (FIR) wavelength domains.
Results. By means of simulations and analysis of real datasets, we show that - yields accurate estimations of fluxes within the
intrinsic uncertainties of the method, when systematic errors are taken into account (which can be done thanks to a flagging code
given in the output). - is many times faster than similar codes like  and  (up to hundreds, depending on the
problem and the method adopted), whilst at the same time being more robust and more versatile. This makes it an excellent choice
for the analysis of large datasets. When used with the same parameter sets as for  it yields almost identical results (although in a
much shorter time); in addition we show how the use of different settings and methods significantly enhances the performance.
Conclusions. - proves to be a state-of-the-art tool for multiwavelength optical to far-infrared image photometry. Given its ver-
satility and robustness, - can be considered the preferred choice for combined photometric analysis of current and forthcoming
extragalactic imaging surveys.

Key words. techniques: photometric – galaxies: photometry

1. Introduction

Combining observational data from the same regions of the sky
in different wavelength domains has become common practice

? - is publicly available for downloading from www.
astrodeep.eu/t-phot/
?? Scottish Universities Physics Alliance.

in the past few years (e.g. Agüeros et al. 2005; Obrić et al. 2006;
Grogin et al. 2011, and many others). However, the use of both
space-based and ground-based imaging instruments, with dif-
ferent sensitivities, pixel scales, angular resolutions, and survey
depths, raises a number of challenging difficulties in the data
analysis process.

In this context, it is of particular interest to obtain de-
tailed photometric measurements for high-redshift galaxies in
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the near-infrared (NIR; corresponding to rest-frame optical) and
far-infrared (FIR) domains. In particular, great attention must be
paid to bandpasses containing spectral features which allow a
thorough investigation of the sources, disentangling degenerate
observational features, and obtaining crucial clues to the under-
standing of the galactic physics (e.g. Daddi et al. 2004; Fontana
et al. 2009). At z > 3, for example, photometry longward of
H-band is needed to locate and measure the size of the Balmer
break. A passive galaxy at z ' 6 (with the Balmer break lying
longward of the K-band) can have H-band and 3.6 µm fluxes
compatible, for example, with a star forming, dusty galaxy at
z ' 1, and K-band photometry is necessary in order to disen-
tangle the degeneracy. However, the limited resolution of the
ground based K-band observations can impose severe limits on
the reliability of traditional aperture or even point spread func-
tion (PSF) fitting photometry. In addition, IRAC photometry is
of crucial importance so that reliable photometric redshifts of
red and high-z sources can be obtained, and robust stellar mass
estimates can be derived.

To address this, a high-resolution image (HRI), for example
obtained from the Hubble Space Telescope (HST) in the opti-
cal domain, can be used to retrieve detailed information on the
positions and morphologies of the sources in a given region of
the sky. Such information can be subsequently used to perform
the photometric analysis of the lower resolution image (LRI),
using the HRI data as priors. However, simply performing aper-
ture photometry on the LRI at the positions measured in the
HRI can be dramatically affected by neighbour contamination
for reasonably sized apertures. On the other hand, performing
source extraction on both images and matching the resulting cat-
alogues is compromised by the inability to deblend neighbouring
objects, and may introduce significant inaccuracies in the cross-
correlation process. PSF-matching techniques that degrade high-
resolution data to match the low-resolution data discard much
of the valuable information obtained in the HRI, reducing all
images to the “lowest common denominator” of angular resolu-
tion. Moreover, crowded-field, PSF-fitting photometry packages
such as  (Stetson 1987) perform well if the sources in
the LRI are unresolved, but are unsuitable for analysis of even
marginally resolved images of extragalactic sources.

A more viable approach consists of taking advantage of the
morphological information given by the HRI, in order to obtain
high-resolution cutouts or models of the sources. These priors
can then be degraded to the resolution of the LRI using a suit-
able convolution kernel, constructed by matching the PSFs of
the HRI and of the LRI. Such low-resolution templates, normal-
ized to unit flux, can then be placed at the positions given by
the HRI detections, and the multiplicative factor that must be as-
signed to each model to match the measured flux in each pixel
of the LRI will give the measured flux of that source. Such an
approach, although relying on some demanding assumptions as
described in the following sections, has proven to be efficient.
It has been implemented in such public codes as  (Laidler
et al. 2007) and  (De Santis et al. 2007), and has al-
ready been utilized successfully in previous studies (e.g. Guo
et al. 2013; Galametz et al. 2013).

In this paper we describe a new software package, -,
developed at INAF-OAR as part of the  project1.
The - software can be considered a new, largely improved

1  is a coordinated and comprehensive program of i) algo-
rithm/software development and testing; ii) data reduction/release; and
iii) scientific data validation/analysis of the deepest multiwavelength
cosmic surveys. For more information, visit http://astrodeep.eu

version of , supplemented with many of the features of
. Moreover, it adds many important new options,
including the possibility of adopting different types of pri-
ors (namely real images, analytical models, or point-sources).
In particular, it is possible to use - on FIR and sub-
millimetric (sub-mm) datasets, as a competitive alternative to the
existing dedicated software such as FP (Béthermin et al.
2010) and DP (Roseboom et al. 2010; Wang et al. 2014).
This makes - a versatile tool, suitable for the photomet-
ric analysis of a very broad range of wavelengths from UV to
sub-mm.
- is a robust and easy-to-handle code, with a precise

structural architecture (a P envelope calling C/C++ core
codes) in which different routines are encapsulated, implement-
ing various numerical/conceptual methods, to be chosen by sim-
ple switches in a parameter file. While a standard default “best
choice” mode is provided and suggested, the user is allowed to
select a preferred setting.

One of the main advantages of - is a significant saving
of computational time with respect to both  and 
(see Sect. 5). This has been achieved with the use of fast C mod-
ules and an efficient structural arrangement of the code. In addi-
tion to this, we demonstrate how different choices of parameters
influence the performace, and can be optimized to significantly
improve the final results with respect to , for example.

The plan of the paper is as follows. Section 2 provides a gen-
eral introduction to the code, its mode of operation and its al-
gorithms. In Sect. 3 we discuss some assumptions, limitations
and caveats of the method. Section 4 presents a comprehensive
set of tests, based on simulated and real datasets, to assess the
performance of the code and to fully illustrate its capabilities
and limitations. Section 5 briefly discusses the computational
performances of - and provides some reference compu-
tational timescales. Finally, in Sect. 6 the key features of -
are summarized, and outstanding issues and potential complica-
tions are briefly discussed.

2. General description of the code

As described above, - uses spatial and morphological in-
formation gathered from a HRI to measure the fluxes in a LRI.
To this end, a linear system is built and solved via matricial
computing, minimizing the χ2 (in which the numerically de-
termined fluxes for each detected source are compared to the
measured fluxes in the LRI, summing the contributions of all
pixels). Moreover, the code produces a number of diagnostic
outputs and allows for an iterative re-calibration of the results.
Figure 1 shows a schematic depiction of the basic PSF-matched
fitting algorithm used in the code.

As HRI priors - can use i) real cutouts of sources from
the HRI; ii) models of sources obtained with G or similar
codes; iii) a list of coordinates where PSF-shaped sources will
be placed, or a combination of these three types of priors.

For a detailed technical description of the mode of operation
of the code, we refer the reader to the Appendix and to the doc-
umentation included in the downloadable tarball. Here, we will
briefly describe its main features.

2.1. Pipeline

The pipeline followed by - is outlined in the flowchart
given in Fig. 2. The following paragraphs give a short description
of the pipeline.
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Fig. 1. Schematic representation of the PSF-matched algorithm imple-
mented in -. Top: two objects are clearly detected and separated
in the high-resolution detection image (blue line). The same two objects
are blended in the low-resolution measurement image and have different
colours (red line). Middle: the two objects are isolated in the detection
image and are individually smoothed to the PSF of the measurement
image, to obtain normalized model templates. Bottom: the intensity of
each object is scaled to match the global profile of the measurement im-
age. The scaling factors are found with a global χ2 minimization over
the object areas. Image from De Santis et al. (2007).

2.1.1. Input

The input files needed by - vary depending on the type(s)
of priors used.

If true high-resolution priors are used, e.g. for optical/NIR
ground-based or IRAC measurements using HST cutouts,
- needs

– the detection, high-resolution image (HRI) in .fits format;
– the catalogue of the sources in the HRI, obtained using

SE or similar codes (the required format is de-
scribed in Appendix A);

– the segmentation map of the HRI, in .fits format, again
obtained using SE or similar codes, having the
value of the id of each source in the pixels belonging to it,
and zero everywhere else;

– a convolution kernel K, in the format of a .fits image or
of a .txt file, matching the PSFs of the HRI and the LRI so
that PS FLRI = K ∗PS FHRI (∗ is the symbol for convolution).
The kernel must have the HRI pixel scale.

