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3LPCES, Universit́e Paris Sud, 91405 Orsay, France
4Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, F-38042 Grenoble, France

5Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L-3G1, Canada
6Perimeter Institute for Theoretical Physics, 31 Caroline North, Waterloo, Ontario N2L 2Y5, Canada

7Canadian Institute for Advanced Research, 180 Dundas Street West, Suite 1400, Toronto, Ontario M5G 1Z8, Canada
(Received 28 June 2014; revised manuscript received 31 July 2014; published 26 August 2014)

Examples of materials where an “order by disorder” mechanism is at play to select a particular ground state
are scarce. It has recently been proposed, however, that the antiferromagneticXY pyrochlore Er2Ti2O7 reveals
a most convincing case of this mechanism, with the observation of a spin gap at zone centers having recently
been interpreted as a corroboration of this physics. Here we argue, however, that the anisotropy generated by
the interaction-induced admixing between the crystal-�eld ground and excited levels provides for an alternative
mechanism. It especially predicts the opening of a spin gap of about 15µeV, which is of the same order of
magnitude as the one observed experimentally. We report high-resolution inelastic neutron scattering data which
can be well understood within this scenario.

DOI: 10.1103/PhysRevB.90.060410 PACS number(s): 75.10.Jm

Geometrically frustrated magnetism is a forefront research
topic within condensed matter physics, as testi�ed by the
wealth of exotic phenomena discovered over the past years
[1–3]. For instance, the problem of anXYantiferromagnet on
the pyrochlore lattice (the celebrated lattice of corner-sharing
tetrahedra) has been considered with much interest since this
model displays an extensive classical degeneracy [4,5] along
with classical and quantum order by disorder (ObD) effects
[4–13]. The elegant concept of ObD [14,15] is a cornerstone
of ordering in frustrated condensed matter systems. ObD
comes into play by selecting a ground state, either because
�uctuations away from this particular con�guration allow
for a relative gain of entropy compared to other classically
degenerate states, or because quantum mechanical zero point
�uctuations de�ne a minimum in the total energy.

Until now, the number of con�rmed examples for ObD
in real materials have remained scarce [16]. For ObD to
be an ef�cient selection mechanism, the classical ground-
state degeneracy must be extremely robust and the minimal
theoretical model not openly subject to additional terms
that would spoil the accidental emerging symmetry and lift
the degeneracy. Recently, theXYpyrochlore antiferromagnet
Er2Ti2O7 has been proposed as a candidate that satis�es these
conditions in a rather compelling way [7–10]. Given the unique
position of Er2Ti2O7 among frustrated quantum magnets, it is
of foremost importance to scrutinize the soundness of this
proposal.

The crystal electric �eld (CEF) acting on the Kramers
Er3+ ion is responsible for a strongXY-like anisotropy, with
easy magnetic planes perpendicular to the local�111� ternary
axes [2,13]. Combined with antiferromagnetic interactions, an
extensive classical degeneracy is expected [4–6,13]. Despite
this degeneracy, Er2Ti2O7 undergoes a second-order phase
transition towards an antiferromagnetic noncollineark = 0
Néel phase atTN = 1.2 K [13,17–19]. In this con�guration,

denoted� 2 and depicted in Fig.1(a), the magnetic moments
are perpendicular to the�111� axes [13,20] and make a zero
net magnetic moment per tetrahedron.

A theory based on a Hamiltonian written in terms of
interacting pseudospins 1/ 2, each describing the single-ion
CEF ground doublet, along with four anisotropic nearest-
neighbor exchange parameters (J±± ,J± ,Jz± ,Jzz), has been
proposed for Er2Ti2O7 [8]. For the set of parameters deter-
mined by inelastic neutron scattering (INS) experiments in a
large applied magnetic �eld [8,21], the theory [8] predicts a
quantum ObD selection of� 2, on the basis of a linear spin
wave calculation [6–9], as well as thermal ObD atTc, also
selecting� 2 [10]. Another consequence of ObD in Er2Ti2O7
is the opening of a spin gap, previously inferred from EPR
experiments [22] as well as from deviation of theT 3 law in
speci�c-heat measurements [23], and very recently con�rmed
from INS measurements [24]. However, while the spin gap is
a necessary consequence, it is not a de�nitive proof of this
scenario: whatever the mechanism, a spin gap is expected
since the ordered� 2 ground state breaks a global discrete
symmetry [6].

