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1. INTRODUCTION paper sheetg3, 4] or along heterogeneous interfadés 6] has
Understanding how solids break continues to pose signibcaetealed power-law distribution for the size of the crack jumps;
fundamental challenges. For brittle solids broken under tensiofii) the acoustic[7D9] or seismic[10, 11] events going along
Linear Elastic Fracture Mechanics (LEFM) tackles the difbcultyth fracture are characterized by power-law distribution for the
by reducing the problem to the destabilization and subsequesiergy; and iii) fracture surfaces are found to exhibit self-afbne
growth of a dominant pre-existing crack (see e[@], for an morphological featureg. 2D 16jor logarithmic[17] roughness.
introduction to LEFM). The theory is based on the idea that, These observations, by essence, cannot be addressed by con-
in an elastic material, all dissipative and damaging processesvamional LEFM continuum approaches. In this context, over the
localized in a small zone around the crack tip, so-called frapast 25 years, promising alternative approaches have emerged
ture process zone, FPZ. Crack destabilization and further motidmom statistical and non-linear physics: Statistical lattice mod-
are then governed by the balance between the Rux of mechan@al like Pber bundle models (see [5of review) or random
energy released in the FPZ from the surrounding material and these models (seg.8] for review), for example, were found to
dissipation rate into this zone. The former is computable withineproduce, with a minimal set of ingredients, crackling dynam-
linear elasticity theory and connects to the stress intensity facs in failure[19D21]Jand self-afpne fracture roughnd88D24],
tor, which characterizes the near-tip stress Peld and dependsimigualitative agreement with some of the experimental observa-
the external loading and specimen geometry only. The dissigins. However, these approaches remain too minimal to provide
tion rate is quantibed by the fracture energy required to exposguaantitative predictions for situations of engineering interests.
new unit area of cracked surfaces. Equivalently, it can be quanti-A different approach consists in considering the crack propa-
Ped by the fracture toughness, i.e., the onset value for the strgaton in a solid with spatially-distributed toughness. The avail-
intensity factor above which crack starts to grow. Within LEFMbility of asymptotic formulaf25D28]for the variations of stress
theory, both the fracture energy and the fracture toughness angensity factors along a slightly distorted crack can explicitly take
assumed to be material constants, to be measured experimentaiiyp account the microstructural disorder in a continuum-level
LEFM framework provides a coherent framework to descritszale LEFM-like descriptiof29D32]. Within this framework,
fracture inhomogeneowsslids. In contrast, heterogeneous solideferred thereafter to as the Random-Toughness Continuum-
remain unclear. Stress concentration at the crack tip makes thechanics (RT-CM) approach, the fracture onset can be mapped
behavior observed at the continuum-level scale extremely sém-a critical depinning transitiorj2, 33D35] Depending on the
sitive to material®s small scale inhomogeneities. Consequesitgation, this approach yields logarithmically rough2] or
include crackling dynamics for fracture with discrete pulseslf-afbnd36] fracture surfaces. It can also explain the crack-
(avalanches) of a variety of sizes and erratic crack pathsAjseding dynamics sometimes observed as a consequence of a self-
for review). A generic observation in this Peld is the existenadjustment of the driving force around the depinning valG&].
of scale free statistics: (i) Direct imaging of the crack motion ifihe main advantage here is that the external parameters involved
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in the depinning model can be mapped to conventional LEFNtont, which, in turn, induce perturbationsK;, Ky, and Ky, in
parameters. This has been used to relate effective toughrtesdocal loading of the front.
and microstructural disordef38, 39] or to unravel the specibc  In the RT-CM approach, the effect of material inhomo-
conditions required to observed crackling in brittle fractlf®].  geneities is taken into account by introducing a random spatially-
In the present work, depinning models unravel how the loaddistributed component for the fracture energy and for the shear
ing rate, specimen geometry, and microstructural disorder quapart of the loading. Then, Grifpth criterion and PLS combined
titatively select the statistics of continuum-level scale avalanchéth an asymptotic estimation of the perturbations in the loading
(as measured in conventional experimental fracture mechani@sjiuced by the front distortion describes the crack growth. This
and of the crack roughness (as recorded in conventional freepproach was pioneered by Gao and R and subsequently
tography). Section 2 presents the derivation of the depinnirdeveloped30D32, 37, 40, 42Db4Here, the model is reviewed
model from LEFM. This section details the successive assumith an emphasis on the relation between the model parameters
tions and their implications. Section 3 assesses the statistingd experimentally measurable quantities. We also pay special
of the continuum-level scale avalanches, i.e., bursts evidenagéidntion to list the various assumptions and discuss the implied
in the time evolution of the spatially-averaged crack velotimits.
ity. Statistics on the avalancheOs size and duration demonstrate
a power-law characterized by universal exponents. Conversgly, FROM FRONT DISTORTIONS TO THE PERTURBATIONS IN THE
the associated cutoffs do depend on the loading, microstruc- CRACK-TIP LOADING
ture, and specimen parameters according to scaling laws whigt one consider a crack embedded in an isotropic elastic solid
are uncovered. Two regimes can be distinguished: A regimeodizel x H x W under tension. In the following, we adopt the
pseudo-isolated avalanches not so different from what is prgsual convention of fracture mechanics and the e ande,
dicted in the quasi-static limit (vanishing loading rate); and align with the direction of crack propagatiot. direction), ten-
regime where avalanches coalesce with each other. Section 4 sit@toading [ direction), and mean crack front direction),
lyzes the statistics of fracture roughness. The structure functioespectively. For a straight crack, the mode | stress intensity factor
measured along probles parallel and perpendicular to the dirggsfully characterizes the near-tip stress beld loading. Let one now
tion of crack growth exhibit logarithmic scaling with prefactpr@onsider the situation depicted iRigure 1 left where the pres-
and characteristic length-scales depending on the PoissonOs gatie of inhomogeneities yields small in-plane and out-of-plane
and microstructure parameters according to scaling which aggack distortionsf(z t) and h(x = f(z, t), 2) respectively. The

