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We analyze the intermittent dynamics of cracks in heterogeneous brittle materials
and the roughness of the resulting fracture surfaces by investigating theoretically and
numerically crack propagation in an elastic solid of spatially-distributed toughness. The
crack motion splits up into discrete jumps, avalanches, displaying scale-free statistical
features characterized by universal exponents. Conversely, the ranges of scales are
non-universal and the mean avalanche size and duration depend on the loading
microstructure and specimen parameters according to scaling laws which are uncovered.
The crack surfaces are found to be logarithmically rough. Their selection by the fracture
parameters is formulated in term of scaling laws on the structure functions measured on
one-dimensional roughness proÞles taken parallel and perpendicular to the direction of
crack growth.

Keywords: fracture, solid mechanics, crackling, fractals, scaling laws

1. INTRODUCTION
Understanding how solids break continues to pose signiÞcant
fundamental challenges. For brittle solids broken under tension,
Linear Elastic Fracture Mechanics (LEFM) tackles the difÞculty
by reducing the problem to the destabilization and subsequent
growth of a dominant pre-existing crack (see e.g.,[1] for an
introduction to LEFM). The theory is based on the idea that,
in an elastic material, all dissipative and damaging processes are
localized in a small zone around the crack tip, so-called frac-
ture process zone, FPZ. Crack destabilization and further motion
are then governed by the balance between the ßux of mechanical
energy released in the FPZ from the surrounding material and the
dissipation rate into this zone. The former is computable within
linear elasticity theory and connects to the stress intensity fac-
tor, which characterizes the near-tip stress Þeld and depends on
the external loading and specimen geometry only. The dissipa-
tion rate is quantiÞed by the fracture energy required to expose a
new unit area of cracked surfaces. Equivalently, it can be quanti-
Þed by the fracture toughness, i.e., the onset value for the stress
intensity factor above which crack starts to grow. Within LEFM
theory, both the fracture energy and the fracture toughness are
assumed to be material constants, to be measured experimentally.

LEFM framework provides a coherent framework to describe
fracture inhomogeneoussolids. In contrast, heterogeneous solids
remain unclear. Stress concentration at the crack tip makes the
behavior observed at the continuum-level scale extremely sen-
sitive to materialÕs small scale inhomogeneities. Consequences
include crackling dynamics for fracture with discrete pulses
(avalanches) of a variety of sizes and erratic crack paths (see[2]
for review). A generic observation in this Þeld is the existence
of scale free statistics: (i) Direct imaging of the crack motion in

paper sheets[3, 4] or along heterogeneous interfaces[5, 6] has
revealed power-law distribution for the size of the crack jumps;
(ii) the acoustic[7Ð9] or seismic[10, 11] events going along
with fracture are characterized by power-law distribution for the
energy; and iii) fracture surfaces are found to exhibit self-afÞne
morphological features[12Ð16]or logarithmic[17] roughness.

These observations, by essence, cannot be addressed by con-
ventional LEFM continuum approaches. In this context, over the
past 25 years, promising alternative approaches have emerged
from statistical and non-linear physics: Statistical lattice mod-
els like Þber bundle models (see [57]for review) or random
fuse models (see[18] for review), for example, were found to
reproduce, with a minimal set of ingredients, crackling dynam-
ics in failure[19Ð21]and self-afÞne fracture roughness[22Ð24],
in qualitative agreement with some of the experimental observa-
tions. However, these approaches remain too minimal to provide
quantitative predictions for situations of engineering interests.

A different approach consists in considering the crack propa-
gation in a solid with spatially-distributed toughness. The avail-
ability of asymptotic formulas[25Ð28]for the variations of stress
intensity factors along a slightly distorted crack can explicitly take
into account the microstructural disorder in a continuum-level
scale LEFM-like description[29Ð32]. Within this framework,
referred thereafter to as the Random-Toughness Continuum-
Mechanics (RT-CM) approach, the fracture onset can be mapped
to a critical depinning transition[2, 33Ð35]. Depending on the
situation, this approach yields logarithmically rough[32] or
self-afÞne[36] fracture surfaces. It can also explain the crack-
ling dynamics sometimes observed as a consequence of a self-
adjustment of the driving force around the depinning value[37].
The main advantage here is that the external parameters involved
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in the depinning model can be mapped to conventional LEFM
parameters. This has been used to relate effective toughness
and microstructural disorder[38, 39], or to unravel the speciÞc
conditions required to observed crackling in brittle fracture[40].

In the present work, depinning models unravel how the load-
ing rate, specimen geometry, and microstructural disorder quan-
titatively select the statistics of continuum-level scale avalanches
(as measured in conventional experimental fracture mechanics)
and of the crack roughness (as recorded in conventional frac-
tography). Section 2 presents the derivation of the depinning
model from LEFM. This section details the successive assump-
tions and their implications. Section 3 assesses the statistics
of the continuum-level scale avalanches, i.e., bursts evidenced
in the time evolution of the spatially-averaged crack veloc-
ity. Statistics on the avalancheÕs size and duration demonstrate
a power-law characterized by universal exponents. Conversely,
the associated cutoffs do depend on the loading, microstruc-
ture, and specimen parameters according to scaling laws which
are uncovered. Two regimes can be distinguished: A regime of
pseudo-isolated avalanches not so different from what is pre-
dicted in the quasi-static limit (vanishing loading rate); and a
regime where avalanches coalesce with each other. Section 4 ana-
lyzes the statistics of fracture roughness. The structure functions
measured along proÞles parallel and perpendicular to the direc-
tion of crack growth exhibit logarithmic scaling with prefactors
and characteristic length-scales depending on the PoissonÕs ratio
and microstructure parameters according to scaling which are
uncovered.