If analytical models are used as priors (e.g. G models),
- needs

– the stamps of the models (one per object, in .fits format);
– the catalogue of the models (the required format is described

in Appendix A);
– the convolution kernel K matching the PSFs of the HRI and

the LRI, as in the previous case.

If models have more than one component, one separate stamp
per component and catalogues for each component are needed
(e.g. one catalogue for bulges and one catalogue for disks).

If unresolved, point-like priors are used, - needs

– the catalogue of positions (the required format is described
in Appendix A);

– the LRI PSF, in the LRI pixel scale.

In this case, a potential limitation to the reliability of the method
is given by the fact that the prior density usually needs to be
optimized with respect to FIR/sub-mm maps, as discussed in Shu
et al. (in prep.) and Elbaz et al. (2011) (see also Wang et al.;
Bourne et al., in prep.). The optimal number of priors turns out
to be around 50–75% of the numbers of beams in the map. The
main problem is identifying which of the many potential priors
from, for example, an HST catalogue one should use. This is a
very complex issue and we do not discuss it in this paper.

If mixed priors are used, - obviously needs the input
files corresponding to each of the different types of priors in use.

Finally, in all cases - needs

– the measure LRI, background subtracted (see next para-
graph), in .fits format, with the same orientation as the
HRI (i.e. no rotation allowed); the pixel scale can be equal to,
or an integer multiple of, the HRI pixel scale, and the origin
of one pixel must coincide; it should be in surface brightness
units (e.g. counts/s/pixel, or Jy/pixel for FIR images, and not
PSF-filtered);

– the LRI rms map, in .fits format, with the same dimen-
sions and WCS of the LRI.

Table 1 summarizes the input requirements for the different
choices of priors just described.

All the input images must have the following keywords in
their headers: CRPIXn, CRVALn, CDn_n, CTYPEn (n = 1, 2).

2.1.2. Background subtraction

As already mentioned, the LRI must be background subtracted
before being fed to -. This is of particular interest when
dealing with FIR/sub-mm images, where the typical standard
is to use zero-mean. To estimate the background level in opti-
cal/NIR images, one simple possibility is to take advantage of
the option to fit point-like sources to measure the flux for a list
of positions chosen to fall within void regions. The issue is more
problematic in such confusion-limited FIR images where there
are no empty sky regions. In such cases, it is important to sep-
arate the fitted sources (those listed in the prior catalogue) from
the background sources, which contribute to a flat background
level behind the sources of interest. The priors should be cho-
sen so that these two populations are uncorrelated. The average
contribution of the faint background source population can then
be estimated for example by i) injecting fake sources into the
map and measuring the average offset (output-input) flux; or ii)
measuring the modal value in the residual image after a first pass
through - (see e.g. Bourne et al., in prep.).

2.1.3. Stages

- goes through “stages”, each of which performs a well-
defined task. The best results are obtained by performing two
runs (“pass 1” and “pass 2”), the second using locally regis-
tered kernels produced during the first. The possible stages are
the following:

– priors: creates/organizes stamps for sources as listed in the
input priors catalogue(s);
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Fig. 2. Schematic representation of the workflow in -.

Table 1. Input files needed by - for different settings (see text for details).

Real cutouts Analytical models Point-sources

Priors
HRI

Segmentation
Catalogue

HRI
Model Stamps

Catalogue
Positions Catalogue

Transformation Convolution Kernel Convolution Kernel PSFLRI

Measure
LRI

rmsLRI

LRI
rmsLRI

LRI
rmsLRI

– convolve: convolves each high-resolution stamp with the
convolution kernel K to obtain models (“templates”) of the
sources at LRI resolution. The templates are normalized to
unit total flux. If the pixel scale of the images is different,
transforms templates accordingly. Convolution is preferably
performed in Fourier space, using fast FFTW3 libraries; how-
ever the user can choose to perform it in real pixel space,
ensuring a more accurate result at the expense of a much
slower computation.

– positions: if an input catalogue of unresolved sources is
given, creates the PSF-shaped templates listed in it, and
merges it with the one produced in the convolve stage;

– fit: performs the fitting procedure, solving the linear sys-
tem and obtaining the multiplicative factors to match each
template flux with the measured one;

– diags: selects the best fits2 and produces the final format-
ted output catalogues with fluxes and errors, plus some other
diagnostics, see Sect. 2.3;

2 Each source is fitted more than once if an arbitrary grid is used, as in
the standard  approach.

– dance: obtains local convolution kernels for the second pass;
it can be skipped if the user is only interested in a single-pass
run;

– plotdance: plots diagnostics for the dance stage; it can be
skipped for any purpose other than diagnostics;

– archive: archives all results in a subdirectory whose name
is based on the LRI and the chosen fitting method (to be used
only at the end of the second pass).

The exact pipeline followed by the code is specified by a key-
word in the input parameter file. See also Appendix A for a more
detailed description of the whole procedure.

2.1.4. Solution of the linear system

The search for the LRI fluxes of the objects detected in the HRI
is performed by creating a linear system

∑
m, n

I(m, n) =
∑
m, n

N∑
i

FiPi(m, n) (1)
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where m and n are the pixel indexes, I contains the pixel values
of the fluxes in the LRI, Pi is the normalized flux of the template
for the ith objects in the (region of the) LRI being fitted, and Fi
is the multiplicative scaling factor for each object. In physical
terms, Fi represents the flux of each object in the LRI (i.e. it is
the unknown to be determined).

Once the normalized templates for each object in the LRI (or
region of interest within the LRI) have been generated during the
convolve stage, the best fit to their fluxes can be simultaneously
derived by minimizing a χ2 statistic,

χ2 =

[∑
m, n I(m, n) − M(m, n)

σ(m, n)

]2
(2)

where m and n are the pixel indexes,

M(m, n) =

N∑
i

FiPi(m, n) (3)

and σ is the value of the rms map at the (m, n) pixel position.
The output quantities are the best-fit solutions of the mini-

mization procedure, i.e. the Fi parameters and their relative er-
rors. They can be obtained by resolving the linear system

∂χ2

∂Fi
= 0 (4)

for i = 0, 1, ...,N.
In practice, the linear system can be rearranged into a matrix

equation,

AF = B (5)

where the matrix A contains the coefficients PiP j/σ
2, F is a vec-

tor containing the fluxes to be determined, and B is a vector
given by IiPi/σ

2 terms. The matrix equation is solved via one
of three possible methods as described in the next subsection.

2.1.5. Fitting options

- allows for some different options to perform the fit:

– three different methods for solving the linear system are im-
plemented, namely, the LU method (used by default in ),
the Cholesky method, and the Iterative Biconjugate Gradient
method (used by default in ; for a review on meth-
ods to solve sparse linear systems see e.g. Davis 2006). They
yield similar results, although the LU method is slightly
more stable and faster;

– a threshold can be imposed so that only pixels with a flux
higher than this level will be used in the fitting procedure
(see Sect. 4.1.4);

– sources fitted with a large, unphysical negative flux ( fmeas <
−3σ, where σ is their nominal error, see below) can be ex-
cluded from the fit, and in this case a new fitting loop will be
performed without considering these sources.

The fit can be performed i) on the entire LRI as a whole, pro-
ducing a single matrix containing all the sources (this is the
method adopted in ); ii) subdividing the LRI into an
arbitrary grid of (overlapping) small cells, perfoming the fit in
each of such cells separately, and then choosing the best fit for
each source, using some convenient criteria to select it (because
sources will be fitted more than once if the cells overlap; this is
the method adopted in ); iii) ordering objects by decreasing

flux, building a cell around each source including all its poten-
tial contaminants, solving the problem in that cell and assigning
to the source the obtained flux (cells-on-objects method; see the
Appendix for more details).

While the first method is the safest and more accurate be-
cause it does not introduce any bias or arbitrary modifications, it
may often be unfeasible to process at once large or very crowded
images. Potentially large computational time saving is possible
using the cells-on-objects method, depending on the level of
blending/confusion in the LRI; if it is very high, most sources
will overlap and the cells will end up being very large. This ul-
timately results in repeating many times the fit on regions with
dimensions comparable to the whole image (a check is imple-
mented in the code, to automatically change the method from
cells-on-objects to single fit if this is the case). If the confusion
is not dramatic, a saving in computational time up to two orders
of magnitude can be achieved. The results obtained using the
cells-on-objects method prove to be virtually identical to those
obtained with a single fit on the whole image (see Sect. 4.1.2).
On the other hand, using the arbitrary cells method is normally
the fastest option, but can introduce potentially large errors to
the flux estimates owing to wrong assignments of peripheral flux
from sources located outside a given cell to sources within the
cell (again, see Sect. 4.1.2 and the Appendix B).