uncovered. prst step in the RT-CM approach is to estimate how these distor-
tions perturb locally the loading. To make the problem tractable,
2. MATERIALS AND METHODS simplifying hypothesis are needed:

In LEFM theory, the crack velocityis governed by the balance ) _ )
between the mechanical ener@yand the (material constant) Hyp. 1 The Young moduluk and Poisson ratio of the solid are

fracture energy (Grifbth criterion). For slow cracksy/p = considered as homogeneous.

GS wherep = o/ relates the mobilityu to the Rayleigh Hyp. 2 The spatial distribution of (x, y, z) and the PLS noise are
wave Speem_ The princip|e of local Symmetry (PLS) governs narrow enough such that a brst-order perturbation anal-
the growth direction[41]. This imposes a zero stress intensity ysis can characterize the coupling of the local perturba-
factor condition for mode Il K, = 0) all along the fracture. As tions K(2), Ki(2)and K (2) to the front distortions

consequences, an initially straight crack in an ideal homogeneous ~ {f. h}-

material gently loaded in mode | would continuously grow within

its plane, without any jerky motion or roughness. But inhomoThen, Ricé25] and Movchan et alf®5] formula relate K;(2) to
geneities at the microstructure scale yield distortions of the craitie front distortions:

FIGURE 1 | Left: Sketch and notation of a crack front propagating in a heterogeneous solid. Right: Decomposition of the crack path into inPnitesimal
straight kinks.
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Ki@ AT M) = 52 o s d time. Go(t = 0,f = 0)= ~ where” = (x,y,2) is the mean
Ky (z {f}, {h}) = %j x=f(z 1),z value of fracture energy. Considering the subsequent variation
& K253 X hx= f(zt), )Shix= 2.2 4 (1) f(z1t) to be small with respect to the crack lengthtat 0, we
02°@s7) front ™ (877? can write:
Kin (z {f}, {h}) = K258 x= f(z,1), 2 Go(t, f) =~ + GtS GT(Y), (3)

where denotes a principal value integral. Note thij depends whereG= Gy/ t (driving rate) andG =S Go/ f (unload-
only on the in-plane distortion§f}, and Ky, Kj; dependonthe ing factor) are positive constants characterizing the loading rate
out-of-plane distortiongh}. Here, several additional assumptiongind the specimen geometry, respectively. Inserting Equations 1
were required: and 3 in Equation 2, and the resulting expression &fg) into
Grifbth criterion, the equation of motion for the in-plane front

Hyp. 3 In the expressions ofK;, and Ky, we have omitted displacementis:

the terms brought by the non-singular stresses near the

reference straight crack front (the so-callBetress and 1 f(Z )= GtS G + a f(,t)Sf(zt)

the third term A of.the asymptotlc expansion of near- 7 tont (S 2)2

tip stress beld). This assumption remains valid for stable

crack pathsT  0[45]) when the roughness wavelength + x=1f(zt),y=hx=1(z1),2,z, (4

is small with respect to the system size and the charac-

teristic distances dePned by the external loadliig 361 where (x,y,2) = (X,V,2) S is the Buctuating part of the

A complete form of the omitted terms can be found infracture energy. The solution of this equation provides the space-

Movchan et al[26]; time dynamics of the in-plane projection of the crack front.
Hyp. 4 RiceOs formula foK, assumes a sample with inbniteSubsequently, it gives the time evolution of the fracture velocity

width W and thicknesdH. It remains valid as long asat the continuum-level scale(t) = df/ dt. This is the relevant

one considers front corrugations the wavelength of whigbbservable characteristics of the crack dynamics in standard

are small with respect td andW. A more accurate for- experiments of fracture mechanics.

mula proposed in Legrand et &.6] addresses the case of

PniteH. To the very best of our knowledge, there does n@t3- PRINCIPLE OF LOCAL SYMMETRY AND EQUATION OF PATH

exist any formula taking into account the effect of bnit&Ve now derive an equation of path by making use of the princi-

width, W. ple of local symmetry41]. To do so, we take inspiration from the
work of Katzav et al44, 47]to model crack path in a model 2D
2.2. GRIFFITH CRITERION AND EQUATION OF MOTION situation and extend it for three-dimensional solids. The idea is

The above expression for the local perturbatioks leads to a 0 decompose the front propagation alorgaxis into inPnitesi-

prst Order expression Of the energy re'ease@&?as a function mal Stra|ght kInkS Of Iength, Identlbed Wlth the minOStI’UC'[UI’a|
of the front distortions: length-scale characterizing the spatial distribution ¢k, y, 2)