2. MATERIALS AND METHODS
In LEFM theory, the crack velocityv is governed by the balance
between the mechanical energyG and the (material constant)
fracture energy� (GrifÞth criterion). For slow cracks,v/µ =
GŠ � whereµ = cR/ � relates the mobilityµ to the Rayleigh
wave speedcR. The principle of local symmetry (PLS) governs
the growth direction[41]. This imposes a zero stress intensity
factor condition for mode II (KII = 0) all along the fracture. As
consequences, an initially straight crack in an ideal homogeneous
material gently loaded in mode I would continuously grow within
its plane, without any jerky motion or roughness. But inhomo-
geneities at the microstructure scale yield distortions of the crack

front, which, in turn, induce perturbations� KI , � KII , and� KIII in
the local loading of the front.

In the RT-CM approach, the effect of material inhomo-
geneities is taken into account by introducing a random spatially-
distributed component for the fracture energy and for the shear
part of the loading. Then, GrifÞth criterion and PLS combined
with an asymptotic estimation of the perturbations in the loading
induced by the front distortion describes the crack growth. This
approach was pioneered by Gao and Rice[29] and subsequently
developed[30Ð32, 37, 40, 42Ð44]. Here, the model is reviewed
with an emphasis on the relation between the model parameters
and experimentally measurable quantities. We also pay special
attention to list the various assumptions and discuss the implied
limits.

2.1. FROM FRONT DISTORTIONS TO THE PERTURBATIONS IN THE
CRACK-TIP LOADING

Let one consider a crack embedded in an isotropic elastic solid
of sizeL × H × W under tension. In the following, we adopt the
usual convention of fracture mechanics and the axes�ex, �ey and�ez
align with the direction of crack propagation (L direction), ten-
sile loading (H direction), and mean crack front (W direction),
respectively. For a straight crack, the mode I stress intensity factor
K0 fully characterizes the near-tip stress Þeld loading. Let one now
consider the situation depicted inFigure 1: left where the pres-
ence of inhomogeneities yields small in-plane and out-of-plane
crack distortions,f (z, t) and h(x = f (z, t), z) respectively. The
Þrst step in the RT-CM approach is to estimate how these distor-
tions perturb locally the loading. To make the problem tractable,
simplifying hypothesis are needed:

Hyp. 1 The Young modulusEand Poisson ratio� of the solid are
considered as homogeneous.

Hyp. 2 The spatial distribution of� (x, y, z) and the PLS noise are
narrow enough such that a Þrst-order perturbation anal-
ysis can characterize the coupling of the local perturba-
tions � KI (z), � KII (z) and � KIII (z) to the front distortions
{f , h}.

Then, Rice[25] and Movchan et alÕs[26] formula relate� Ki(z) to
the front distortions:

FIGURE 1 | Left: Sketch and notation of a crack front propagating in a heterogeneous solid. Right: Decomposition of the crack path into inÞnitesimal
straight kinks.
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�
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�

(1)

where
�

denotes a principal value integral. Note that� KI depends
only on the in-plane distortions{f }, and� KII , � KIII depend on the
out-of-plane distortions{h}. Here, several additional assumptions
were required:

Hyp. 3 In the expressions of� KII and � KIII , we have omitted
the terms brought by the non-singular stresses near the
reference straight crack front (the so-calledT-stress and
the third term A of the asymptotic expansion of near-
tip stress Þeld). This assumption remains valid for stable
crack paths (T � 0 [45]) when the roughness wavelength
is small with respect to the system size and the charac-
teristic distances deÞned by the external loading[31, 36].
A complete form of the omitted terms can be found in
Movchan et al.[26];

Hyp. 4 RiceÕs formula for� KI assumes a sample with inÞnite
width W and thicknessH. It remains valid as long as
one considers front corrugations the wavelength of which
are small with respect toH andW. A more accurate for-
mula proposed in Legrand et al.[46] addresses the case of
ÞniteH. To the very best of our knowledge, there does not
exist any formula taking into account the effect of Þnite
width, W.

2.2. GRIFFITH CRITERION AND EQUATION OF MOTION
The above expression for the local perturbations� Ki leads to a
Þrst order expression of the energy release rateG(z) as a function
of the front distortions:

G(z) = G0

	
1 +

� KI (z)
K0



, (2)

whereG0(t, f ) = K0(t, f )2/ E is the reference energy release rate
which, asK0(t, f ), would result from the same loading with a
straight crack front within the mean planey = 0 at the mean posi-
tion x = f (t). Henceforth, the operatora indicates averaging of
the variablea(z) over the spatial coordinatez. The two quantities
G0 andK0 coincide with the ones that would have been deÞned
in the conventional LEFM approach when ignoring front distor-
tions. They only depend on the specimen geometry and imposed
load (of which both evolve witht) and can be determined using
continuum mechanics (e.g., Þnite element analysis).

Slow cracking (as considered herein) implies that the solid
is loaded by imposing external displacements rather than exter-
nal stresses (the opposite would yield dynamic fracture with
crack at speed on the order of the sound speed). This induces
additional constraints:G0 should decrease withf (t) (specimen
compliance always increases with crack length) and increase with
t (to drive a crack, external displacement can only increase with
time). Without loss of generality, we sett = 0 at a time when the
crack has just stopped andx = 0 is the crack tipÕs position at this

time. G0(t = 0, f = 0) = � where� = � � (x, y, z)� is the mean
value of fracture energy. Considering the subsequent variation
f (z, t) to be small with respect to the crack length att = 0, we
can write:

G0(t, f ) = � + �Gt Š G�f (t), (3)

where �G = � G0/� t (driving rate) andG� = Š � G0/� f (unload-
ing factor) are positive constants characterizing the loading rate
and the specimen geometry, respectively. Inserting Equations 1
and 3 in Equation 2, and the resulting expression forG(z) into
GrifÞth criterion, the equation of motion for the in-plane front
displacement is:

1
µ

� f
� t

(z, t) = �Gt Š G�f +
�
�

�

front

f (�, t) Š f (z, t)
(� Š z)2 d�

+ �
�
x = f (z, t), y = h(x = f (z, t), z), z

�
, (4)

where� (x, y, z) = � (x, y, z) Š � is the ßuctuating part of the
fracture energy. The solution of this equation provides the space-
time dynamics of the in-plane projection of the crack front.
Subsequently, it gives the time evolution of the fracture velocity
at the continuum-level scale,v(t) = df / dt. This is the relevant
observable characteristics of the crack dynamics in standard
experiments of fracture mechanics.