In this work, we follow a different route and consider
an anisotropic bilinear exchange Hamiltonian written for the
Er3+ moments along with the CEF contribution (henceforth
referred to as model A). As shown in Ref. [25], an energetic
selection of the� 2 state is possible for a speci�c range of
anisotropic exchange parameters, owing to magnetocrystalline
effects described by the CEF (see also Ref. [26]). We model
the spin excitation spectra within this CEF-induced energetic
selection scenario. The comparison with new INS data allows
one to determine a new set of anisotropic exchange parameters.
These are compatible with those determined from in-�eld INS
experiments [8] and based on the pseudospin 1/ 2 Hamiltonian
(referred to as model B), from which quantum [7–9] and
thermal (atTN) ObD [10] is predicted. Both approaches lead
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FIG. 1. (Color online) (a) Sketch of the� 2 magnetic con�gura-
tion. (b) Illustration of the energetic selection by molecular �eld
induced magnetocrystalline anisotropy: the ground-state energy of
HamiltonianH � computed forh = 1 T shows minima along the axes
� = 0,60,120,180 degrees, however slightly tilted out of theXYplane
(� o �= 90). (c) shows the corresponding tilt angle as a function of
h. (d) and (e) show respectively the curvature along� and � of
the potential wells as a function of the magnetic �eldh. (f) shows
the evolution of the spin gap as a function of the renormalization�
of the Stevens coef�cientsBnm (see text).

to a spin gap of the correct order of magnitude. However, in
model A, the spin gap results strictly from the admixing of
the CEF levels via the mean �eld [25]. Our results revive the
debate regarding the ordering mechanism in pyrochlore anti-
ferromagnets and illustrate that the argument of quantum ObD
being the chief governing mechanism causing� 2 ordering in
Er2Ti2O7 is not de�nitive. More generally, they emphasize
the limitations of the projection onto the pseudospin 1/ 2
subspace (shift from model A to model B) with solely bilinear
anisotropic spin-spin coupling in describing even qualitatively
the physics of highly frustrated rare-earth pyrochlores.

CEF energetic selection mechanism (model A). This ap-
proach considers a mean-�eld anisotropic bilinear exchange
Hamiltonian written for the Er3+ moments�Ji at sitesi of the
pyrochlore lattice (see Refs. [25,26]). It also contains explicitly
the CEF contribution,HCEF:

H = HCEF+
1
2

�

i,j

�Ji · K i,j · �Jj , (1)

where HCEF =
�

n,m BnmOnm is written in terms ofOnm
Stevens operators [27,28]. The Bnm have been determined
to �t a number of experiments, including the intensities and
positions of the crystal-�eld levels, as well as the susceptibility
[29–31]. In the following, those values are considered as
�xed parameters.Ki,j denotes an anisotropic coupling tensor,
de�ned in the (�a,�b,�c) frame attached to the Er3+ ŠEr3+ bonds
[31,32]. It is described by 3 symmetric parameters,Ka,b,c, and
an antisymmetric exchange constant (Dzyaloshinskii-Moriya
like), K4 [31].

In this model, the molecular �eld induces an admixture
between the ground and excited CEF levels, leading to an
effective magnetic anisotropy. This point is best evinced by
considering the problem of an Er3+ ion in a local magnetic
�eld �hi : H � = HCEF+ gJ µ B �hi · �Ji . Figure 1(b) shows the
ground-state energy ofH � computed as a function of� and�
(in the local basis) for a �eldh = 1 T, which is the actual order
of magnitude of the molecular �eld in Er2Ti2O7 (see below).
Minima along the sixfold directions of the CEF,slightly tilted
away from theXY plane perpendicular to the local [111]
direction, are clearly observed. As shown in Fig.1(c), the
tilt grows ash2 but remains less that 1� for realistic values
of h. The potential well in the vicinity of the minima can
be approximated by a highly anisotropic harmonic potential
whose curvature along� (denoted byC� ) is far steeper than
along � (denoted byC� ). The average curvature, given by�

C� C� [28], is approximately 3× 10Š2 K at h = 1 T, a value
about the same order of magnitude as the one emerging from
zero-point �uctuations (quantum ObD) [8].