(seeFigure Lright). Consider now the kink occurring at the front

locationz between timé andt + dt. Leblond et alOs formulds]

relate the stress intensity factors after kinkiggz) (i = 1, 11, 1Il')

to the stress intensity factors before kinkikgz) and to the kink

whereGo(t, T) = Ko(t, F)%/ E is the reference energy release rag@gle = (zt+dt)S (zt)= 2 xX¥(x= f(z1),2) via:

which, asKq(t, f), would result from the same loading with a

straight crack front within the mean plarye= 0 at the mean posi- Ki(2) = Fi( K2, (5)

tion x = f(t). Henceforth, the operatoa indicates averaging of j= L

the variablea(z) over the spatial coordinate The two quantities

Go and Ko coincide with the ones that would have been depneédhere Fij( ) are universal functions that were computed in

in the conventional LEFM approach when ignoring front dis[orLGb'Ond[27] for three-dimensional solids. The principle of local

tions. They only depend on the specimen geometry and impos&gmmetry implies thak, must be uniformly zero, which leads to:

load (of which both evolve with) and can be determined using

continuum mechanics (e.g., Pnite element analysis). Fia( K@+ Fin( )Ki(®=0. (6)
Slow cracking (as considered herein) implies that the solid

is loaded by imposing external displacements rather than extdlow, to brst order in , F () and Fy,n( ) are given

nal stresses (the opposite would yield dynamic fracture willy Leblond[27]: Fy ()= +O( ?) andFyu( )= 1+

crack at speed on the order of the sound speed). This indud@6 ). The kink angle is then related v, K(2) and Kj (2)

additional constraintsGg should decrease witf(t) (specimen Via: S Ki(2/(Ko+ Ki(2)). Finally, by keeping only the

compliance always increases with crack length) and increase AtRt order loading perturbations , it writes:

t (to drive a crack, external displacement can only increase with 5

time). Without loss of generality, we set 0 at a time when the Q(X - f(z1),2) =& Kii (2 @

Ki(2)
Ko '

G(2)= G 1+ (2

crack has just stopped anxd= 0 is the crack tipOs position at this X
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To introduce the effect of microstructural disorder, a spatiallilyp. 7 In both cases, the correlation functi@ decreases lin-
distributed noise ternKg (X, Y, 2) is added to the right-handed early with|r| over the microstructure distanceand is
side of the equation. In the situation of inter-granular crack zero above.

growth in a material made of sintered grains (e.g. sandstone),

for example, this additional term would translate the differenchote that, in elastic interfaces equations as that proposed in
between the kink angle predicted by the principle of local symmEgquations 4 and 8, the scaling properties remain unaffected upon
try and that truly selected so that the crack propagates betwagtranges in the probability functiong( ) and p( )) and in the

the cemented grains. Finally, combining the resulting equati@orrelation functions C (|r]) and C (|r|)) [43]. Thanks to this
with the asymptotic formula for stress intensity factors (Equatiogeries of assumptions, the two spatially distributed noise terms

1), one gets: are fully characterized with 3 parameters: and .
At this point, the Equations 4 and 8 are coupled via the two 3D
°h h 1283 h(x, ) S h(x, z)d noise terms (x,y,2) and (XY, 2), since they both depend on

25k =S—(x9)+ ——% wont (822 the in-plane and out-of-plane positions of the crack front. A last

assumption permits the decoupling of the two equations:

+ (xy=h(x 2,2 8
_ _ _ ) Hyp.8 The 3D spatially distributed terms (x,y,2z) and
The solution of this equation provides the topography of the post- (x, y, 2) reduce to their in-plane projection (x, z) and
mortem fracture surface§(x, z). This is the quantity of interest (x, 2).

in fractography science. Note that this equation differs from that
given in Larraldg31] and Bonamy et al[36] as it includes an a¢ shown in Ramanathan et &k2], Equation 8 with a 2D pro-

2
jection for the noise term yields logarithmically smooth fracture

additional curvature term 2h/ x2.
surfaces. Hence, zooming out on the fracture surfaces makes
2.4. RELEVANT PARAMETERS AND NUMERICAL ASPECTS them appear Ratter and Ratter. When the zooming out is suf-

Equations 4 and 8 predict deterministically the fracture dynanb-ciem, Ructuations ith become negligible when compared to
ics and the morphology of fracture surfaces using the foIIowir;,g_mane length scales. The two noise terms reduce(tqy =

Inputs: h(x, 2), 2) (x,y= 0,2 and (x,y= h(x,2),2) x,y=
0, 2). This validates Hyp. 8.
Input 1 The loading rates, At this point, the selection of the fracture behavior brings into
Input 2 The specimen geometry (unloading fac@®rand speci- play 8 parameterst, ,G, G, , , andW. The introduction
men widthW) _ of dimensionlesstime  t// (4 )and length{x, y, z f, h}
Input 3 The material constants (fracture energyPoissonratio {x/ v/, z/, f/, h/ })reduces this number. Equations 4 and 8
, and mobilityp), become:

Input4 The microstructure disorder (microstructure length-
scale and the spatial distribution of the two noise terms

(x,y,2and (x,Y, 2).