2.3. PRINCIPLE OF LOCAL SYMMETRY AND EQUATION OF PATH
We now derive an equation of path by making use of the princi-
ple of local symmetry[41]. To do so, we take inspiration from the
work of Katzav et al.[44, 47]to model crack path in a model 2D
situation and extend it for three-dimensional solids. The idea is
to decompose the front propagation alongx-axis into inÞnitesi-
mal straight kinks of length	 , identiÞed with the microstructural
length-scale characterizing the spatial distribution of� (x, y, z)
(seeFigure 1:right). Consider now the kink occurring at the front
locationzbetween timet andt + dt. Leblond et alÕs formulas[48]
relate the stress intensity factors after kinkingK�

i (z) (i = I , II , III )
to the stress intensity factors before kinkingKi(z) and to the kink
angle�
 = 
 (z, t + dt) Š 
 (z, t) = 	� 2h/� x2(x = f (z, t), z) via:

K�
i (z) =

�

j = I ,II ,III

Fi,j(�
 )Kj(z), (5)

where Fi,j(�
 ) are universal functions that were computed in
Leblond[27] for three-dimensional solids. The principle of local
symmetry implies thatK�

II must be uniformly zero, which leads to:

FII ,I (�
 )KI (z) + FII ,II (�
 )KII (z) = 0. (6)

Now, to Þrst order in �
 , FII ,I (�
 ) and FII ,II (�
 ) are given
by Leblond[27]: FII ,I (�
 ) = �
 + O(�
 2) and FII ,II (�
 ) = 1 +
O(�
 2). The kink angle is then related toK0, � KI (z) and � KII (z)
via: �
 � Š � KII (z)/ (K0 + � KI (z)). Finally, by keeping only the
Þrst order loading perturbations , it writes:

	
� 2h
� x2 (x = f (z, t), z) = Š

� KII (z)
K0

. (7)
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To introduce the effect of microstructural disorder, a spatially
distributed noise termK0� (x, y, z) is added to the right-handed
side of the equation. In the situation of inter-granular crack
growth in a material made of sintered grains (e.g. sandstone),
for example, this additional term would translate the difference
between the kink angle predicted by the principle of local symme-
try and that truly selected so that the crack propagates between
the cemented grains. Finally, combining the resulting equation
with the asymptotic formula for stress intensity factors (Equation
1), one gets:

2	
� 2h
� x2 (x, z) = Š

� h
� x

(x, z) +
1
�

2 Š 3�
2 Š �

�

front

h(x, � ) Š h(x, z)
(� Š z)2 d�

+ � (x, y = h(x, z), z) (8)

The solution of this equation provides the topography of the post-
mortem fracture surfaces,h(x, z). This is the quantity of interest
in fractography science. Note that this equation differs from that
given in Larralde[31] and Bonamy et al.[36] as it includes an
additional curvature term� 2h/� x2.

2.4. RELEVANT PARAMETERS AND NUMERICAL ASPECTS
Equations 4 and 8 predict deterministically the fracture dynam-
ics and the morphology of fracture surfaces using the following
inputs:

Input 1 The loading rate�G;
Input 2 The specimen geometry (unloading factorG� and speci-

men widthW)
Input 3 The material constants (fracture energy� , Poisson ratio

� , and mobilityµ ),
Input 4 The microstructure disorder (microstructure length-

scale	 and the spatial distribution of the two noise terms
� (x, y, z) and� (x, y, z)).

Statistically, the two noise terms are characterized by the prob-
ability density functionsp(� ) and p(� ) and the spatial correla-
tion functionsC� (�r) = � � (�r0 + r)� (�r0)� �r0 andC� (�r) = � � (�r0 +
r)� (�r0)� �r0. Additional assumptions simplify the problem:

Hyp. 5 The two noise terms are not correlated; At Þrst glance,
such an assumption may appear odd since both terms
originate from the material heterogeneities. But due to
the tensorial nature of elasticity, these heterogeneities
will affect the equation of motion and the equation
of path independently. As an illustrative example, let
us consider again the situation of intergranular crack
growth in a solid made of sintered grains. Two distinct
space-dependent noise terms are required to describe the
microstructural texture: The Þrst one quantiÞes the local
variations of adhesion between grains and mainly affects
the equation of motion; the second one describes the local
variations of joint orientation and affects the equation of
path.

Hyp. 6 Both probability density functions are Gaussian of zero
mean and standard deviation�� and �
 , respectively;

Hyp. 7 In both cases, the correlation functionC decreases lin-
early with |r| over the microstructure distance	 and is
zero above.

Note that, in elastic interfaces equations as that proposed in
Equations 4 and 8, the scaling properties remain unaffected upon
changes in the probability functions (p(� ) and p(� )) and in the
correlation functions (C� (|r|) and C� (|r|)) [43]. Thanks to this
series of assumptions, the two spatially distributed noise terms
are fully characterized with 3 parameters:�� , �
 and	 .

At this point, the Equations 4 and 8 are coupled via the two 3D
noise terms� (x, y, z) and � (x, y, z), since they both depend on
the in-plane and out-of-plane positions of the crack front. A last
assumption permits the decoupling of the two equations:

Hyp. 8 The 3D spatially distributed terms� (x, y, z) and
� (x, y, z) reduce to their in-plane projection� (x, z) and
� (x, z).

As shown in Ramanathan et al.[32], Equation 8 with a 2D pro-
jection for the noise term yields logarithmically smooth fracture
surfaces. Hence, zooming out on the fracture surfaces makes
them appear ßatter and ßatter. When the zooming out is suf-
Þcient, ßuctuations inh become negligible when compared to
in-plane length scales. The two noise terms reduce to� (x, y =
h(x, z), z) � � (x, y = 0, z) and � (x, y = h(x, z), z) � � (x, y =
0, z). This validates Hyp. 8.