2.1.6. Post-fitting stages: kernel registration

After the fitting procedure is completed, - will produce
the final output catalogues and diagnostic images (see Sect. 2.3).
Among these, a model image is obtained by adding all the tem-
plates, scaled to their correct total flux after fitting, in the po-
sitions of the sources. This image will subsequently be used if
a second pass is planned; during a stage named dance, a list of
positional shifts is computed, and a set of shifted kernels are gen-
erated and stored. The dance stage consists of three conceptual
steps:

– the LRI is divided into cells of a given size (specified by the
keyword dzonesize) and a linear ∆x,∆y shift is computed
within each cell, cross-correlating the model image and the
LRI in the considered region3;

– interpolated shifts are computed for the regions where the
previous registration process gives spuriously large shifts,
i.e. above the given input threshold parameter maxshift;

– the new set of kernels is created using the computed shifts to
linearly interpolate their positions, while catalogues report-
ing the shifts and the paths to kernels are produced.

2.1.7. Second pass

The registered kernels can subsequently be used in the second
pass run to obtain more astrometrically precise results. -
automatically deals with them provided the correct keyword is
given in the parameter file. If unresolved priors are used, the
list of shifts generated in the dance stage will be used by the
positions routine during the second pass to produce correctly
shifted PSFs and generate new templates.

3 FFT and direct cross-correlations are implemented, the latter being
the preferred default choice because it gives more precise results at the
expense of a slightly slower computation.
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Fig. 3. Example of the results of a standard
- run using extended priors. Left to right:
HRI (FWHM = 0.2′′), LRI (FWHM =
1.66′′), and residuals image for a simulated
dataset. LRI and residual image are on the same
greyscale.

2.2. Error budget

During the fitting stage, the covariance matrix is constructed.
Errors for each source are assigned as the square root of the di-
agonal element of the covariance matrix relative to that source.
It must be pointed out that using any cell method for the fitting
rather than the single fitting option will affect this uncertainty
budget, since a different matrix will be constructed and resolved
in each cell.

It is important to stress that this covariance error budget is
a statistical uncertainty, relative to the rms fluctuations in the
measurement image, and is not related to any possible systematic
error. The latter can instead be estimated by flagging potentially
problematic sources, to be identified separately from the fitting
procedure. There can be different possible causes for systematic
offsets of the measured flux with respect to the true flux of a
source. - assigns the following flags:

– +1 if the prior has saturated or negative flux;
– +2 if the prior is blended (the check is performed on the

segmentation map);
– +4 if the source is at the border of the image (i.e. its segmen-

tation reaches the limits of the HRI pixels range).

2.3. Description of the output

- output files are designed to be very similar in format to
those produced by . They provide

– a “best” catalogue containing the following data, listed
for each detected source (as reported in the catalogue file
header):
– id;
– x and y positions (in LRI pixel scale and reference frame,

FITS convention where the first pixel is centred at 1,1);
– id of the cell in which the best fit has been obtained (only

relevant for the arbitrary grid fitting method);
– x and y positions of the object in the cell and distance

from the centre (always equal to 0 if the cells-on-objects
method is adopted);

– fitted flux and its uncertainty (square root of the variance,
from the covariance matrix). These are the most impor-
tant output quantities;

– flux of the object as given in the input HRI catalogue or,
in the case of point-source priors, measured flux of the
pixel at the x, y position of the source in the LRI;

– flux of the object as determined in the cutout stage
(it can be different to the previous one, e.g. if the

segmentation was dilated); in the case of point-sources
priors, measured flux of the pixel at the x, y position of
the source in the LRI;

– flag indicating a possible bad source as described in the
previous subsection;

– number of fits for the object (only relevant for arbitrary
grid fitting method, 1 in all other cases).

– id of the object having the largest covariance with the
present source;

– covariance index, i.e. the ratio of the maximum covari-
ance to the variance of the object itself; this number can
be considered an indicator of the reliability of the fit,
since large covariances often indicate a possible system-
atic offset in the measured flux of the covarying objects
(see Sect. 4.1.2).

– two catalogues reporting statistics for the fitting cells
and the covariance matrices (they are described in the
documentation);

– the model .fits image, obtained as a collage of the tem-
plates, as already described;

– a diagnostic residual .fits image, obtained by subtracting
the model image from the LRI;

– a subdirectory containing all the low-resolution model
templates;

– a subdirectory containing the covariance matrices in graphic
(.fits) format;

– a few ancillary files relating to the shifts of the kernel for
the second pass and a subdirectory containing the shifted
kernels.

All fluxes and errors are output in units consistent with the input
images.

Figures 3–5 show three examples of - applications on
simulated and real data, using the three different options for
priors.

3. Assumptions and limitations

The PSF-matching algorithms implemented in - and de-
scribed in the previous section are prone to some assump-
tions and limitations. In particular, the following issues must be
pointed out.

i) The accuracy of the results strongly depends on the reliabil-
ity of the determined PSFs (and consequently of the convo-
lution kernel). An error of a few percentage points in the
central slope of the PSF light profile might lead to non-
negligible systematical deviations in the measured fluxes.
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Fig. 4. Example of the results of a standard
- run using point-source priors. Left to
right: LRI (FWHM = 25′′) and residuals im-
age (same greyscale) for a simulated dataset.
See also Sect. 4.1.2.

Fig. 5. Example of the results of a standard
- run using analytical priors. Left to
right: CANDELS COSMOS H-band (HRI),
R-band (LRI) and residuals image obtained us-
ing G two-component models. LRI and
residual image are on the same greyscale.

Fig. 6. Typical patterns in a residual image created by -, caused
by inaccurate PSF/kernel determination. In this case, the ring-shaped
shadow surrounding a bright central spot is due to an underestimation
of the central peak of the LRI PSF, which causes an overestimation of
the fit in the outskirts while leaving too much light in the centre.

However, since the fitting algorithm minimizes the residu-
als on the basis of a summation over pixels, an incorrect PSF
profile will lead to characteristic positive and negative ring-
shaped patterns in the residuals (see Fig. 6), and to some
extent the summation over pixels will compensate the global
flux determination.

ii) When dealing with extended priors, it is assumed that the
instrinsic morphology of the objects does not change with
the wavelength. Of course, this is usually not the case. The
issue is less of a problem when dealing with FIR images,
in which the morphological features of the priors are unre-
solved by the low-resolution PSF. On the other hand, in the
optical and NIR domains this problem may be solved by the

use of multicomponent analytical models as priors. In this
approach, each component should be fitted independently,
thus allowing the ratio between bulge and disk components
to vary between the HRI and LRI. A clear drawback of this
approach is that any failure of the fit due to irregular or dif-
ficult morphological features (spiral arms, blobs, asymme-
tries, etc.) would be propagated into the LRI solution. This
functionality is already implemented in - and detailed
testing is ongoing.

iii) As explained in Sect. 2.2, - flags priors that are likely
to be flawed: sources too close to the borders of the image,
saturated objects, and most notably blended priors. The as-
sumption that all priors are well separated from one another
is crucial, and the method fails when this requirement is not
accomplished. Again, this is crucial only when dealing with
real priors, while analytical models and unresolved priors are
not affected by this limitation.

iv) As anticipated in Sect. 2.1.1, FIR images can suffer from an
“overfitting” problem, due to the presence of too many priors
in each LRI beam if the HRI is deeper than the LRI. In this
case, a selection of the priors based on some additional crite-
ria (e.g. flux predition from SED fitting) might be necessary
to avoid catastrophic outcomes (see also Wang et al.; Bourne
et al., in prep.).

4. Validation

To assess the performance of - we set up an extensive set
of simulations, aimed at various different and complementary
goals.

We used SM (Bertin 2009), a public software tool,
to build synthetic .fits images. The code ensures direct control
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Fig. 7. Accuracy check on idealized PSF-shaped objects. 100 realizations of the same image containing two PSF-shaped objects at varying positions
and signal-to-noise ratios have been produced and the fluxes have been measured with -. In each row, the left image shows one of the
100 realizations with the largest considered separation (10 pixels). On the right, the first panel refers to the central object, and the second (on the
right) to the shifted object; central signal-to-noise (S/Ncentr) ratios are, from top to bottom, 100, 100, 100 for the first source and 100, 10, 1 for
the second source. In each panel, as a function of the separation interval between the two sources, the faint grey points show each of the 100 flux
measurements (in relative difference with respect to the true input flux), the red diamonds are the averages of the 100 measurements, the red crosses
show the nominal error given by the covariance matrix in -, and the green dots the standard deviation of the 100 measurements. See text for
more details.

on all the observational parameters (the magnitude and positions
of the objects, their morphology, the zero point magnitude, the
noise level, and the PSF). Model galaxies were built by summing
a de Vaucouleurs and an exponential light profile in order to
best mimic a realistic distribution of galaxy morphologies. These
models were generated using a variety of bulge-to-total light ra-
tios, component sizes, and projection angles.