(EDEL(CD)
front ( é 2)2
+  (x=1(z1),2, (9a)

_ =< h A h(x, ) S h(x, 2)
G AT T T (897

+ (X 2). (9b)

—:(z, t) = ctS kf(t) + 1

Statistically, the two noise terms are characterized by the prob-
ability density functiong( ) and p( ) and the spatial correla- 2h
tion functionsC (r) = (rg+r) (ro) r, andC (r)=  (ro+ 2
r (ro) r,- Additional assumptions simplify the problem:

X2

Hyp.5 The two noise terms are not correlated; At brst glance ) . ) ) .
such an assumption may appear odd since both te”ﬁ\élere the dimensionless noise ternis characterized by a stan-

originate from the material heterogeneities. But due t§ard deviation =/ and a spatial correlation length equal to
the tensorial nature of elasticity, these heterogeneitig8'ty- . . _ .

will affect the equation of motion and the equation The Pnal two decoupled dimensionless equations require only
of path independently. As an illustrative example, | Parameters:

us consider again the situation of intergranular crack s

growth in a solid made of sintered grains. Two distinc€ The dimensionless driving rate= G/~
space-dependent noise terms are required to describe h¢he dimensionless unloading factor G /
microstructural texture: The brst one quantibes the locél the Poisson-ratio dependent parameter (2S 3 )/(2S ),
variations of adhesion between grains and mainly affedisthe parameters and characterizing the disorder strength,
the equation of motion; the second one describes the lodalthe continuum-level vs. microstructure scale raflo= W/ .
variations of joint orientation and affects the equation of

path. The following sections subsequently address the continuum-level
Hyp. 6 Both probability density functions are Gaussian of zeszale statistics of crack dynamigs) and the morphology of
mean and standard deviationand , respectively; the post-mortem fracture surfacégx, z). They also reveal their
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dependencies on the external paramefgrk, A, , , N}. The sizeN:S N andDp N where and are the roughness
numerical scheme is the following. For each set of parameters,axponent and dynamic exponent, respectively. The most precise
built two uncorrelated randonN x pN maps (x,z)and (x,z) estimations of their value yielfh2, 53] = 0.385+ 005 and

with Gaussian distribution of varianceand , respectively. At = 0.770+ 0.005.

timet = 0, the crack frontis a straight lineat= 0:f(z,t = 0) = Here, bothc andk are Pnite. The effects of a Pnite unloading
Oandh(x= 0,2 = 0 z [ 0,N S 1]. Solving Equation 9a givesfactork keepingc 0 is now fairly well documentef?, 547: It

the space-time evolution d{z, t). Solving Equation 9b provides modiPes the upper cutoff§ and Dy to the preceding scale-free
h(x, z). Both cases invoke a fourth order Runge-Kutta scheme adistributions:

periodic boundary conditions along f(z= 0,t) = f(z= N, t)
andh(x, z= 0) = h(x, z= N) for all t andx. This speeds up the
computation time as the two integral terms in the equations can
be solved in the Fourier domain.

PEN ke 0)= S {(F%) with S NY Si¥
(10a)

P(DIN,k,c 0)= D° g(D/Dg) with Do (N/KY

3. RESULTS (10b)
3.1. CRACKLING DYNAMICS AND AVALANCHE STATISTICS
We brst look at the crack dynamics. Equation 9a describes there, the form of the function$(u) and g(u) is expected to be
motion of a long-range elastic chain driven in a frozen randaniversal. The exponentg 1 and ¥ are also predicted to be
dom pinning potential with a driving forc& = ctS kf(t) self- universal: 1 = 0.69+ 0.010and1 = 0.385+ 0.010[2, 54].
adjusting around the depinning valy&7]. For{c,k} 0, the Conversely, the effect of a Pnités not uncovered yet. By yield-
chain propagates while remaining at the critical depinning poiribhg some overlap between the avalandhbég, it can signibcantly
and the crack moves through irregular jumps, or avalanches. Thieer the dynamics. In particular, a recent wé#k)] has evidenced
sizeSand durationD of the avalanchefollow a universal power- a transition line between a crackling-like dynamics made of irreg-
law distribution[37, 49t P(§ S° andP(D) D° wherethe ular power-law distributed jumps and a continuum-like dynamics
exponents and can be estimated using renormalizatigt®® ruled by the conventional LEFM theory.

51] or numerical[52, 53]methods. The most precise estimations Figure 2presents typical times proPles of the continuum-level
yields = 1.280+ 0.01 and = 1.500+ 0.010[2]. These scale scale velocity(t) for different values ot andk in the crackling
free statistics extend to upper cutofisand Dg set by the system regime. Here and thereafter, the system $izend the disorder
strength are set constanf = 1024 and = 1, returning at
I — : y the end of this section to a brief discussion on their effect. Note

I_n problems_of depinning qf |nFerfaces, th_e debnmop of_ the avalanche Sigea irregular jumps characteristics of the underlying avalanch-
differ depending on the pub||cat|on.Somet!mes, the size is debned_asthe :flrr]ead namics. Note also the gualitative changes in the signal
A swept by the front between two successive depinning conbgurations. HerLQ, y q 9 9
the sizeSis debned as the integral of the continuum-level scale velagyy aPPearance adsand c are modulated: Pulses become shorter as

between the two successive depinning conbgurations. The two debnitiondkaigcreases, and the pulse density increasesimgeases. Note
related byS= A/N whenN is the system size. Pnally that, due to the Pnite value of v(t) does not vanish