At this point, the selection of the fracture behavior brings into
play 8 parameters:µ , � , �G, G�, �� , �
 , 	 andW. The introduction
of dimensionless timet � t/	/ (µ � ) and length{x, y, z, f , h} �
{x/	, y/	, z/	, f /	, h/	 }) reduces this number. Equations 4 and 8
become:

� f
� t

(z, t) = ct Š kf (t) +
1
�

×
�

front

f (�, t) Š f (z, t)
(� Š z)2 d�

+ � � (x = f (z, t), z), (9a)

2
� 2h
� x2 (x, z) = Š

� h
� x

(x, z) +
A
�

�

front

h(x, � ) Š h(x, z)
(� Š z)2 d�

+ � (x, z). (9b)

where the dimensionless noise term� is characterized by a stan-
dard deviation�� = �� / � and a spatial correlation length equal to
unity.

The Þnal two decoupled dimensionless equations require only
6 parameters:

€ The dimensionless driving ratec = �G	/µ �
2
,

€ the dimensionless unloading factork = G�	/ � ,
€ the Poisson-ratio dependent parameterA = (2 Š 3� )/ (2 Š � ),
€ the parameters�� and �
 characterizing the disorder strength,
€ the continuum-level vs. microstructure scale ratioN = W/	 .

The following sections subsequently address the continuum-level
scale statistics of crack dynamicsv(t) and the morphology of
the post-mortem fracture surfacesh(x, z). They also reveal their
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dependencies on the external parameters{c, k, A, ��, �
 , N}. The
numerical scheme is the following. For each set of parameters, we
built two uncorrelated randomN × pN maps� (x, z) and� (x, z)
with Gaussian distribution of variance�� and �
 , respectively. At
timet = 0, the crack front is a straight line atx = 0:f (z, t = 0) =
0 andh(x = 0, z) = 0 	 z 
 [ 0, N Š 1]. Solving Equation 9a gives
the space-time evolution off (z, t). Solving Equation 9b provides
h(x, z). Both cases invoke a fourth order Runge-Kutta scheme and
periodic boundary conditions alongz: f (z = 0, t) = f (z = N, t)
andh(x, z = 0) = h(x, z = N) for all t andx. This speeds up the
computation time as the two integral terms in the equations can
be solved in the Fourier domain.

3. RESULTS
3.1. CRACKLING DYNAMICS AND AVALANCHE STATISTICS
We Þrst look at the crack dynamics. Equation 9a describes the
motion of a long-range elastic chain driven in a frozen ran-
dom pinning potential with a driving forceF = ct Š kf (t) self-
adjusting around the depinning value[37]. For {c, k} � 0, the
chain propagates while remaining at the critical depinning point
and the crack moves through irregular jumps, or avalanches. The
sizeSand durationD of the avalanche1 follow a universal power-
law distribution[37, 49]: P(S) � SŠ
 andP(D) � DŠ� where the
exponents
 and � can be estimated using renormalization[49Ð
51] or numerical[52, 53]methods. The most precise estimations
yields
 = 1.280± 0.01 and� = 1.500± 0.010[2] . These scale
free statistics extend to upper cutoffsS0 andD0 set by the system

1In problems of depinning of interfaces, the deÞnition of the avalanche size
differ depending on the publication. Sometimes, the size is deÞned as the area
A swept by the front between two successive depinning conÞgurations. Here,
the sizeSis deÞned as the integral of the continuum-level scale velocityv(t)
between the two successive depinning conÞgurations. The two deÞnitions are
related byS= A/ N whenN is the system size.

sizeN: S0 � N� andD0 � N� where� and � are the roughness
exponent and dynamic exponent, respectively. The most precise
estimations of their value yield[52, 53]: � = 0.385± 005 and
� = 0.770± 0.005.

Here, bothc andk are Þnite. The effects of a Þnite unloading
factork keepingc � 0 is now fairly well documented[2, 54]: It
modiÞes the upper cutoffsS0 andD0 to the preceding scale-free
distributions:

P(S|N, k, c � 0) = SŠ
 f (S/ S0) with S0 � N1/� Š1/ k1/�

(10a)

P(D|N, k, c � 0) = DŠ� g(D/ D0) with D0 � (N/ k)1/�

(10b)

Here, the form of the functionsf (u) and g(u) is expected to be
universal. The exponents 1/� and 1/� are also predicted to be
universal: 1/� = 0.69± 0.010 and 1/� = 0.385± 0.010[2, 54].
Conversely, the effect of a Þnitec is not uncovered yet. By yield-
ing some overlap between the avalanches[55], it can signiÞcantly
alter the dynamics. In particular, a recent work[40] has evidenced
a transition line between a crackling-like dynamics made of irreg-
ular power-law distributed jumps and a continuum-like dynamics
ruled by the conventional LEFM theory.

Figure 2presents typical times proÞles of the continuum-level
scale velocityv(t) for different values ofc andk in the crackling
regime. Here and thereafter, the system sizeN and the disorder
strength �� are set constant,N = 1024 and�� = 1, returning at
the end of this section to a brief discussion on their effect. Note
the irregular jumps characteristics of the underlying avalanch-
ing dynamics. Note also the qualitative changes in the signal
appearance ask and c are modulated: Pulses become shorter as
k increases, and the pulse density increases asc increases. Note
Þnally that, due to the Þnite value ofc, v(t) does not vanish

FIGURE 2 | (A) Evolutions of the continuum-level scale velocity v(t ) for three
typical parameter sets within the crackling phase: {c = 10Š5, k = 10Š3,
�� = 1, N = 1024} (top), {c = 10Š5, k = 10Š2, �� = 1, N = 1024} (middle),
{c = 10Š4, k = 10Š2, �� = 1, N = 1024} (bottom). (B) Zoom in on an

avalanche, identiÞed as a pulse wherev(t ) is above a prescribed value
vc = 10Š3 (horizontal red dash line). The avalanche durationD is the interval
between the two successive intersections of v(t ) with vc. The avalanche size
S is the integral of v(t ) Š vc between the same points.
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between the pulse, but becomes equal to a small value propor-
tional to c (prefactor dependent of the Runge Kunta scheme).
The avalanches are then identiÞed with the bursts wherev(t) is
above a prescribed reference levelvc = 10Š3. Their durationD is
deÞned as the interval between the two successive intersections of
v(t) with vc, and their sizeSis deÞned as the integral ofv(t) Š vc
between the same points.