Returning to model A, Eq. (1), this effective anisotropy
combined with appropriate exchange parameters stabilizes
the � 2 state (note that other phases, namely a canted
ferromagnet as well as the antiferromagnetic Palmer and
Chalker state can also be stabilized depending on the values
of Ka.b.c.4 [11,26]). Here, the moment direction at each of
the 4 sites of a primitive tetrahedron basis is given by
(x,x,y ),(Šx,Šx,y),(Šx,x,Šy),(x,Šx,Šy) with y � 2x (in
the cubic frame). Note that this is allowed by symmetry for
the � 2 state, but not for the other component (� 3) of the � 5
two-dimensional representation [33].

The dynamical structure factorS( Q,� ) that exposes the
spin dynamics is modeled by a random phase approximation
(RPA) calculation (see Refs. [28,34] and the Supplemental
Material [31]). For the relevant set ofKa,b,c,4 parameters (see
below), numerical calculations show the opening of a spin
gap� RPA

G � 15 µeV at Brillouin zone centers. To emphasize
explicitly the in�uence of the CEF levels in causing this
gap, calculations have been performed forBnm parameters
multiplied by a renormalization coef�cient� . This has the
effect of rescaling all CEF energy gaps by� . In these
calculations, the exchange coupling remains �xed, so that
the molecular �eld and the Ńeel temperature are essentially
unchanged, but the effective magnetic anisotropy inherited
by admixing of the ground CEF doublet with excited CEF
states decreases with increasing� . S( Q,� ) is also globally
unchanged, yet the spin gap gradually decreases and tends
to zero for large� . Numerical calculations show thatC� 	 h
while C� 	 h5/� 4. Ultimately, as� 
 � , theU(1) classical
ground-state degeneracy within the Hilbert space strictly
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composed of a direct product of single-ion CEF ground
doublets is recovered [see Fig.1(f)]. In that limit, quantum
[7–9] and thermal [10] ObD would become the sole mecha-
nism able to lift the accidental degeneracy.

Comparison with experiments. To determine theKa,b,c,4
couplings, the INS data were �tted to the calculatedS( Q,� )
within the RPA. The neutron measurements were performed on
a large Er2Ti2O7 single crystal grown with the �oating-zone
technique. The crystal was inserted in a copper sample holder
and attached on the cold �nger of a dilution fridge, allowing
one to cool the sample down to 50 mK. Data were collected
on the IN5 time-of-�ight instrument (ILL) which combines
high �ux with position-sensitive detectors allowing for single-
crystal spectroscopy. Measurements were carried out with an
incident neutron wavelength of 6�A in zero �eld and under
an applied magnetic �eld of 1.5 and 2.5 T along [1,Š1,0].
The spin excitation spectra measured along the high-symmetry
directions of the cubic unit cell at 50 mK are shown in
Fig. 2. These results compare well with prior measurements
(see Ref. [21] and the Supplemental Material of Ref. [8]).
Because of the magnetic� 2 domains, the identi�cation
of the expected four different spin wave branches is not
straightforward. This means that the inelastic peaks in Fig.2
contain several modes within the experimental resolution. This
is evidenced in the high-resolution setup, using a wavelength
of 8.5 �A. The highly Gaussian (nearly triangular) pro�le of the
resolution line inherent to the counterrotating disk choppers

instrument, which yields an energy resolution of about 20µeV,
reveals two acoustic-like modes originating from different
magnetic domains (see Supplemental Material). Using the
same high-resolution setup, the zero-�eld data con�rm the
opening of a spin gap at zone centers: as shown in Fig.2(c),
the energy resolution permits us to discriminate between the
inelastic scattering and the strong Bragg intensity at theQ =
(111) position. Above the elastic line, the neutron intensity �rst
shows a dip and then a peak, a behavior that is typical of a spin
gap. Fitting the data through a Lorentzian pro�le convoluted
with the resolution function [see blue line in Fig.2(c)] yields
� exp

G � 43 µeV. This value compares very well with previous
estimates [22–24].