All tests were run using ideal (i.e. synthetic and symmetric)
PSFs and kernels.

Moreover, we also performed tests on real datasets taken
from the CANDELS survey (in these cases using real PSFs).

Some of the tests were performed using both - and
, to cross-check the results, ensuring the perfect equiva-
lency of the results given by the two codes when used with the
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Fig. 8. Effects of different segmentation areas
on the measured flux of two isolated objects
with identical flux and signal-to-noise ratio, at
two possible separations of 40 and 120 pixels.
Each panel shows the flux error in one of the
objects at each separation distance. The shades
and dimensions of the dots is a function of
the radius of the segmentation, with darker and
smaller dots corresponding to smaller segmen-
tations. See text for more details.

Fig. 9. Accuracy of the flux determination
in a simulation containing non-overlapping,
PSF-shaped sources and “perfect” detection.
Relative measured flux difference ( fmeas −

ftrue)/ ftrue is plotted versus logarithm of the in-
put flux ftrue, for a simulated image populated
with PSF-shaped sources (FWHM = 1.66′′).
Each dot corresponds to a single source, with
different symbols and colours referring to vari-
ous diagnostics as explained in the legend and
in the colourbar. The black solid line is the aver-
age in bins, the yellow shade is the standard de-
viation. The vertical dashed line shows the lim-
iting flux at 1σ, f = 1. The inner panel shows
a magnification of the brighter end of the dis-
tribution. The fit was performed on the whole
image at once. See text for more details.

same parameter sets, and showing how appropriate settings of
the - parameters can ensure remarkable improvements.

For simplicity, here we only show the results from a re-
stricted selection of the test dataset, which are representative of
the performance of - in standard situations. The results of
the other simulations resemble overall the ones we present, and
are omitted for the sake of conciseness.

4.1. Code performance and reliability on simulated images

4.1.1. Basic tests

As a first test, we checked the performance of the basic method
by measuring the flux of two PSF-shaped synthetic sources,
with varying separation and signal-to-noise ratios. One hun-
dred realizations with different noise maps of each parameter
set were prepared, and the averages on the measured fluxes were

computed. The aims of this test were twofold: on the one hand,
to check the precision to which the fitting method can retrieve
true fluxes in the simplest possible case - two sources with ideal
PSF shape; on the other hand, to check the reliability of the nom-
inal error budget given by the covariance matrix, comparing it to
the real rms of the 100 measurements. Figure 7 shows three ex-
amples of the set-up and the results of this test. Clearly, in both
aspects the results are reassuring: the average of the 100 mea-
surements (red diamonds) is always in very good agreement with
the true value, with offset in relative error always well under the
1/(S/N)centr limit ((S/N)centr is the value of the signal-to-noise ra-
tio in the central pixel of the source, corresponding to roughly
one third of the total S/N); and the nominal error (red crosses)
given by the covariance matrix is always in good agreement with
the rms of the 100 measurements (red circles).

When dealing with extended objects rather than with point-
like sources, one must consider the additional problem that the
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Fig. 10. Analysis of a small region including a strongly covarying group of sources. Upper left panel: one of the 100 realizations with different
noise maps of the region. Upper right panel: true spatial position of all the sources in the region (the colour of the dots refer to the covariance index
of the sources, as indicated in the colourbar, while their size is proportional to their true flux). Bottom left panel: relative deviation of measured
flux from the true flux for each source in the region, as a function of their true magnitude (big dots show the average relative deviation, and their
colours refer to their covariance index as in the previous panel; green squares show the nominal uncertainty given by -, to be compared with
the rms of the distribution of the 100 measurements (diamonds); small grey dots are the 100 measurements. The insets show magnifications of
regions of interest). Bottom right panel: each dot shows the sum of the measured fluxes for each of the 100 realizations, and the average of this
sum (red line) to be compared with the true sum (blue line), showing that an overall consistency is guaranteed by the method. See text for more
details.

entire profile of the source cannot be measured exactly be-
cause the segmentation is limited by the lowest signal-to-noise
isophote. The extension of the segmentation therefore plays a
crucial role and defining it correctly is a very subtle problem.
Simply taking the isophotal area as reported by SE
as ISOAREA often underestimates the real extension of the ob-
jects. Accordingly, the segmentation of the sources should some-
how be enlarged to include the faint wings of sources. To this
aim, specific software called D was developed at OAR and
used in the CANDELS pipeline for the photometric analysis of
GOODS-S and UDS IRAC data (Galametz et al. 2013). D
enlarges the segmentation by a given factor, depending on the
original area; it has proven to be reasonably robust in minimiz-
ing the effects of underestimated segmentated areas.

Figure 8 shows the effects of artificially varying the dimen-
sions of the segmentation relative to two bright, extended and
isolated sources in a simulated HRI, on the flux measured for that
source in a companion simulated LRI. It is important to note how
enlarging the segmented area normally results in larger measured
fluxes, because more and more light from the faint wings of the
source are included in the fit. However, beyond a certain limit the
measurements begin to lose accuracy owing to the inclusion of
noisy, too low signal-to-noise regions (which may cause a lower
flux measurement).

In principle, using extended analytical models rather than
real high-resolution cutouts should cure this problem more effi-
ciently, because models have extended wings that are not signal-
to-noise limited. Tests are ongoing to check the performance of
this approach, and will be presented in a forthcoming paper.

4.1.2. Tests on realistic simulations

The next tests were aimed at investigating less idealized sit-
uations, and have been designed to provide a robust analysis
of the performance of the code on realistic datasets. We used
the code GC (Schreiber et al., in prep.) to produce mock
catalogues of synthetic extragalactic sources, with reasonable
morphological features and flux distribution4. Then, a set of
images were produced using such catalogues as an input for

4 GC is another software package developed within the -
 project. It uses GOODS-S CANDELS statistics to generate
a realistic distribution of masses at all redshifts, for two populations
of galaxies (active and passive), consistently with observed mass func-
tions. All the other physical properties of the mock galaxies are then
estimated using analytical recipes from literature: each source is as-
signed a morphology (bulge-to-total ratio, disk and bulge scale lengths,
inclination etc.), star formation rate, attenuation, optical and infrared
rest-frame, and observed magnitudes. Each source is finally assigned a
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Fig. 11. Accuracy of the flux determination in a simulation containing extended objects, overlapping priors, and SE detection. Top:
relative flux difference ( fmeas − ftrue)/ ftrue versus logarithm of the input flux ftrue for a simulated image populated with extended sources (FWHM =
1.66′′). Symbols and colours are as in Fig. 9. The inner panel shows a magnification of the brighter end of the distribution. The outlier marked
with the open black circle, ID = 720, is shown in the bottom panel: left to right, HRI (FWHM = 0.2′′), LRI, SE segmentation map and
“true” segmentation map. The green circles show the object detected via SE, while the blue cross shows its “true” position. See text for
more details.

SM. A “detection” HRI mimicking an HST H-band ob-
servation (FWHM = 0.2′′) was generated from the GC
catalogue using output parameters to characterize the objects’
extended properties. Then a set of measure LRIs were pro-
duced: the first was populated with PSF-shaped sources, having
FWHM = 1.66′′ (the typical IRAC-ch1/ch2 resolution, a key
application for -), while other LRIs were created from the
input catalogue, mimicking different ground-based or IRAC full

sky-projected position mimicking the clustering properties of the real
CANDELS data.

width at half maxima (FWHMs). Finally, we created another
HRI catalogue removing all of the overlapping sources5. This
“non-overlapping” catalogue was used to create parallel detec-
tion and measurement images in order to obtain insight into the
complications given by the presence of overlapping priors. In

5 We proceeded as follows. First, we created a “true” segmentation
image using the input catalogue and assigning to each object all the
pixels in which the flux was 1.005 × fbackground. Then, starting from the
beginning of the list, we included each source in the new catalogue if its
segmented area did not overlap the segmented area of another already
inserted source.
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Fig. 12. Accuracy of the flux determination in a
FIR-like simulation (Herschel SPIRE 250 µm,
FWHM = 25′′, 3.6′′ pixel scale), using un-
resolved priors. The symbols have the same
meaning as in Fig. 11. See text for more details.

all these images, the limiting magnitude was set equal to the as-
signed zero point, so that the limiting flux at 1σ is 1. In addition,
the fits were always performed on the LRI as a whole, if not
otherwise specified.

Figure 9 shows the results relative to the first test, i.e. the fit
on the image containing non-overlapping, PSF-shaped sources,
with a “perfect” detection (i.e. the priors catalogue contains all
sources above the detection limit), obtained with a single fit on
the whole image. The figure shows the relative error in the mea-
sured flux of the sources, ( fmeas − ftrue)/ ftrue, versus the log of
the real input flux ftrue; the different symbols refer to the flag
assigned to each object, while the colour is a proxy for the co-
variance index.