Figure 3reports the probability density function of avalanche
sizeP(S|c, k) and durationP(D|c, k) for different values ofcandk.
Power-laws are observed. The exponents
 and� associated with
the power-law decrease are independent ofc and k. Moreover,
they compare well with the values
 = 1.280± 0.01 and � =
1.500± 0.010 expected for{c, k} � 0. On the other hand, the
valid region of the power-law is observed depends onc and k.
Both the lower cutoffsSmin andDmin are roughly independent of
candk. However, the precise valuesSmin andDmin were observed

to depend on the reference levelvc and, thus, are to be associated
with the procedure to extract the avalanches. We will consider in
the following only the part of the distributions above these lower
cutoffs.

The power-law distributions observed inFigure 3also exhibit
upper cutoffsS0 andD0. These cutoffs decrease withk in all cases.
The effects ofc is of two types:

€ For largek/smallc the cutoff does not depend onc(only onk).
€ At small k/large c, the cutoff increases withc and the

distribution also displays a bump at large sizes and durations.

Direct computation of the cutoff is quite imprecise. Hence, the
selection of the typical length and time scales is studied via
variations of the mean values�S� (c, k) =

� �
Smin

S× P(S|c, k)dS

FIGURE 3 | Top: Distribution of the avalanche size measured (A) for
various values of k at constant c = 10� 4 and (B) for various
values of c at constant k = 10� 2. In both cases, N = 1024 and
�� = 1 and the axes are logarithmic. The power-law exponent 
 is
found to be independent of the parameters and compatible to the
universal value 
 = 1.28 (black dashed line) predicted for c � 0 and
k � 0. The lower cutoff is found to be independent of the
parameters: Smin � 10Š3 (vertical dash line). The upper-cutoff is found
to decrease with k and to increase with c (resp. to be independent
of c) when c is large enough (resp. when c is small enough).

Bottom: Distribution of the avalanche duration measured (A�) for
various values of k at constant c = 10Š4 and (B�) for various values
of c at constant k = 10Š2. In both cases, N = 1024 and �� = 1 and
the axes are logarithmic. The power-law exponent � is found to be
independent of the parameters and compatible to the universal value
� = 1.50 (black dashed line) predicted for c � 0 and k � 0. The lower
cutoff is found to be independent of the parameters: Dmin � 3
(vertical dash line). The upper-cutoff is found to decrease with k and
to increase with c (resp. to be independent of c) when c is large
enough (resp. when c is small enough).
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(Figure 4A) and �D� =
� �

Dmin
D × P(D|c, k)dD (Figure 4B). At

large enoughk, both �S� and �D� are independent ofc. This
large k regime is attributed to a regime of pseudo-isolated
(pi) avalanches. The distributions are then expected to take
forms similar to that of Equation 10. As a result,�S�pi is
expected[56] to take the form�S�pi � S
 Š1

min S2Š 

0 � kŠ(2Š 
 )/� ,

�D�pi � D� Š1
min D2Š �

0 � kŠ(2Š � )/� . These two scaling are compat-
ible with the observations at largek (dash line inFigures 4A,B).
As a synthesis, the mean avalanche size and duration are found to
take the following form at largek:

�S� (c, k 
 c) = � S�pi(k) � 10Š2kŠ(2Š 
 )/� (11a)

�D� (c, k 
 c) = � D�pi(k) � 11kŠ(2Š � )/� (11b)

Let us try now to characterize the effects of the avalanche overlap
whenk becomes small orcbecomes large. Previous work[40] evi-
denced a transition between the crackling dynamics studied here
and a continuum-like dynamics whenc becomes large enough
or k small enough. This transition is believed[40] to coincide
with the point where the avalanche overlap percolates through-
out the entire system. At constant�� and N, this transition was
shown[40] to be fully driven by the ratioc/ k. We hence plotted,
in Figure 5, �S� / �S�pi and�D� / �D�pi (Þrst order estimation of the
number of individual avalanches having merged together to form
the bursts detected from the signalv(t)), as a function of the con-
trol parameterc/ k. A coarse collapse is observed. As expected, the
master curves diverge at the transition value between crackling
and continuum-like dynamics (materialized by the vertical dash
lines in the main panels ofFigures 5A,B).

Note that signiÞcant deviations to the collapse are observed.
They are believed to stem from a qualitative change in the distri-
bution shape ask decreases/c increases and the avalanche overlap
increases. Actually, for smallk/largec a bump develops at large
scales, for both the distribution in size and in duration. Due
to this change in shape, several length-scales (resp. time-scales)

intervenes in the distributions ofS(resp.D). Thus, the recording
of the mean values alone is not sufÞcient to capture their evo-
lutions with c andk. Ongoing work aims at characterizing these
effects more accurately.