FIGURE 2 | (A) Evolutions of the continuum-level scale velocity v(t) for three avalanche, identiPed as a pulse whereV(t) is above a prescribed value

typical parameter sets within the crackling phase: {c = 1OS5, k = 1033, Ve = 1083 (horizontal red dash line). The avalanche duratiorD is the interval
= 1, N = 1024} (top), {c = 1055, k = 1052, = 1, N = 1024} (middle), between the two successive intersections of V(t) with vc. The avalanche size
{c = 10°4 k = 102, = 1, N = 1024} (bottom). (B) Zoom in on an S is the integral of V(t) S v. between the same points.
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between the pulse, but becomes equal to a small value proprdepend on the reference lewgland, thus, are to be associated
tional to c (prefactor dependent of the Runge Kunta schemeyith the procedure to extract the avalanches. We will consider in
The avalanches are then identiped with the bursts wisg)es the following only the part of the distributions above these lower
above a prescribed reference layet 10°3. Their durationD is  cutoffs.
debned as the interval between the two successive intersections dhe power-law distributions observed kigure 3also exhibit
V(t) with v, and their sizeSis debned as the integralat) S v upper cutoffssy andDy. These cutoffs decrease whth all cases.
between the same points. The effects ofis of two types:

Figure 3reports the probability density function of avalanche
sizeP(9c, k) and durationP(D|c, k) for different values ofandk.
Power-laws are observed. The exponerasid associated with
the power-law decrease are independent ahd k. Moreover,
they compare well with the values= 1.280+ 0.01 and
1.500+ 0.010 expected fofc,k} 0. On the other hand, the
valid region of the power-law is observed dependsc@and k. Direct computation of the cutoff is quite imprecise. Hence, the
Both the lower cutoff&in and Dmin are roughly independent of selection of the typical length and time scales is studied via
candk. However, the precise valugsi, and Dnin were observed variations of the mean valuesS (¢, k) = Soin Sx P(Yc, K)dS

€ For largek/smallcthe cutoff does not depend ar(only onKk).
€ At small klarge ¢, the cutoff increases witltt and the
distribution also displays a bump at large sizes and durations.

FIGURE 3 | Top: Distribution of the avalanche size measured (A) for
various values of k at constant c¢c= 10 4 and (B) for various
values of c at constant k = 10 2. In both cases, N = 1024 and

=1 and the axes are logarithmic. The power-law exponent is
found to be independent of the parameters and compatible to the
universal value = 1.28 (black dashed line) predicted for ¢ 0 and
k 0. The lower cutoff is found to be independent of the
parameters: Spin 1083 (vertical dash line). The upper-cutoff is found
to decrease with k and to increase with ¢ (resp. to be independent
of ¢) when c is large enough (resp. when c is small enough).

Bottom: Distribution of the avalanche duration measured (A) for
various values of k at constant ¢ = 1054 and (B) for various values
of ¢ at constant k = 1052, In both cases, N=1024 and =1 and
the axes are logarithmic. The powerlaw exponent is found to be
independent of the parameters and compatible to the universal value

= 1.50 (black dashed line) predicted for c 0 and k 0. The lower
cutoff is found to be independent of the parameters: Dpjn 3
(vertical dash line). The upper-cutoff is found to decrease with k and
to increase with c (resp. to be independent of c) when c is large
enough (resp. when c is small enough).
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(Figure4A and D = Dy D X P(D|c, K)dD (Figure 48. At intervenes in the distributions & (resp.D). Thus, the recording
large enougtk, both S and D are independent of. This of the mean values alone is not sufPcient to capture their evo-
large k regime is attributed to a regime of pseudo-isolatetiitions with candk. Ongoing work aims at characterizing these
(pi) avalanches. The distributions are then expected to takfects more accurately.

forms similar to that of Equation 10, As a resulS™ is To make the analysis complete, we looked at the effects of the
expected56] to take the form SPI - §31S  kS@S ) system siz&l and disorder strength. Figure 6plots the proba-

D Pi Dm?nngS kS@S ) These two scaling are compatility fjensity function of avalanche siE_éSN, ) and avalanche
ible with the observations at large(dash line inFigures 4A,8.  duration X(DIN, ) as measured for different valuesifand

