A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, issue.582-593, pp.163-198, 1921.
DOI : 10.1098/rsta.1921.0006

B. Lawn, Fracture of Brittle Solids, Second Edition, 1993.

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, A. Dickelé et al., Surface fracture of glassy materials as detected by real-time atomic force microscopy experiments, Appl. Surf. Lett, pp.212-213, 2003.

D. Bonamy and É. Bouchaud, Failure of heterogeneous materials: A dynamic phase transition?, Physics Reports, vol.498, issue.1, pp.1-44, 2011.
DOI : 10.1016/j.physrep.2010.07.006

A. Nakano, R. K. Kalia, and P. Vashishta, Dynamics and Morphology of Brittle Cracks: A Molecular-Dynamics Study of Silicon Nitride, Physical Review Letters, vol.75, issue.17, pp.75-3138, 1995.
DOI : 10.1103/PhysRevLett.75.3138

P. Guan, S. Lu, M. J. Spector, P. K. Valavala, and M. Falk, Cavitation in Amorphous Solids, Physical Review Letters, vol.110, issue.18, pp.110-185502, 2013.
DOI : 10.1103/PhysRevLett.110.185502

C. L. Rountree, R. K. Kalia, E. Lidorikis, A. Nakano, L. Van-brutzel et al., Atomistic Aspects of Crack Propagation in Brittle Materials: Multimillion Atom Molecular Dynamics Simulations, Annual Review of Materials Research, vol.32, issue.1, pp.32-377, 2002.
DOI : 10.1146/annurev.matsci.32.111201.142017

M. L. Falk, Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids, Physical Review B, vol.60, issue.10, pp.7062-7070, 1999.
DOI : 10.1103/PhysRevB.60.7062

P. Daguier, S. Hénaux, É. Bouchaud, and F. Creuzet, Quantitative analysis of a fracture surface by atomic force microscopy, Physical Review E, vol.53, issue.6, 1996.
DOI : 10.1103/PhysRevE.53.5637

F. Célarié, S. Prades, D. Bonamy, L. Ferrero, É. Bouchaud et al., Glass breaks like metals, but at the nanometer scale, Phys. Rev. Lett, pp.90-075504, 2003.

C. Marlière, S. Prades, F. Célarié, D. Dalmas, D. Bonamy et al., Crack fronts and damage in glass at the nanometre scale, Journal of Physics: Condensed Matter, vol.15, issue.31, pp.2377-2386, 2003.
DOI : 10.1088/0953-8984/15/31/313

S. Prades, D. Bonamy, D. Dalmas, É. Bouchaud, and C. Guillot, Nano-ductile propagation in glasses under stress corrosion: spatio-temporal evolution of damage in the vicinity of the crack tip, Int. J. Solids Struct, pp.42-637, 2004.

S. M. Wiederhorn, Moisture assisted crack growth in ceramics, International Journal of Fracture Mechanics, vol.4, issue.2, pp.171-177, 1968.
DOI : 10.1007/BF00188945

S. M. Wiederhorn, Fracture Surface Energy of Glass, Journal of the American Ceramic Society, vol.297, issue.1451, p.52, 1969.
DOI : 10.1016/0001-6160(65)90206-3

M. Ciccotti, Stress-corrosion mechanisms in silicate glasses 214006, Special Issue " Fracture: from the atomic to the geophysical scale, J. Phys. D, Appl. Phys, vol.42, 2009.

T. A. Michalske and B. C. Bunker, Slow fracture model based on strained silicate structures, Journal of Applied Physics, vol.56, issue.10, pp.2686-2693, 1984.
DOI : 10.1063/1.333789

F. Lechenault, C. L. Rountree, F. Cousin, J. Bouchaud, L. Ponson et al., Evidence of Deep Water Penetration in Silica during Stress Corrosion Fracture, Physical Review Letters, vol.106, issue.16, p.165504, 2011.
DOI : 10.1103/PhysRevLett.106.165504

F. Lechenault, C. L. Rountree, F. Cousin, J. Bouchaud, L. Ponson et al., Damage of silicate glasses during stress corrosion, ) 012005; Continuum Models for Discrete Systems International Conference (CMDS 12), 2011.
DOI : 10.1088/1742-6596/319/1/012005

B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay, Fractal character of fracture surfaces of metals, Nature, vol.28, issue.5961, pp.721-722, 1984.
DOI : 10.1038/308721a0

É. Bouchaud, G. Lapasset, and J. Planes, Fractal Dimension of Fractured Surfaces: A Universal Value?, Europhysics Letters (EPL), vol.13, issue.1, pp.13-73, 1990.
DOI : 10.1209/0295-5075/13/1/013