To make the analysis complete, we looked at the effects of the
system sizeN and disorder strength�� . Figure 6plots the proba-
bility density function of avalanche sizeP(S|N, �� ) and avalanche
duration P(D|N, �� ) as measured for different values ofN and ��
at Þxed values ofcandk. For both size and duration, the decrease
of N yields an increase of the lower-cutoffsSmin andDmin (main
panel ofFigures 6A,A�). The two dependencies are well Þtted by
power-laws:Smin � NŠaSN and Dmin � NŠaDN with aSN � 1.7
and aDN � 0.6 (inset of Figures 6A,A�). �� does not seems to
affectSmin. Conversely,Dmin decreases with�� asDmin � � � ŠaD��

with aD�� � 1.2 (inset of Figure 6B�). The effects ofN and ��
of �S� and �D� are analyzed inFigure 7, by plotting the curves
�S� vscand�D� vsc for differentN at constantk and �� (insets in
Figures 7A,A�), and for different�� at constantk andN (insets in
Figures 7B,B�). IncreasingN yields a decrease of the low-cplateau
and a leftward shift of the divergence location for both�S� and
�D� . Increasing�� yields an increase of the low-c plateau for�S� ,
a decrease of the low-c plateau for�D� , and a rightward shift of
the divergence location for both�S� and�D� . All curves can then
be superimposed by making{� S� � � S� / NŠbSN, c � c/ NŠcN } in
the main panel ofFigure 7A, {� S� � � S� / �� bS�� , c � c/ �� c�� } in the
main panel ofFigure 7B, {� D� � � D� / NŠbDN , c � c/ NŠcN } in
the main panel ofFigure 7A�, {� D� � � D� / �� ŠbD�� , c � c/ �� c�� } in
the main panel ofFigure 7B�. By combining this with Equation 11
and the collapse obtained inFigure 5, we anticipate the following
form for mean size and duration:

�S� �
�� bS��

NbSNk(2Š 
 )/�
F

	
cNcN

k�� c��



,

�D� �
1

�� bD�� NbDN k(2Š � )/�
G

	
cNcN

k�� c��



, (12)

FIGURE 4 | (A) Evolution of the mean avalanche size �S� as a function of
the unloading factor k for different loading rates c. The curves collapse
for large k onto a c-independent power-law curve. Black thick dash line
depicts a Þt over the collapsed region using Equation 11a:
�S�pi � 10Š2kŠ(2Š 
 )/� with 
 = 1.28 and 1/� = 0.69. (B) Evolution of the
mean avalanche duration �D� as a function of the unloading factor k for

different value of the loading rate c. At large k, the curves collapse onto
a c-independent power-law curve. Black thick dash line is a Þt over the
collapsed region using Equation 11b : �D�pi � 11kŠ(2Š � )/� with � = 1.50
and 1/� = 0.385. In both (A,B) N = 1024 and �� = 1 and the axes are
logarithmic. The different symbols correspond to different values of c,
given in the legends.
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FIGURE 5 | (A)Mainpanel:Variationof�S� / �S�pi asa functionof c/ k fordifferent
k. (A) Inset: �S� as a function of c for different k. (B) Main panel: Variation of
�D� / �D�pi as a function of c/ k for different k. (B) Inset: �D� as a function of c for
different k. In both (A,B) N = 1024 and �� = 1 and the axes are logarithmic. The

different symbols correspond to different values of k, given in the legend
between graphs (A,B). In the main panels of both graphs, the vertical dash lines
indicates the transition value c/ k between crackling and continuum-like
dynamics as determined in Nukala et al. [40] for N = 1024 and �� = 1.

where the two functionsF (u) and G(u) exhibit a plateau at
small u, and both diverge at the same valueuc. The value of
the exponents
 , � , 1/� and 1/� are well known[2] : They
can e.g., be related to the so-called roughness exponent� and
dynamic exponent� classically deÞned in the realm of critical
depinning transition:
 = 2 Š 1/ (1 + � ), � = 1 + � /� , 1/� =
(1 + � )/ 2 and 1/� = �/ (1 + � ). Conversely, the precise origin of
the exponentsbSN, bS�� , bDN, bD�� , cN, andc�� and their link with�
and� remain to be uncovered.

Equation 12 quantitatively relate the material parameters
to quantities that are accessible in conventional experimental
mechanics, namely the mean size and duration of the avalanches.
In this context, it is of interest to rewrites the equation with the
original variables, before the non-dimensionalization procedure:

�S� �
�� bS�� × 	 bSNŠ(2Š 
 )/�

G�(2Š 
 )/� × �
bS�� Š(2Š 
 )/�

× WbSN

F



�G× �

c�� Š1
× WcN

µG� × �� c�� × 	 cN

�

, (13a)

�D� �
�

bS�� + (2Š � )/�
× 	 bDNŠ(2Š � )/�

G�(2Š � )/� × WbDN

G



�G× �

c�� Š1
× WcN

µG� × �� c�� × 	 cN

�

, (13b)

where the mean avalanche size�S� and duration�D� are expressed
with real length and time units, and�G, G� , W, � , µ , 	 and �� are
recalled to be the loading rate, the unloading factor, the speci-
men width, the fracture energy, the mobility, the microstructure
length-scale, and the contrast in local fracture energy. The value
of the exponents are recalled to be
 = 1.280± 0.01 (predicted),
� = 1.500± 0.01 (predicted), 1/� = 0.69± 0.01 (predicted),
1/� = 0.385± 0.01 (predicted),bSN = 1.3 ± 0.1 (Þtted),bS�� =

0.7 ± 0.1 (Þtted),bDN = 0.45± 0.1 (Þtted),bD�� = 0.65 (Þtted),
cN = 0.65± 0.1 (Þtted), andc�� = 1.05± 0.1 (Þtted).

3.2. ROUGHNESS OF FRACTURE SURFACES
We turn now to the topographyh(x, z) of the post-mortem frac-
ture surfaces as predicted by equation 9b.Figure 8reports typical
topographies for different values of the two external parameters
A and �
 . WhenA is close to 1, the surface seems to be statisti-
cally isotropic while asA gets smaller, the surface appears more
elongated in the direction ofz. Conversely, the parameter�
 only
affects the range swept by the roughness. Note that in almost all
elastic solids, Poisson ratio� lies between 0 and 0.5, which impose
a Þnite interval forA = (2 Š 3� )/ (2 Š � ): 1/ 3 � A � 1. Herein,
only A within this interval are considered.