In this case, the only source of uncertainty in the measure-
ment is given by the noise fluctuations, which clearly become
dominant at the faint end of the distribution. Looking at the er-
ror bars of the sources, which are given by the nominal error
assigned by - from the covariance matrix, one can see that
almost all sources have measured flux within 2σ from their true
flux, with only strongly covariant sources (covariance index '1,
greener colours) having | fmeas− ftrue|/ ftrue > 1σ. The only notice-
able exceptions are sources that have been flagged as potentially
unreliable, as described in Sect. 2.2. We also note how the av-
erage ∆ f / f (solid black line) is consistent with zero down to
ftrue = S/N ' 0.63.

Figure 10 shows the analysis of a case study in which the
fluxes of a clump of highly covariant objects are measured with
poor accuracy, and some of the nominal uncertainties are under-
estimated: a very bright source (ID 3386, mtrue = 21.17) shows a
relative difference ( fmeas − ftrue)/ ftrue > 3σ. To cast light on the
reason for such a discrepancy, the region surrounding the object
was replicated 100 times with different noise realizations, and
the results were analysed and compared. The upper panels show
(left) one of the 100 measurement images and (right) the position
of all the sources in the region (many of which are close to the
detection limit). The colour code refers to the covariance index
of the sources. The bottom left panel shows the relative error in
the measured flux for all the sources in the region, with the in-
ner panels showing magnifications relative to the object ID 3386

and to the bunch of objects with mtrue ∼ 26.5. Looking at the
colours of their symbols, many objects in the region turn out to
be strongly covariant. Indeed, while the bluer sources in the up-
per part of the region all have covariant indexes lower than 0.5,
the greener ones in the crowded lower part all have covariance
index larger than 1 (indeed larger than 2 in many cases). This
means that their flux measurements are subject to uncertainties
not only from noise fluctuations, but also from systematic errors
due to their extremely close and bright neighbours. As clearly
demonstrated here, the covariance index can give a clue to which
measurements can be safely trusted.

The bottom right panel gives the sum of the measured fluxes
of all sources in each of the 100 realizations (the blue line is the
true total flux and the red line is the mean of the 100 measured
total fluxes). It can be seen that the total flux measured in the
region is always consistent with the expected true one to within
'1% of its value.

Although it is not possible to postulate a one-to-one rela-
tion (because in most cases sources having a large covariance
index have a relatively good flux estimate, see Fig. 9), the bot-
tom line of this analysis is that the covariance index, together
with the flagging code outputted by -, can give clues about
the reliability of measured flux, and should be taken into consid-
eration during the analysis of the data. Measurements relative to
sources having a covariance index larger than 1 should be treated
with caution.

In a subsequent more realistic test, we considered extended
objects (including morphologies of objects from the GC
catalogue, using FWHMHRI = 0.2′′ and FWHMLRI = 1.66′′
and imposing mtrue,LRI = mtrue,HRI = mH160,GenCat for simplic-
ity) and allowed for overlapping priors. To be consistent with
the standard procedure adopted for real images, for this case
we proceeded by producing an SE catalogue and seg-
mentation map, which were then spatially cross-correlated with
the “true” input catalogue. The results for this test are shown
in Fig. 11. Even in this much more complex situation, the re-
sults are reassuring; there is an overall good agreement between
measured and input fluxes for bright (log S/N > 1) sources,
with only a few flagged objects clearly showing large deviations
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Fig. 13. Accuracy of the flux determination. Top panel: for the same
simulation described in Fig. 11, the histograms show the results for
three different fitting methods: regular grid 100 × 100 pixels (standard
 approach), regular grid 200 × 200, single fit on the whole image.
The small boxes show the extended wings of the histograms, magnified
for better viewing. The accuracy increases by enlarging the cells and,
reaches the best result with the single fit on the whole image. Bottom
panel: the histogram shows the relative measured flux difference be-
tween the single fit on the whole image and the cells-on-objects method.
Differences above 1% are very rare.

from the expected value, and a reasonably good average agree-
ment down to log S/N = 0. However, all bright fluxes are mea-
sured '5% fainter than the true values (see the inner box in the
same figure); this is very likely the effect of the limited segmen-
tation extension, as already discussed in the previous section.
On the other hand, faint sources tend to have systematically
overestimated fluxes, arguably because of contamination from
undetected sources. To confirm this, we focus our attention on a
single case study (the source marked as ID 720) which shows a
large discrepancy from its true flux, but has a relatively small co-
variance index. An analysis of the real segmentation map shows
how the detected object is actually a superposition of two differ-
ent sources that have been detected as a single one, so that the
measured flux is of course higher than expected. One should also

note that the uncertainties on the measured fluxes are smaller in
this test, because there are fewer priors (only the ones detected
by SE are now present), implying a lower rank of the
covariance matrix and a lower number of detected neighbours
blending in the LRI. This causes a global underestimation of the
errors.

To check the performance of - at FIR wavelengths,
we also run a test on a simulated Herschel SPIRE 250 µm im-
age (FWHM = 25′′, 3.6′′ pixel scale). The simulated image
(shown alongside with the obtained residuals in Fig. 4) mim-
ics real images from the GOODS-Herschel program, the deep-
est Herschel images ever obtained. This image was produced
with the technique presented in Leiton et al. (2015); we first
derived (predicted) flux densities for all the 24 µm detections
(F24 µm > 20 µJy) in GOODS-North, which are dependent
on their redshift and flux densities at shorter wavelengths, and
then we injected these sources into the real noise maps from
GOODS-Herschel imaging. Additional positional uncertainties,
typically 0.5′′, were also applied to mimic real images. As shown
in Leiton et al. (2015), these simulated images have similar pixel
value distributions to real images (see also Wang et al., in prep.,
for more details). For this test, - was run using the list of
all the 24 µm sources as unresolved priors. The results of the
test are plotted in Fig. 12, and they show that even in this case
- can recover the input fluxes of the sources with great
statistical accuracy (the mean of the relative deviation from the
expected measurements, i.e. the black solid line in the plot, is
consistent with zero down to the faintest fluxes). The results are
equivalent to those obtained on the same datasets with other pub-
lic software specifically developed for FIR photometry, such as
FP (Béthermin et al. 2010).

4.1.3. Testing different fitting options: cell dimensions

We then proceeded to check the performance of the different
fitting techniques that can be used in -. To this aim, we
repeated the test on the 1.66′′ LRI with extended priors and
SE priors, described in Sect. 4.1.2, with different
fitting methods: using a regular grid of cells of 100× 100 pixels,
a regular grid of cells of 200 × 200 pixels, and the cells-on-
objects method, comparing the results with those from the fit
of the whole image at once. The results of the tests are shown
in Figs. 13 and 14. The first figure compares the distributions
of the relative errors in measured flux for the runs performed
on the 100 × 100 pixels grid, on the 200 × 200 pixels grid,
and on the whole image at once. Clearly, using any regular
grid of cells worsens the results, as anticipated in Sect. 2.1.5.
Enlarging the sizes of the cells improves the situation, but does
not completely solve the problem. We note that the adoption
of an arbitary grid of cells of any dimension in principle is
prone to the introduction of potentially large errors, because
(possibly bright) contaminating objects may contribute to the
brightness measured in the cell, without being included as con-
tributing sources. A mathematical sketch of this issue is ex-
plained in the Appendix B (see also Sect. 4.2). The second his-
togram compares the differences between the fit on the whole
image and the fit with the cells-on-objects method. Almost all
the sources yield identical results with the two methods, within
( fmeas− ftrue)/ ftrue < 0.001, which proves that the cells-on-objects
method can be considered a reliable alternative to the single-fit
method. Finally, Fig. 14 compares the HRI, the LRI, and the
residual images obtained with the four methods and their distri-
butions of relative errors, showing quantitatively the difference
between the analyzed cases.
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Fig. 14. Accuracy of the flux determination. For the same simulation described in Fig. 11, the plots show the results for four different fitting
methods. Top panel, left to right: HRI (FWHM = 0.2′′), LRI (FWHM = 1.66′′), residuals using a regular grid of 100 × 100 pixels cells (standard
 approach), a regular grid of 200× 200 pixels cells, a single fit on the whole image, and the cells-on-objects method. The spurious fluctuations
in the last two panels are due to segmentation inaccuracies, as in Fig. 11. Bottom panels, left to right and top to bottom: relative measured flux
differences with respect to true fluxes, same order as above. The values of the covariance index are different in each case because of the varying
sizes of the cells (and therefore of the relative matrix).