As a synthesis, the mean avalanche size and duration are foungitgxed values @fandk. For both size and duration, the decrease
take the following form at largk: of N yields an increase of the lower-cuto$si, and Dy (main

panel ofFigures 6A,A%. The two depend%ncies are well btted by

- &0 & (& power-laws:Syin  N°®N and Dyin, - NN with agy 1.7

Sk o= SP(K 10°7ES (11a) and apy 0.6 (inset of Figures 6A,A). does not seems to
Dk o= D pi(k) 11k8@S )/ (11b) affectSyin. ConverselyDmin decreases with asDmin Sap
with ap 1.2 (inset of Figure 6B). The effects oN and
Let us try now to characterize the effects of the avalanche ove®pS and D are analyzed irrigure 7, by plotting the curves
whenk becomes small arbecomes large. Previous wofk] evi- S vscand D vscfor differentN at constankand (insets in
denced a transition between the crackling dynamics studied h&fgures 7A,A), and for different at constank andN (insets in
and a continuum-like dynamics whenbecomes large enoughFigures 7B,B). Increasind\ yields a decrease of the lmplateau
or k small enough. This transition is believétD] to coincide 2and & leftward shift of the divergence location for bof and
with the point where the avalanche overlap percolates througi? - Increasing yields an increase of the lomplateau for S,
out the entire system. At constantand N, this transition was & decrease of the lowplateau for D , and a rightward shift of
shown([40] to be fully driven by the ratia k. We hence plotted, the divergence location for boti$ and D . All curves can then
in Figure5 S/ SPland D/ D P (pbrst order estimation of the € Superimposed by makifgS S/NShN. ¢ d NS_(N} n
number of individual avalanches having merged together to forfi® main panel ofigure 7A { S S/ >,c d °}in the
the bursts detected from the sigt)), as a function of the con- Main panel ofFigure 78 { D D /NSbDéN’ c  dNS%) n
trol parameterd k. A coarse collapse is observed. As expected, {ig main panel ofigure 7A,{ D~ D/ bD ¢ d “}in
master curves diverge at the transition value between crackifi§ main panel oFigure 7B. By combining this with Equation 11
and continuum-like dynamics (materialized by the vertical daspd the collapse obtained Figure 5 we anticipate the following
lines in the main panels dfigures 5A,B. form for mean size and duration:
Note that signibcant deviations to the collapse are observed.

They are believed to stem from a qualitative change in the distri- bs NN

bution shape ak decreasesincreases and the avalanche overlap S Nbsvk@S )/ F K¢

increases. Actually, for sméflargec a bump develops at large

scales, for both the distribution in size and in duration. Due D 1 _ CNN (12)
to this change in shape, several length-scales (resp. time-scales) bo Nbonk(2S ) ke '

FIGURE 4 | (A) Evolution of the mean avalanche size S as a function of different value of the loading rate c. At large k, the curves collapse onto

the unloading factor k for different loading rates c. The curves collapse a c-independent power-law curve. Black thick dash line is a bt over the
for large k onto a c-independent powerlaw curve. Black thick dash line collapsed region using Equation 11b : D Pl 11k5@S ¥ with = 1.50
depicts a bt over the collapsed region using Equation 1la: and / = 0.385. In both (A,B) N= 1024 and = 1 and the axes are

sP 1052kS@S ¥ with =1.28 and U/ = 0.69. (B) Evolution of the logarithmic. The different symbols correspond to different values of c,
mean avalanche duration D as a function of the unloading factor k for given in the legends.
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FIGURE 5 | (A)Main panel: Variationof S/ S Pl asafunction of ¢/ k for different different symbols correspond to different values of k, given in the legend

k. (A) Inset: S as a function of c for different k. (B) Main panel: Variation of between graphs (A,B). In the main panels of both graphs, the vertical dash lines
D / D P asafunction of c/k for different k. (B) Inset: D as a function of ¢ for indicates the transition value c/ k between crackling and continuum-like

different k. In both (A,B) N = 1024 and = 1 and the axes are logarithmic. The  dynamics as determined in Nukala et al. [40] for N = 1024 and = 1.

where the two functiond= (u) and G(u) exhibit a plateau at 0.7+ 0.1 (btted),bpy = 0.45% 0.1 (btted),bp = 0.65 (btted),
smallu, and both diverge at the same valug The value of oy = 0.65% 0.1 (btted), andc = 1.05+ 0.1 (ptted).

the exponents, , 1V and ¥ are well known[2]: They

can e.g., be related to the so-called roughness exponant

dynamic exponent classically debned in the realm of criticap-2- ROUGHNESS OF FRACTURE SURFACES

depinning transition: = 23 U (1+ ), =1+ / , U = We turn now to the topographfa(x, z) of the post-mortem frac-
(1+ )/2and1 = / (1+ ).Conversely, the precise origin ofture surfaces as predicted by equationBigure 8reports typical
the exponentssy, bs , bon, bp , oy, ande and their link with topographies for different values of the two external parameters
and remain to be uncovered. A and . WhenA is close to 1, the surface seems to be statisti-

Equation 12 quantitatively relate the material parametef&lly isotropic while a# gets smaller, the surface appears more
to quantities that are accessible in conventional experimenfipngated in the direction af. Conversely, the parameteronly
mechanics, namely the mean size and duration of the avalanci¥eCts the range swept by the roughness. Note that in aimost all
In this context, it is of interest to rewrites the equation with thélastic solids, Poisson ratidies between 0 and®, which impose

original variables, before the non-dimensionalization procedurd Pnite interval foA = (2S5 3)/(2S ): 3 A 1. Herein,
only A within this interval are considered.