To characterize quantitatively the spatial distribution of frac-
ture roughness, we adopted the classical procedure[2] and
computed the structure functionS(� �r) = � (h(�r + � �r) Š h(�r))2� .
Here, the operator�� denotes averaging over all positions�r =
(x, z). First, we computed the structure functionSz(� z) along 1D
proÞles taken parallel toz(mean direction of the crack front). The
procedure is the following: (i) an initially straight front was Þrst
propagated over a distance equal to 10N to obtain a statistically
stationary regime; (ii) 10000 subsequent proÞlesh(xi, z) sepa-
rated by a distancexi+ 1 Š xi = 1 were recorded; (iii) the structure
function Si

z(� z) was computed for each of these proÞles; and (iv)
Þnally, these 10000 individual structure functions were averaged
to getSz(� z).

Figure 9depicts typical examples ofSz(� z) curves for differ-
ent values ofN, 
 and A. Sz goes asSz = pz log (� z/� z) up to
an upper cutoff set by the system sizeN. This logarithmic scal-
ing is anticipated to extend over the whole range of length-scales
asN � � . Note that logarithmically rough crack surfaces were
also predicted in earlier theoretical works[31, 32]analyzing crack
propagation through a three-dimensional heterogeneous solid. As
a plus, the present model allows relating the prefactorpz and char-
acteristic length-scale� z with the fracture parameters:pz is found
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FIGURE 6 | Effect of the system size N and disorder strength �̃ on the
avalanche statistics. Main panel, top: Distribution of the avalanche size
measured (A) for different N at constant c = 2 × 10Š5, k = 10Š2 and �� = 1, and
(B) for different �� at constant c = 2 × 10Š5, k = 10Š2 and N = 1024. The axes
are logarithmic. Main panel, bottom: Distribution of the avalanche duration
measured (A�) for different N at constant c = 2 × 10Š5, k = 10Š2 and �� = 1,
and (B�) for different �� at constant c = 2 × 10Š5, k = 10Š2 and N = 1024. All
axes are logarithmic. In all panels, the power-law exponents 
 and � are
compatible with the universal values 
 = 1.28 and � = 1.50 (inclined dashed
line) predicted for c � 0 and k � 0. Regarding the size, the lower cutoff Smin is

observed to be independent of �� and to decrease with N. Regarding the
duration, the lower cutoff Dmin decreases with both N and �� . Smin (resp.Dmin ) is
quantitatively deÞned as the intersection of the power-law regime with
exponent 
 (resp. � ) and the saturation value for P observed at small S (resp.
small D). The red and blue dash lines in (A,A �,B�) present illustrations for
N = 128 and N = 1024, respectively. The variation of Smin with N is shown in
the inset of a. The variations of Dmin with N and �� are shown in the insets of
(A�,B�). The different symbols correspond to different values for c (from
2 × 10Š6 to 10Š4). The red line are Þts:Smin � NŠaSN with aSN = 1.7 ± 0.1,
Dmin � NŠaDN with aDN = 0.6 ± 0.1, and Dmin � � � ŠaD �� with aD �� = 1.2 ± 0.1.

to scale as�
 2/ A (Figure 10A), while � z is independent of bothA
and �
 (Figure 10B). Finally, the structure function alongz is:

Sz(� z) = C
�
 2

A
log (� z/� z), with C = 0.32± 0.01 and

� z = 0.24± 0.03 (14)

We now look at the structure functionSx(� x) alongx. A direct
computation ofSx following the standard procedure proposed
for Sz was found to give a large scattering even for a constant
set of parameters{N, A, �
 }. Hence, the computation procedure
was modiÞed as follows: (i) an initially straight front was Þrst
propagated over a distance equal to 10N to obtain a statisti-
cally stationary regime; (ii) thex evolution of�h(x, zi) = h(x, zi) Š
h(x) was subsequently recorded at 100 locationszi uniformly

distributed along the specimen widthN (h(x) denotes averag-
ing over the specimen widthN); (iii) the structure function
Si

z(� x) = � ( �h(x + � x, zi) Š �h(x, zi))2� was computed for each of
these proÞles; (iv) these 100 individual structure functions were
averaged to get theSx(� x) for a single specimen; and (v) the
so-obtained structure functions were further averaged over 100
specimens. This procedure produces accurate and reproducible
curvesSx vs. x.

Figure 11depicts typical examples ofSx(� x) curves for differ-
ent values ofN, 
 and A. The behavior resembles that observed
for Sz, with a logarithmic scalingSx = px log (� x/� x) up to
an upper cutoff set by the system sizeN. Note that Sx sat-
urates above the cutoff, and does not decrease down to zero
as was observed forSz due to periodic boundary conditions.
As for Sz, the prefactor (now referred to aspx) goes as�
 2/ A
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FIGURE 7 | Effect of the system size N and disorder strength �̃ on
the mean size and duration of avalanches. Top, inset: Mean avalanche
size �S� as a function of c for constant k = 10Š2 and (A) different N at
constant �� = 1 and (B) different �� at constant N = 1024. Bottom, inset:
Mean avalanche duration �D� as a function of c and constant k = 10Š2

and (A�) different N and constant �� = 1 and (B�) different �� and constant

N = 1024. In all cases, the axes are logarithmic. Main panels: Curve
collapse obtained by plotting �S� / NŠbSN vs c/ NŠcN (A),
�S� / �� ŠbS �� vs c/ NŠc�� (B), �D� / NŠbDN vs c/ NŠcN (A�), and
�D� / �� ŠbD �� vs c/ NŠc�� . The Þtted exponents are found to be
bSN = 1.3 ± 0.1, bS �� = 0.7 ± 0.1, bDN = 0.45 ± 0.1, bD �� = 0.65 ± 0.1,
cN = 0.65 ± 0.1, c �� = 1.05 ± 0.1

FIGURE 8 | Typical topographies h(x , z) obtained by solving Equation
9b for different values of A and � . For each case, the image size is
1024 × 1024 and the height ranges over the colorbar indicated on the right.
Here, the x and z axes coincide with the vertical and the horizontal,
respectively.