L. Ponson, D. Bonamy, and É. Bouchaud, Two-Dimensional Scaling Properties of Experimental Fracture Surfaces, Physical Review Letters, vol.96, issue.3, pp.96-035506, 2006.
DOI : 10.1103/PhysRevLett.96.035506

URL : https://hal.archives-ouvertes.fr/hal-00016451

L. Ponson, Crack propagation in disordered materials: how to decipher fracture surfaces, Annales de Physique, vol.32, issue.1, 2007.
DOI : 10.1051/anphys:2008044

F. Célarié, M. Ciccotti, and C. Marlière, Stress-enhanced ion diffusion at the vicinity of a crack tip as evidenced by atomic force microscopy in silicate glasses, Journal of Non-Crystalline Solids, vol.353, issue.1, pp.51-68, 2007.
DOI : 10.1016/j.jnoncrysol.2006.09.034

F. Lechenault, G. Pallares, M. George, C. Rountree, É. Bouchaud et al., Effects of Finite Probe Size on Self-Affine Roughness Measurements, Physical Review Letters, vol.104, issue.2, p.25502, 2010.
DOI : 10.1103/PhysRevLett.104.025502

URL : https://hal.archives-ouvertes.fr/hal-00534475

M. Y. He, M. R. Turner, and A. G. Evans, Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over a range of mode mixities, Acta Metallurgica et Materialia, vol.43, issue.9, pp.43-3453, 1995.
DOI : 10.1016/0956-7151(95)00036-U

J. Guin and S. M. Wiederhorn, Fracture of Silicate Glasses: Ductile or Brittle?, Physical Review Letters, vol.92, issue.21, pp.92-215502, 2004.
DOI : 10.1103/PhysRevLett.92.215502

J. M. Lòpez-cepero, S. M. Wiederhorn, T. Fett, and J. Guin, Do plastic zones form at crack tips in silicate glasses?, International Journal of Materials Research, vol.98, issue.12, pp.98-1170, 2007.
DOI : 10.3139/146.101583

K. Han, M. Ciccotti, and S. Roux, Measuring nanoscale stress intensity factors with an atomic force microscope, EPL (Europhysics Letters), vol.89, issue.6, 2010.
DOI : 10.1209/0295-5075/89/66003

URL : https://hal.archives-ouvertes.fr/hal-00454092

K. M. Davis and M. Tomozawa, An infrared spectroscopic study of water-related species in silica glasses, Journal of Non-Crystalline Solids, vol.201, issue.3, pp.177-198, 1996.
DOI : 10.1016/0022-3093(95)00631-1

S. Berger and M. Tomozawa, Water diffusion into a silica glass optical fiber, Journal of Non-Crystalline Solids, vol.324, issue.3, pp.256-263, 2003.
DOI : 10.1016/S0022-3093(03)00247-3

M. Tomozawa and K. M. Davis, Time dependent diffusion coefficient of water into silica glass at low temperatures, Materials Science and Engineering: A, vol.272, issue.1, pp.114-119, 1999.
DOI : 10.1016/S0921-5093(99)00463-3

F. C. Larché and P. W. Voorhees, Diffusion and stresses: basic thermodynamics, Defect Diffus, Forum, vol.129, issue.130, pp.31-36, 1996.

H. Mehrer, The effect of pressure on diffusion, Defects Diffusion Forum, pp.57-76, 1996.

M. J. Aziz, Y. Zhao, H. Gossmann, S. Mitha, and S. P. Smith, Pressure and stress effects on the diffusion of B and Sb in Si and Si-Ge alloys, Physical Review B, vol.73, issue.5, p.54101, 2006.
DOI : 10.1103/PhysRevB.73.054101

J. Guery, J. Baudry, D. A. Weitz, P. M. Chaikin, and J. Bibette, Diffusion through colloidal shells under stress, Physical Review E, vol.79, issue.6, p.60402, 2009.
DOI : 10.1103/PhysRevE.79.060402

URL : https://hal.archives-ouvertes.fr/hal-00401000

F. Cousin and A. Menelle, La réflectivité de neutrons Techniques Innovantes pour la Caractérisation Optique Microstructurale de Couches Minces, Sciences et Techniques de l'Ingénieur, 2006.

J. Charmet and P. De-gennes, Ellipsometric formulas for an inhomogeneous layer with arbitrary refractive-index profile, Journal of the Optical Society of America, vol.73, issue.12, pp.73-1777, 1983.
DOI : 10.1364/JOSA.73.001777