To characterize quantitatively the spatial distribution of frac-

bs x bsnS(2S )/ ture roughness, we adopted the classical proced®feand
S G@S ) x PsSCS\yben computed the structure functioB( r) = (h(r+ r)S h(r))? .
y Here, the operator denotes averaging over all positions
Gx Sk wa (X, 2). First, we computed the structure functi®( z) along 1D
F m ' (132) probles taken parallel in(mean direction of the crack front). The
. procedure is the following: (i) an initially straight front was Prst
—bs+(2S ) bpnS(2S ) propagated over a distance equal tdN1® obtain a statistically
D G5 VT x whon stationary regime; (ii)v10000 subsequent proHies, z) sepa-
N rated by a distance.: 1 S x; = 1 were recorded; (iii) the structure
Gx Stk wa function SZ( z) was computed for each of these probles; and (iv)
G G x ¢ x o’ (13b) Pnally, these 10000 individual structure functions were averaged
to getS( 2).

Figure 9depicts typical examples 8f( z) curves for differ-

where the mean avalanche si8eand duration D are expressed ent values oN, andA. S, goes a5, = p;log( zZ ;) upto
with real length and time units, an®, G ,W, ,u, and are an upper cutoff set by the system site This logarithmic scal-
recalled to be the loading rate, the unloading factor, the spedaig is anticipated to extend over the whole range of length-scales
men width, the fracture energy, the mobility, the microstructurasN . Note that logarithmically rough crack surfaces were
length-scale, and the contrast in local fracture energy. The vahlso predicted in earlier theoretical woilks., 32]analyzing crack
of the exponents are recalled to bee 1.280+ 0.01 (predicted), propagation through athree-dimensional heterogeneous solid. As

= 1.500+ 0.01 (predicted), 1 = 0.69+ 0.01 (predicted), aplus,the presentmodelallows relating the prefagi@nd char-
1/ = 0.385% 0.01 (predicted)bsy = 1.3 0.1 (btted),bs = acteristic length-scale with the fracture parameterp; is found
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FIGURE 6 | Effect of the system size N and disorder strength  ~ on the
avalanche statistics. Main panel, top: Distribution of the avalanche size

observed to be independent of and to decrease with N. Regarding the
duration, the lower cutoff Dp, decreases with both N and . Sy, (resp. Dmin) is

measured (A) for different N atconstantc = 2 x 1055,k = 1052and = 1,and
(B) for different  at constant ¢ = 2 x 1055, k = 1052 andN = 1024. The axes
are logarithmic. Main panel, bottom: Distribution of the avalanche duration
measured (A ) for different N at constantc = 2 x 10§5, k=1052and = 1,

quantitatively debned as the intersection of the power-law regime with
exponent (resp. )and the saturation value for P observed at small S (resp.
small D). The red and blue dash lines in @,A ,B) present illustrations for

N = 128 and N = 1024, respectively. The variation of Sy, with N is shown in

and (B ) for different  at constant ¢ = 2 x 1055, k = 1052 and N = 1024. All
axes are logarithmic. In all panels, the power-law exponents and are
compatible with the universal values = 1.28and = 1.50 (inclined dashed
line) predictedforc ~ Oandk 0. Regarding the size, the lower cutoff Sy, is

the inset of a. The variations of Dy, with N and are shown in the insets of
(A ,B). The different symbols correspond to different values for c (from

2 x 1056 to 1054). The red line are Pts:Smin Nsava with agy = 1.7+ 0.1,
Dmin  NS%n with apy = 0.6+ 0.1, and Dy~ 5% with ap = 1.2+ 0.1.

to scale as?/ A (Figure 10A, while ; is independent of bot®  distributed along the specimen widih (h(x) denotes averag-
and (Figure 10B. Finally, the structure function alorgjis: ing over the specimen widtiN); (iii) the structure function
) S( x)= (h(x+ x,2)S h(x,2))? was computed for each of
S( 2= C—log( Z ;), with C= 032+ 001 and these proPles; (iv) these 100 individual structure functions were
A averaged to get th§( x) for a single specimen; and (v) the
so-obtained structure functions were further averaged over 100
specimens. This procedure produces accurate and reproducible
We now look at the structure functio( x) alongx. A direct curvesS, vs x.
computation of S following the standard procedure proposed Figure 11depicts typical examples §f( x) curves for differ-
for S was found to give a large scattering even for a constamnt values oN, andA. The behavior resembles that observed
set of parameterfN, A, }. Hence, the computation procedurefor S, with a logarithmic scalings, = pxlog( X/ x) up to
was modibed as follows: (i) an initially straight front was brstn upper cutoff set by the system sile Note that S sat-
propagated over a distance equal toN1€ obtain a statisti- urates above the cutoff, and does not decrease down to zero
cally stationary regime; (ii) theevolution ofh(x, z) = h(x,z) S as was observed f®& due to periodic boundary conditions.
h(x) was subsequently recorded at 100 locatignsniformly ~As for S,, the prefactor (now referred to gs) goes as 2/ A

2= 0.24% 003 (14)
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FIGURE 7 | Effect of the system size N and disorder strength ™~ on
the mean size and duration of avalanches. Top, inset: Mean avalanche
size S as a function of ¢ for constant k = 1052 and (A) different N at
constant = 1 and (B) different  at constant N = 1024. Bottom, inset:
Mean avalanche duration D as a function of ¢ and constant k = 1052
and (A ) different N and constant = 1 and (B) different and constant

N = 1024. In all cases, the axes are logarithmic. Main panels: Curve
collapse obtained by plotting S /NSPsv vs c/NSe (A),

S/ Sbs vs ¢/NSC (B), D /NSPon vs c/NSN (A), and

D/ SPo ysc/NSC . The btted exponents are found to be

bsy = 1.3% 0.1, bs = 0.7+ 0.1, bpy = 045+ 0.1, bp = 0.65% 0.1,
cy=065+0.1 ¢ =105+0.1

FIGURE 8 | Typical topographies h(x, z) obtained by solving Equation

9b for different values of A and . For each case, the image size is

1024 x 1024 and the height ranges over the colorbar indicated on the right.
Here, the x and z axes coincide with the vertical and the horizontal,
respectively.