(Figure 12A). The characteristic length-scale (� x) is independent
of �
 (Figure 12B:inset). But contrary to what is observed forSz,
this characteristic length� x depends onA: � x � 1/ A. This depen-
dency is responsible for the apparent stretching alongs of the
images inFigure 10observed asA decreases. Finally, the structure
function alongx is:

Sx(� x) = C
�
 2

A
log (A� z/ D), with C = 0.32± 0.01 and

D = 0.21± 0.02 (15)

Equations 14 and 15 quantitatively relate the material
parameters (microstructure and Poisson ratio) to quan-
tities accessible in conventional fractography analysis.
In this context, it is of interest to rewrites them with
the original variables, before the non-dimensionalization
procedure:
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FIGURE 9 | Structure function Sz(� z) measured along z: (A) for various system sizes N at A = 1 and �̃ = 1, (B) for various �̃ at A = 1 and N = 1024,
and (C) for various A at �̃ = 1 and N = 1024. The ordinate axis is logarithmic. For all Þgures, the straight lines correspond to the solutions of Equation 14.

FIGURE 10 | (A) Slope pz associated with the curve Sz vs. � z as a function of
A at �
 = 1 (main), and as a function of �
 at A = 1 (inset). In the inset, the axes
are logarithmic. In both graphs, the red lines correspond to Þts pz = C/ A
(main) andpz = C �
 2 where C = 0.32 ± 0.02. (B) Characteristic length-scale

� z associated with the curve Sz vs. � z as a function of A at constant �
 = 1
(main) and as a function of �
 at constant A = 1 (inset). In both graphs, the red
lines correspond to Þts � z = 0.24 ± 0.03. Here, ± indicates a 95% conÞdent
interval.

Sz � 0.32
2 Š �
2 Š 3�

�
 2	 2 log (4.2
� z
	

),

Sx � 0.32
2 Š �
2 Š 3�

�
 2	 2 log (4.8
2 Š 3�
2 Š �

� x
	

), (16)

whereSx, Sz, � x and� z are expressed with real length units, and
� , 	 and �
 are recalled to be the Poisson ratio, the microstructure
scale, and disorder contrast.

4. CONCLUDING DISCUSSION
Stress enhancement at crack tips makes the macroscale failure
behavior observed extremely sensitive to the presence of disor-
der at the microstructure scale. This translates into crackling
dynamics and rough fracture surfaces, which, by essence, cannot
be addressed within the conventional LEFM framework. In this
paper, we have used the RT-CM approach to obtain quantitative
relations between some statistical observables characteristic of
these two aspects and the fracture parameters: Loading rate (time
derivative of the energy release rate), specimen geometry (spec-
imen thickness and unloading factor), conventional mechanical
constants (fracture energy, Poisson ratio), and microstructural
disorder (microstructure scale and disorder strength).

Over a certain range of the fracture parameters, this RT-
CM approach predicts crackling dynamics[40]: The crack
growth splits up into discrete jumps, which are power-law
distributed in size and duration. The characteristic exponents
associated to these power-laws are universal. Conversely, the
scales covered by these scale-free features are non-universal
and, in particular, the mean size and duration of the crack
jumps are found to depend on the fracture parameters accord-
ing to scaling laws that are uncovered. These scaling laws can
be understood over a certain range of the fracture parame-
ters, in the regime of pseudo-isolated avalanches addressable
via standard functional renormalization theory[49, 51Ð53].
Conversely, the effect of the avalanche overlapping is not under-
stood. On-going work aims at analyzing the distribution of
the local avalanches as detected in the space-time diagrams
of the front dynamics, in order to understand the coalescence
process.

Also, this RT-CM approach predicts rough fracture surfaces.
The fracture roughness can be characterized by comput-
ing the structure function, which exhibits logarithmic scal-
ing. The associated prefactor and characteristic length-scale
are found to depend on the Poisson ratio, microstructure
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FIGURE 11 | Structure function Sx (� x ) measured along x (A) for various system sizes N at A = 1 and �̃ = 1, (B) for various �̃ at A = 1 and N = 1024, and
(C) for various A at constant �̃ = 1 and N = 1024. The ordinate axis is logarithmic. For all Þgures, the straight lines correspond to the solutions of Equation 15.

FIGURE 12 | (A) Slope px associated with the curve Sx vs. � x as a function
of A at constant �
 = 1 (main) and �
 at constant A = 1 (inset). In the inset, the
axes are logarithmic. In both graphs, the red lines are Þts p1 = Cx / A (main)
and p1 = C �
 2where the Þtted parameter is found to be C = 0.31 ± 0.02 (95%

conÞdent interval). (B) Characteristic length-scale � x associated with the
curve Sx vs. � x as a function of A at constant �
 = 1 (main) and �
 at constant
A = 1 (inset). In both graphs, the red lines are Þts � x = 0.21 ± 0.02/ A (main)
and � x = 0.21 ± 0.02 (inset). Here, ± indicates a 95% conÞdent interval.

length-scale, and disorder strength according to laws that were
uncovered. This may have interesting applications: It allows
one to infer the microstructure parameters (the access of
which could be made difÞcult otherwise, due to the small-
ness of the length-scales involved) from the analysis of post-
mortem fracture surfaces at larger scale. Work in progress
aims at testing the scaling predicted here for the structure
functions against fractography experiments achieved in oxide
glasses.

Note Þnally that the RT-CM model studied here call upon a
variety of assumptions (see Section 2). An interesting perspective
would be to measure to which extend these assumptions can be
released. Work in this direction is currently under progress. The
model is also limited to nominally brittle fracture, with a single
macroscopic crack propagating in an otherwise intact material.
Promising alternative approaches have emerged from statisti-
cal and non-linear physics[18, 57] and may permit to address
quasi-brittle fracture, with many microcracking events interact-
ing with each-others. A central challenge in the Þeld would be to
bridge the gap between these approaches and engineering damage
mechanics.
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