In summary, it is clear that an incautious choice of cell
size may lead to unsatisfactory and catastrophic outcomes. On
the other hand, the advantages of using a single fit, and the
equivalence of the results obtained with the single-fit and the
cells-on-objects techniques, are evident. As already anticipated,
one should bear in mind that the cells-on-objects method is only
convenient if the overlapping of sources is not dramatic, as in
ground-based optical observations. For IRAC and FIR images,
on the other hand, the extreme blending of sources would cause
the cells to be extended over regions approaching the size of the
whole image, so that a single fit would be more convenient, al-
though often still CPU-time consuming.

4.1.4. Testing different fitting options: threshold fitting

As described in Sect. 2.1.5, - includes the option of impos-
ing a lower threshold on the normalized fluxes of templates so
as to exclude low signal-to-noise pixels from the fit. Figure 15
shows a comparison of the relative errors obtained with three
different values of the THRESHOLD parameter: t = 0, t = 0.5,
and t = 0.9 (whic means that only pixels with normalized flux

fnorm > t × fpeak in the convolved template will be used in the
fitting procedure). The differences are quite small; however, a
non-negligible global effect can be noticed: all sources tend to
slightly decrease their measurement of flux when using a thresh-
old limit. This brings faint sources (generally overestimated
without using the threshold) closer to their true value, at the same
time making bright sources too faint. This effect deserves care-
ful investigation, which is beyond the scope of this study, and is
postponed to a future paper.

4.1.5. Colours

A final test was run introducing realistic colours, i.e. assign-
ing fluxes to the sources in the LRI consistent with a realistic
SED (as output by GC, see Sect. 4.1.2), instead of impos-
ing them to be equal to the HRI fluxes. We took IRAC-ch1 as a
reference filter for the LRI, consistently with the chosen FWHM
of 1.66′′. Furthermore, we allowed for variations in the bulge-
to-disc ratios of the sources to take possible effects of colour
gradients into account. We compared the results obtained with
- with the ones obtained with two alternative methods to
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Fig. 15. Effects of threshold fitting (Sect. 4.1.4).
Mean relative error (black line) and standard devia-
tion (yellow shaded area) for three simulations with
different threshold values (0.0, 0.5, 0.9). Only pix-
els with normalized flux higher than the threshold
values are included in the fit. Larger threshold val-
ues result in more accurate measurements for faint
sources, at the expense of a systematic underesti-
mation of the flux for brighter ones.

Fig. 16. Top: measured magnitude differences (mmeas −

mtrue) versus “true” input magnitudes mtrue, for two sim-
ulated images populated with extended sources (HRI
has FWHM = 0.2′′ and HST H-band-like fluxes, LRI
has FWHM = 1.66′′ and IRACch1-like fluxes), us-
ing three different methods: SE dual-mode
aperture, SE dual-mode “best”, and -.
Vertical lines show the 5σ (dashed) and 1σ (dotted)
limits of the simulated LRI. Bottom: magnification of
the top panel, showing only - results, colour-
coded as a function of the covariance index. See text
for more details.

determine the magnitudes of the sources in the LRI: namely,
SE dual mode aperture and MAG_BEST photometry
(with HRI as detection image). The differences between mea-
sured and input magnitudes in the LRI, mmeas–mtrue, are plotted
in Fig. 16. Clearly, - ensures the best results, with much
less scatter in the measurements than both of the other two meth-
ods, and very few outliers.

4.2. Performance on real datasets

It is instructive to check how - performs on real datasets,
in addition to simulations. To this aim, we run two different tests.
In the first, we compared the results of the  CANDELS anal-
ysis on the UDS CANDELS I-band (Galametz et al. 2013) to
a - run obtained using the cells-on-objects method and
different parameters in the kernel registration stage. Figure 17
shows the histograms of the differences in the photometric mea-
surements between  and -. Many sources end up with
a substantially different flux, because of the two cited factors
(a better kernel registration and the different fitting procedure).
We note that the majority of the sources have fainter fluxes
with respect to the previous measurements, precisely because
of the effect described in Sect. 4.1.2: fitting using a grid of cells

Fig. 17. UDS I-band  versus - comparison. Top panel: com-
pared measured fluxes. Bottom panel: histogram of relative measured
flux difference.
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Fig. 18. UDS I-band  versus -
comparison. The panels on the left show
two small patches of the official CANDELS
residual image obtained using -. The
residual images of the same regions are
showed in the right panels, this time ob-
tained using - with cells-on-objects
method and improved local kernel registra-
tion. We note the disappearence of many spu-
rious black spots.

introduces systematic errors assigning light from sources that are
not listed in a given cell, but overlap with it to the objects recog-
nized as belonging to the cell. To further check this point, Fig. 18
shows some examples of the difference between the residuals
obtained with  (official catalogue) and those obtained with
this - run using cells-on-objects method, also introducing
better registration parameters in the dance stage. Clearly, the re-
sults are substantially different, and many black spots (sources
with spurious overestimated fluxes) have disappeared. Also, the
registrations appear to be generally improved.

The second test was run on FIR/sub-mm SCUBA-2 (450 µm,
FWHM = 7.5′′) and Herschel (500 µm, FWHM = 36′′) im-
ages of the COSMOS-CANDELS field. In both cases, a list of
24 + 850 µm sources was used as unresolved priors. Figure 19
shows the original images in the top row, and the residuals in
the bottom row. The model has removed all significant sources
from the 450 µm map and the majority from the 500 µm map.
Figure 20 shows a comparison of the fluxes measured in the
- fits to the 450 µm and 500 µm maps at 24 + 850 µm prior
positions, with the error bars combining the errors on both flux
measurements. Agreement within the errors implies successful
deconfusion of the Herschel image to reproduce the fluxes mea-
sured in the higher resolution SCUBA-2 image. This typology
of analysis is very complex and we do not want to address here
the subtleties of the process; we refer the reader to Wang et al.
(in prep.) and Bourne et al. (in prep.) for detailed discussions
on the definition of a robust and reliable approach to measure
FIR and sub-mm fluxes. These simple tests, however, clearly
show that - is successful at recovering the fluxes of tar-
get sources even in cases of extreme confusion and blending,
within the accuracy limits of the method.

5. Computational times

As anticipated, - ensures a large saving of computa-
tional time compared to similar codes like  and 

Fig. 19. Results from a test run using - with unresolved priors on
FIR/sub-mm real dataset. Upper row, left to right: SCUBA-2 450 µm
(FWHM = 7.5′′) and Herschel 500 µm (FWHM = 36′′) images of the
COSMOS-CANDELS fields. Lower row, left to right: residuals for the
two fields, obtained with - runs using a list of 24 + 850 µm priors.
See text for details.
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Fig. 20. Accuracy of the flux determination for the
dataset described in Fig. 19: measured Herschel
500 µm (FWHM = 36′′) fluxes f500 are compared
to the fluxes obtained for the SCUBA-2 450 µm
(FWHM = 7.5′′) f450, considered as reference fluxes
(using 24 + 850 µm unresolved priors in both cases).
The symbols have the same meaning as in Fig. 11;
the error bars now include the measured error on the
reference flux. See text for more details.

when used with identical input parameters. For example, a com-
plete, double-pass run on the whole CANDELS UDS field at
once (I-band; ∼35 000 prior sources; LRI 30 720 × 12 800 '
400 million pixels; standard  parameters and grid fitting)
is completed without memory swaps in about 2 h (i.e. 1 h per
pass) on a standard workstation (I i5, 3.20 GHz, RAM
8 Gb). A complete, double-pass run on the GOODS-S Hawk-
I W1 field (∼17 500 prior sources, LRI 10 700 × 10 600 '
100 millions pixels, identical parameters) is completed in
∼20 min. For comparison,  may require many hours (∼24)
to complete a single pass on this Hawk-I field on the same ma-
chine. It must be said that  by default produces cutouts and
templates for all the sources in the HRI image; selecting the
ones belonging to the LRI field and inputting an ad hoc cata-
logue would have reduced the computing time by a factor of
two (i.e. 11 h for a single pass). It was not possible to process
large images like the UDS field in a single run, because of RAM
memory failure.  timings and memory problems are
similar to those of , although they have different causes (be-
ing written in C, computation is generally faster, but it employs a
slower convolution method and the solution of the linear system
in performed as a single fit instead of grid fitting like in ,
being much more time consuming).

Adopting the cells-on-objects (Sect. 2.1.5) method increases
the computational time with respect to the  standard cell ap-
proach, but it is still far more convenient than the 
standard single-fit approach, and gives nearly identical results.

Table 2 summarizes the computational times for extended
tests on a set of simulated images having different detection
depths (and therefore number of sources) and dimensions, with
LRI FWHM = 1.66′′. The simulations were run on the same
machine described above, using three different methods: whole
image fitting, cells-on-objects, and 100× 100 pixels cells fitting.