(Figure 12A. The characteristic length-scalg is independent
of (Figure 12Binset). But contrary to what is observed 8,
this characteristic lengthy depends oA: y 1/ A. This depen-
dency is responsible for the apparent stretching alsiod the
images irFigure 10observed a8 decreases. Finally, the structure
function alongx is:

2
S( ¥ =Cylog(A 2D), with C=032£ 001 and

D= 0.21+ 0.02 (15)

relate the material
ratio) to quan-

Equations 14 and 15 quantitatively
parameters (microstructure and Poisson

tities accessible in conventional fractography analysis.
In this context, it is of interest to rewrites them with

the original variables, before the non-dimensionalization
procedure:
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FIGURE 9 | Structure function S,( z) measured along z: (A) for various system sizes N at A= 1and "~ = 1, (B) for various ~at A= 1and N = 1024,
and (C) for various A at "= 1and N = 1024. The ordinate axis is logarithmic. For all bgures, the straight lines correspond to the solutions of Equation 14.
FIGURE 10 | (A) Slope p; associated with the curve S;vs. z as a function of 2 associated with the curve S;vs. z as a function of A at constant = 1
Aat = 1(main), and as a function of atA = 1 (inset). In the inset, the axes (main) and as a function of at constant A = 1 (inset). In both graphs, the red
are logarithmic. In both graphs, the red lines correspond to bts p, = C/A lines correspond to bts ; = 0.24 + 0.03. Here, + indicates a 95% conbdent
(main) andp, = C 2 where C = 0.32 % 0.02. (B) Characteristic length-scale interval.

Over a certain range of the fracture parameters, this RT-
CM approach predicts crackling dynami¢é0]: The crack
283 x growth splits up into discrete jumps, which are power-law
28 —), (16) distributed in size and duration. The characteristic exponents

associated to these power-laws are universal. Conversely, the
whereS,, S, xand zare expressed with real length units, angcales covered by these scale-free features are non-universal
, and are recalled to be the Poisson ratio, the microstructu@nd, in particular, the mean size and duration of the crack

28 z
32— 2 2|9g(42-2),
S 03 283 og ( )

2S
S 032——— 2 ?log(48

2S 3

scale, and disorder contrast. jumps are found to depend on the fracture parameters accord-
ing to scaling laws that are uncovered. These scaling laws can
4. CONCLUDING DISCUSSION be understood over a certain range of the fracture parame-

Stress enhancement at crack tips makes the macroscale faileirg in the regime of pseudo-isolated avalanches addressable
behavior observed extremely sensitive to the presence of disoa standard functional renormalization theoriyl9, 51D53]

der at the microstructure scale. This translates into crackli@pnversely, the effect of the avalanche overlapping is not under-
dynamics and rough fracture surfaces, which, by essence, carstobd. On-going work aims at analyzing the distribution of
be addressed within the conventional LEFM framework. In thibe local avalanches as detected in the space-time diagrams
paper, we have used the RT-CM approach to obtain quantitatieé the front dynamics, in order to understand the coalescence
relations between some statistical observables characteristiprotess.

these two aspects and the fracture parameters: Loading rate (time\lso, this RT-CM approach predicts rough fracture surfaces.
derivative of the energy release rate), specimen geometry (sgée fracture roughness can be characterized by comput-
imen thickness and unloading factor), conventional mechanicaglg the structure function, which exhibits logarithmic scal-
constants (fracture energy, Poisson ratio), and microstructurmlg. The associated prefactor and characteristic length-scale
disorder (microstructure scale and disorder strength). are found to depend on the Poisson ratio, microstructure
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FIGURE 11 | Structure function Sy ( x) measured along x (A) for various systemsizes N at A= land ~= 1, (B)forvarious ~atA= 1and N = 1024, and

(C) for various A atconstant = land N = 1024. The ordinate axis is logarithmic. For all Pgures, the straight lines correspond to the solutions of Equation 15.
FIGURE 12 | (A) Slope px associated with the curve Sy vs. x as a function conbdent interval). (B) Characteristic length-scale y associated with the

of Aatconstant = 1 (main) and at constant A = 1 (inset). In the inset, the curve Sy vs. x as a function of A at constant = 1 (main) and at constant
axes are logarithmic. In both graphs, the red lines are btsp; = Cx/A (main) A = 1 (inset). In both graphs, the red lines are bts y = 0.21+ 0.02/ A (main)

and p; = C 2where the btted parameter is found to be C = 0.31 + 0.02 (95% and x = 0.21+ 0.02 (inset). Here, £+ indicates a 95% conbdent interval.
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