G. A. Prinz, Magnetoelectronics, Science, vol.282, issue.5394, p.1660, 1998.
DOI : 10.1126/science.282.5394.1660

S. A. Wolf, Spintronics: A Spin-Based Electronics Vision for the Future, Science, vol.294, issue.5546, p.1488, 2001.
DOI : 10.1126/science.1065389

I. Zutic, J. Fabian, and S. D. Sarma, Spintronics: Fundamentals and applications, Reviews of Modern Physics, vol.76, issue.2, p.323, 2004.
DOI : 10.1103/RevModPhys.76.323

J. E. Hirsch, Spin Hall Effect, Physical Review Letters, vol.83, issue.9, p.1834, 1999.
DOI : 10.1103/PhysRevLett.83.1834

J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Experimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System, Physical Review Letters, vol.94, issue.4, p.47204, 2005.
DOI : 10.1103/PhysRevLett.94.047204

N. Reyren, S. Thiel, and A. D. Caviglia, Superconducting Interfaces Between Insulating Oxides, Science, vol.317, issue.5842, p.1196, 2007.
DOI : 10.1126/science.1146006

S. Valencia, A. Crassous, and L. Bocher, Interface-induced room-temperature multiferroicity in BaTiO3, Nature Materials, vol.74, issue.10, p.753, 2011.
DOI : 10.1038/nmat3098

E. Bousquet, M. Dawber, and N. Stucki, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature, vol.13, issue.7188, p.732, 2008.
DOI : 10.1038/nature06817

A. Raeliarijaona, S. Singh, H. Fu, and L. Bellaiche, Predicted Coupling of the Electromagnetic Angular Momentum Density with Magnetic Moments, Physical Review Letters, vol.110, issue.13, p.137205, 2013.
DOI : 10.1103/PhysRevLett.110.137205

R. Karplus and J. M. Luttinger, Hall Effect in Ferromagnetics, Physical Review, vol.95, issue.5, p.1154, 1954.
DOI : 10.1103/PhysRev.95.1154

L. Bellaiche, W. Ren, and S. Singh, Coupling of the angular momentum density with magnetic moments explains the intrinsic anomalous Hall effect, Physical Review B, vol.88, issue.16, p.161102, 2013.
DOI : 10.1103/PhysRevB.88.161102

H. Katsura, N. Nagaosa, and A. Balatsky, Spin Current and Magnetoelectric Effect in Noncollinear Magnets, Physical Review Letters, vol.95, issue.5, p.57205, 2005.
DOI : 10.1103/PhysRevLett.95.057205

D. Rahmedov, D. Wang, L. Iñiguez, and . Bellaiche, from Atomistic Simulations, Physical Review Letters, vol.109, issue.3, p.37207, 2012.
DOI : 10.1103/PhysRevLett.109.037207

E. Note, and (17b) are for non-steady state situations When the steady state will set in, the current density solely generated by the local electric field existing near the interface (i.e, n I e 2 ? m E lz in Eqs. (11) and (17b), and n I e 2 ? m E ly in Eq. (17a)) should be counterbalanced by the electric field created by the charge imbalance induced by the electrons that have crossed such interface. Moreover, the steady state situation, spins imbalance should be found at the two sides of the interface in Cases 1 and 2

V. M. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Communications, vol.73, issue.3, p.233, 1990.
DOI : 10.1016/0038-1098(90)90963-C

J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth et al., Universal Intrinsic Spin Hall Effect, Physical Review Letters, vol.92, issue.12, p.126603, 2004.
DOI : 10.1103/PhysRevLett.92.126603

G. Y. Guo, Y. Yao, and Q. Niu, Calculation of the Intrinsic Spin Hall Effect in Semiconductors, Physical Review Letters, vol.94, issue.22, p.226601, 2005.
DOI : 10.1103/PhysRevLett.94.226601

N. F. Mott and H. S. Massey, The theory of atomic collisions, 1965.

J. M. Luttinger, Theory of the Hall Effect in Ferromagnetic Substances, Physical Review, vol.112, issue.3, p.739, 1958.
DOI : 10.1103/PhysRev.112.739

L. Berger, Side-Jump Mechanism for the Hall Effect of Ferromagnets, Physical Review B, vol.2, issue.11, p.4559, 1970.
DOI : 10.1103/PhysRevB.2.4559

S. L. Lyo and T. Holtstein, Side-Jump Mechanism for Ferromagnetic Hall Effect, Physical Review Letters, vol.29, issue.7, p.423, 1972.
DOI : 10.1103/PhysRevLett.29.423