6. Summary and conclusions

We have presented -, a new software package developed
within the  project. - is a robust and versatile
tool, aimed at the photometric analysis of deep extragalactic

fields at different wavelengths and spatial resolution, deconfus-
ing blended sources in low-resolution images.
- uses priors obtained from a high-resolution detec-

tion image to obtain normalized templates at the lower resolu-
tion of a measurement image, and minimizes a χ2 problem to
retrieve the multiplicative factor relative to each source, which
is the searched quantity, i.e. the flux in the LRI. The priors can
be either real cutouts from the HRI, or a list of positions to
be fitted as PSF-shaped sources, or analytical 2D models, or
a mix of the three types. Different options for the fitting stage
are given, including a cells-on-objects method, which is compu-
tationally efficient while yielding accurate results for relatively
small FWHMs. - ensures a large saving of computational
time as well as increased robustness with respect to similar pub-
lic codes like its direct predecessors  and . With
an appropriate choice of the parameter settings, greater accuracy
is also achieved.

As a final remark, it should be pointed out that the analysis
presented in this work deals with idealized situations, namely
simulations or comparisons with the performances of other
codes on real datasets. There are a number of subtle issues re-
garding complex aspects of the PSF-matching techinque, which
become of crucial importance when working on real data. A sim-
ple foretaste of such complexity can be obtained by considering
the problem described in Sect. 4, i.e. the correct amplitude to be
assigned to the segmented area of a source. Work on this is on-
going, and the full discussion will be presented in a subsequent
companion paper.

As we have shown, - is an efficient tool for the pho-
tometric measurements of images on a very broad range of
wavelengths, from UV to sub-mm, and is currently being rou-
tinely used by the A community to analyse data from
different surveys (e.g. CANDELS, Frontier Fields, AEGIS). Its
main advantages with respect to similar codes like  or
 can be summarized as follows:

– when used with the same parameter settings of , -
is many times faster (up to hundreds of times), and the
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Table 2. Test of computational times for - runs on images of given dimensions and limiting magnitude in detection.
``````````Size[pix]

maglim,det 27 28 29

Number of sources
2500 × 2500 523 1070 1398
5000 × 5000 2104 4237 5561
10 000 × 10 000 8390 16 807 22 394
20 000 × 20 000 33 853 65 536 65 536

Whole image fitting
2500 × 2500 38′′ (2′′) 54′′ (10′′) 1′9′′ (20′′)
5000 × 5000 3′26′′ (1′1′′) 11′9′′ (7′41′′) 20′28′′ (16′1′′)
10 000 × 10 000 1h28′22′′ (1h15′46′′) 8h26′1′′ (7h58′10′′) 21h16′24′′ (20h27′53′′)
20 000 × 20 000 − − −

Cells-on-objects fitting
2500 × 2500 46′′ (4′′) 1′11′′ (16′′) 1′30′′ (33′′)
5000 × 5000 3′1′′ (18′′) 4′27′′ (1′8′′) 6′3′′ (2′20′′)
10 000 × 10 000 12′27′′ (1′12′′) 17′52′′ (4′31′′) 25′11′′ (9′52′′)
20 000 × 20 000 51′12′′ (6′1′′) 1h34′40′′ (35′8′′) 1h43′10′′ (41′2′′)

100 × 100 pixels cells fitting
2500 × 2500 52′′ (3′′) 1′6′′ (7′′) 1′14′′ (9′′)
5000 × 5000 3′16′′ (14′′) 4′22′′ (29′′) 4′54′′ (41′′)
10 000 × 10 000 13′4′′ (56′′) 17′12′′ (1′54′′) 19′47′′ (2′53′′)
20 000 × 20 000 55′24′′ (6′19′′) 1h18′38′′ (15′53′′) 1h17′17′′ (17′58′′)

Notes. Each entry of the table gives the total duration of run, the duration the fitting stage alone (in parentheses), and the number of fitted sources.
The dance stage takes most of the CPU time after the fitting routine.

same can be said with respect to other similar codes (e.g.,
);

– - is more robust, more user-friendly, and can handle
larger datasets thanks to an appropriate usage of the RAM;

– - can be used with three different types of priors (real
high-resolution cutouts, analytical models and/or unresolved
point sources) making it a versatile tool for the analysis of
different datasets over a wide range of wavelengths from UV
to sub-mm;

– - offers many options for performing the fit in different
ways, and with an appropriate choice of parameter settings it
can give more accurate results.

Future applications might include the processing of EUCLID
and CCAT data. New releases of the software package, including
further improvements and additional options, are planned for the
near future.
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Appendix A: The parameter file

Below is a template of the standard first-pass parameter file to
be given as input to - (similar templates for both the first
and the second pass are included in the dowloadable tarball). It

is very similar to the original  parameter file, and part of the
description is directly inherited from it.

A.1. Pipeline

Standard optical/NIR double-pass runs can be achieved by set-
ting order standard and order standard2.

A standard first-pass run includes the stages priors,
convolve, fit, diags, dance, plotdance. The stage
priors allows for an automatic re-construction of the pipeline
depending on the input data given in the following sections
(see the documentation included in the tarball). A standard
second-pass run includes the stages convolve, fit, diags,
archive. The archive stage creates a directory after the name
of the LRI, with some specifications, and archives the products
of both runs.

Double-pass runs for FIR/sub-mm can be achieved by set-
ting order positions, fit, diags, dance, plotdance
and order positions, fit, diags, archive.

A.2. Priors

Each prior must have a unique identification number (ID) to
avoid errors. The user must be careful to give the correct in-
formation in this paramfile. Select the priors to be used by
switching on/off the relative keywords: usereal, usemodels,
useunresolved.

– hiresfile: the high-resolution, detection image. If a cat-
alogue and a segmentation map are given in the two sub-
sequent entries (hirescat and hiresseg), cutouts will
be created out of this image. This step is necessary if a
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# T-PHOT PARAMETER FILE

# PIPELINE

# 1st pass
order standard
#priors, convolve, fit, diags, dance, plotdance

# PRIORS STAGE

# Choose priors types in use:
usereal True
usemodels True
useunresolved True

# Real 2-d profiles
hiresfile HRI.fits
hirescat HRI.cat
hiresseg HRI.seg.fits
normalize true
subbckg True
savecut true
cutoutdir cutouts
cutoutcat cutouts/_cutouts.cat

# Analytical 2-d models
modelscat models/models.cat
modelsdir models

culling false

# Unresolved point-like sources
poscat pos.cat
psffile psf.fits

# CONVOLUTION STAGE

loresfile LRI.fits
loreserr LRI.rms.fits
errtype rms
rmsconstant 1
relscale 1

FFTconv true
multikernels false
kernelfile kernel.fits
kernellookup ch1_dancecard.txt

templatedir templates
templatecat templates/_templates.cat

# FITTING STAGE

# Filenames:
fitpars tpipe_tphot.param
tphotcat lores_tphot.cat_pass1
tphotcell lores_tphot.cell_pass1
tphotcovar lores_tphot.covar_pass1

catalogue of real or model priors are to be used. The cat-
alogue hirescat must be in a standard format: id x y
xmin ymin xmax ymax background SEx_flux (x and y
are the coordinates of the source in HRI pixel reference
frame; xmin, ymin, xmax, ymax are the limits of the
segmentation relative to the source in HRI pixel reference
frame; background is the value of the local background;
and SEx_flux is a reference isophotal flux).

# Control parameters:
fitting coo
cellmask true
maskfloor 1e-9
writecovar true

threshold 0.0
linsyssolver lu
clip false

# DIAGNOSTICS STAGES

modelfile lores_collage_pass1.fits

# Dance:
dzonesize 100
maxshift 1.0
ddiagfile ddiags.txt
dlogfile dlog.txt
dancefft false

– poscat: a catalogue of positions for unresolved, point-like
sources. No HRI image/segmentation is needed, while the
PSF to be used to create the models is mandatory (psffile).
The catalogue must be in the standard format id x y.

– modelscat: a catalogue (with format id x y xmin ymin
xmax ymax background SEx_flux, as for a standard HRI
priors catalogue) of model priors. modelsdir is the direc-
tory in which the stamps of the models are stored. Models
with two or more components can be processed, but each
component must be treated as a separated object, with a dif-
ferent ID, and a catalogue for each component must be given.
Catalogues for each component must have the same name,
but ending with “_1”, “_2”, etc.; put the “_1” catalogue in
the paramfile. It is important to note that two components of
the same object should not have exactly identical positions,
to avoid numerical divergencies.

– culling: if True, objects in the catalogue (real priors and/or
models) but not falling into the LRI frame will not be pro-
cessed; if it is false, all objects in the catalogue will be pro-
cessed (useful for storing cutouts for future reuse on different
datasets) and the selection of objects will be done before the
convolution stage.

– subbckg: if True, subtract the value given in the input cata-
logue from each cutout stamp.

– cutoutdir: the directory containing the cutouts.
– cutoutcat: the catalogue of the cutouts, containing the flux

measured within the cutout area (which may be different
from the SEx_flux given in the input catalogue, e.g. if the
segmentation has been dilated). We note that these are output
parameters if you start from the priors/cutout stage; they
are input parameters for the convolve stage.

– normalize: determines whether the cutouts will be normal-
ized or not; it is normally set to true, so that the final output
catalogue will contain fluxes rather than colours.

A.3. Convolution
– loresfile, loreserr: the LRI and rms images. -

is designed to work with an rms map as the error map, but it
will also accept a weight map, or a single constant value of
the rms from which an rms map is generated. The errtype
specifies which kind of error image is provided. For best
results, use a source-weighted rms map, to prevent the bright
objects from dominating the fit.
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– relscale: the relative pixel scale between the two images.
For example if the HRI has a pixel scale of 0.1 arcsec/pixel
and the LRI has a pixel scale of 0.5 arcsec/pixel, the value
of relscale should be 5. If the LRI has been manipulated to
match the HRI pixel scale and WCS data (e.g. using codes
like S by E. Bertin), put relscale 1.

– kernelfile: the convolution kernel file. The kernel must be
a FITS image on the same pixel scale as the high-resolutuion
image. It should contain a centred, normalized image.

– FFTconv is True if the convolution of cutouts with the
smoothing kernel is to be done in Fourier space (via
FFTW3).

– kerntxt may be explicitely put True if one wishes to use a
text file containing the kernel instead of a .fits one. -
supports the use of multiple kernels to accommodate a spa-
tially varying PSF. To use this option, set the multikernels
value to true, and provide a kernellookup file (it is auto-
matically produced during the dance stage in the first pass,
but it can also be fed externally) that divides the LRI into
rectangular zones, specified as pixel ranges, and provides a
local convolution kernel filename for each zone. Any object
that falls in a zone not included in the lookup file will use the
transfer kernel specified as kernelfile.

– templatedir: the directory containing the templates
created in the convolve stage, listed in the catalogue
templatecat. We note that these are output parameters for
the convolve stage, and an input parameter for all subsequent
stages.

A.4. Fitting stage

– fitpars, tphotcat, tphotcell, tphotcovar: these
are all output parameters. The tfitpars file specifies the
name of the special parameter file for the fitting stage that
will be generated from the parameters in this file. The others
are filenames for the output catalogue, cell, and covariance
files, respectively.

– fitting: this keyword tells - which method to use to
perform the fitting (see also Appendix B):
– coo or 0 for cells-on-objects;
– single or -1 for single fit;
– single! or -10 for optimized single fit (the LRI is di-

vided in square cells containing roughly 10 000 sources
each);

– cell_xdim, cell_ydim, cell_overlap for an arbi-
trary grid of cells.

– cellmask: if true, it uses a mask to exclude pixels from
the fit that do not contain a value of at least maskfloor in at
least one template.

– writecovar: if true, it writes the covariance information
out to the tphotcovar file.

– threshold: forces the use of a threshold on the flux, so that
only the central parts of the objects are used in the fitting
process.

– linsyssolver: the chosen solution method, i.e. LU,
Cholesky, or Iterative Biconjugate Gradient (IBG). LU is
default.

– clip: tells whether to loop on the sources excluding negative
solutions.

A.5. Diagnostic stages

– modelfile: the .fits file that will contain the collage
made by multiplying each template by its best flux and

dropping it into the right place. An additional diagnostic file
will be created: it will contain the difference image (LRI
– modelfile). Its filename will be created by prepending
resid_ to the modelfile.

– dzonesize specifies the size of the rectangular zones
over which the pixels’ cross-correlation between LRI and
modelfile will be calculated during the dance stage. It
should be comparable to the size over which misregistra-
tion should be roughly constant, but it must be large enough
to contain enough objects to provide a good signal to the
cross-correlation.

– maxshift specifies the maximum size of the x,y shift,
in LRI pixel frame, that is considered to be valid. Any
shift larger than this is considered spurious and dropped
from the final results, and replaced by an interpolated value
from the surrounding zones. Ideally, maxshift '1pixel ×
FWHMLRI/FWHMHRI.

– ddiagfile is an output parameter for the dance stage, and
an input parameter for the plotdance stage.

– dlogfile is an output parameter; it simply contains the out-
put from the cross-correlation process.

– danceFFT: if True cross-correlation is to be performed us-
ing FFT techniques rather than in real pixel space.

Appendix B: The cells-on-objects algorithm

Experiments on simulated images (see Sect. 4) clearly show that
fitting small regions (cells) of the LRI, as done by default in
, may potentially lead to large errors. This is particularly
true if the dimensions of the cells are chosen to be smaller than
an ideal size, which changes from case to case, but which should
always be greater than ∼10 times the FWHM. However, it can
be mathematically shown that the “arbitrary cells” method in-
trinsically causes the introduction of errors in the fit, as soon
as a source is excluded from the cell (e.g. because its centre is
outside the cell), but contributes with some flux in some of its
pixels.

Consider a cell containing N sources. For simplicity, assume
that each source i only overlaps with the two neighbours i−1 and
i + 1. Furthermore, assume that a (N + 1)th source is contaminat-
ing the Nth source, but is excluded from the cell for some reason,
for example (as in ) because the centroid of the source lies
outside the cell.

The linear system for this cell AF = B will consist of a ma-
trix A with only the elements on the diagonal and those with a
±1 offset as non-zero elements (a symmetric band matrix), and
the vector B will contain the products of templates of each source
with the real flux in the LRI (as a summation on all pixels), as de-
scribed in Sect. 2.1.4. Given the above assumptions, this means
that the Nth term of B will be higher than it should be (because
it is contaminated by the external source).

Using the Cramer rule for the solution of squared linear sys-
tems, the flux for the object i is given by

fi =
det Ai

det A
(B.1)

with Ai a square matrix in which the ith columns is substituted
with the vector B. If for example N = 3, for i = 1 this gives

f1 = [B1(A22A33 − A2
23) − A12(B2A23 − B3A22)]/ det A (B.2)

and since B3 is larger than it should be, f1 will be overestimated
(slightly, if A12 is not large, i.e. if sources 1 and 2 do not strongly
overlap). On the other hand, for i = 3 we have

f3 =
[
A11(A22B3 − A23B2) − A2

12B3 + B1(A12A23)
]
/ det A (B.3)
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and in this case again A2
12 might be small, but the first term given

by A11A22 will certainly be large, resulting in a catastrophic over-
estimation of f3. The value of f2 will of course be underesti-
mated, as it would be easy to show.

From this simple test case it is clear that arbitrarily divid-
ing the LRI into regions will always introduce errors (potentially
non-negligible) in the fitting procedure, unless some method for
removing dangerous contaminating sources is devised.

The cells-on-objects algorithm aims at ensuring the accuracy
of the flux estimate while at the same time drastically decreasing
computational times and memory requirements. As explained in
Sect. 2.1.4, when this method is adopted a cell is centred around
each detected source, and enlarged to include all its “potential”
contaminant neighbours, and the contaminant of the contami-
nants, and so on. To avoid an infinite loop, the process of inclu-
sion is interrupted when one of the following criteria is satisfied:

– the flux of the new neighbour is lower than a given fraction
fflux of the flux of the central object (the considered fluxes
are: if real priors are used, the ones given in the HRI cat-
alogue; if unresolved priors are used, the ones read in the
pixels of the LRI containing the coordinates of the sources;
if analytical models are used, the ones of the models as re-
ported in the HRI models catalogue), or

– the template of the neighbour overlaps with its direct previ-
ous contaminant for a fractional area lower than farea.

Experiments on simulations have shown that good results are
obtained with fflux = 0.9 and farea = 0.25, and these values are
used as constants in the source code.

We note that if a cell is enlarged to more than 75% of the
dimensions of the total LRI, - automatically switches to
the single fit on the whole image.

Appendix C: Suggested best options

Of course, different problems require different approaches
in order to obtain their best possible solution, and users are
encouraged to try different options and settings. However, some

indicative guidelines for optimizing a run with - can be
summarized as follows.

– Be sure that all the required input files exist and have correct
format, and that paths are correctly given in the parameter
file.

– Whenever possible, fit the whole image at once (i.e. put
fitting single in the parameter file). The more sources
there are, and the more severe their blending, the more CPU
time will be required (see Sect. 5). If the blending is not
dramatic, it is safe to switch to the cells-on-objects method
(i.e. put fitting coo in the parameter file). On the other
hand, if blending is severe this option would result in redun-
dant fittings because cells would be enlarged to include as
many neighbours as possible, increasing the total computing
time. In this case, either stick to the whole image fitting, or
(depending on the desired degree of accuracy) switch to the
-like cells fitting.

– Spend some time in checking the output catalogue, e.g. con-
sidering with caution fits relative to sources having flags >0
and covariance indices larger than 1.
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