To determine the exchange parameters, we calculate
S( Q,� ) assuming an equal population of the six� 2 magnetic
domains. On the basis of exhaustive calculations as a function
of the parametersKa,b,c,4 in zero and applied magnetic
�eld, the INS data were �tted by matching the location of
the maximum INS intensity in several directions. A good
agreement is found for the following values:

Ka 	 0.003± 0.005 K, Kb 	 0.075± 0.005 K,

Kc 	 0.034± 0.005 K, K4 	 0 ± 0.005 K. (2)

Many others sets that capture independently the magne-
tization or the excitation spectrum can be found but the
present determination provides values that capture all these

FIG. 2. (Color online) IN5 time of �ight spectra taken at 50 mK with an incident wavelength of 6�A along various directions, in zero �eld
(a) or under a magnetic �eld of 2.5 T applied along the (1,Š1,0) direction (b).S(Q,� ) is shown for the RPA (model A) and spin half (model
B), taking into account equipopulated� 2 domains, as described in the main text. The global agreement is evident but the arrows point out
speci�c Q regions showing the limits of the two models. (c) INS raw data recorded with an incident wavelength of 8.5�A at Q = (111) and
T = 50 mK showing the spin gap (blue line) at 43µeV. (d) Evolution of the spin gap and of the magnetic moment in model A as a function of
temperature. The saturated moment is 3.7µ B while TN = 2.1 K (at the mean-�eld level).
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TABLE I. Anisotropic exchange parameters. Units are in
10Š2 meV. Positive values correspond to AF interactions.

Coupling Model A Model B Ref. [8]

J±± 6.1 (± 0.1) 4.3 (± 0.1) 4.2 (± 0.5)
J± 7.8 (± 0.1) 6.0 (± 0.1) 6.5 (± 0.75)
Jz± 1.2 (± 0.1) Š1.5 (± 0.1) Š0.88 (± 1.5)
Jzz Š1.2 (± 0.1) Š2.2 (± 0.1) Š2.5 (± 1.8)

experimental data [31]. With these exchange parameters, the
spin gap is evaluated with the RPA at� RPA

G � 15µeV, a value
smaller than� exp

G , but of the correct order of magnitude.
Discussion. It is instructive to compare our results [Eq. (2)]

with those found using the pseudospin 1/ 2 approach (model B)
[8]. The corresponding anisotropic exchange Hamiltonian is
described in detail in Ref. [8] and is based on the anisotropic
couplings (J±± ,J± ,Jz± ,Jzz) acting between pseudospin 1/ 2
components written in their local basis. The calculation of the
dynamical structure factor for this model was performed within
the Holstein-Primakov approximation, using theSPINWAVE
software developed at the LLB [35]. Following the same �tting
procedure as above, a set of parameters is obtained which
largely con�rm the results of Ref. [8] (see TableI). The most
striking point is that models A and B lead to very similar
S( Q,� ). This is due to the fact that both models adopt a
predominant effective Hamiltonian with bilinear couplings in
terms of pseudospin 1/ 2 operators when projected in the CEF
ground doublet [36]. Speci�cally, there is a relationship [26]
between the two sets of anisotropic exchange couplings based
on theg� and gz Land́e factors deduced from the ground-
state doublet wave functions [31]. Table I, which allows
us to compareKa,b,c,4 transformed in the (J±± ,J± ,Jz± ,Jzz)
language with the values determined from model B and from
Ref. [8], shows that the sets of values are similar whether
determined from either model. Further, owing to the ObD
mechanism, model B leads to a spin gap� G= 21 µeV
[8], a value of the same order of magnitude as the one
(� RPA

G = 15µeV) obtained in model A.
While the maps in Fig.2 demonstrate an overall agreement

with experiment, some discrepancies are observed nonethe-
less, which equally affect models A and B. The most important
difference concerns the acoustic-like mode stemming from
(0,0,2), which seems to disperse continuously up to 0.45 meV
in the neutron data. Within the experimental uncertainty, there
is no gap opening when this branch crosses the optical one
[see the arrows in Fig.2(a), left and right columns of the

H = 0 panel]. Such a gap opening occurs in the calculations,
separating the acoustic branch from a higher energy optical
branch. Furthermore, both models predict two well-separated
modes at the zone centersQ = (1,1,1), (2,2,0), and (0,0,2) at
about 0.45 and 0.5 meV, whereas a single one is observed in
experiment [middle column of theH = 0 panel in Fig.2(a)].
More elaborate models are probably necessary to explain these
features, taking into account the long-range part of the dipolar
interaction or more complex coupling terms than bilinear
ones.

Reference [24] reports the evolution of the spin wave gap
as a function of temperature, and ascertains that it varies as
the square of the� 2 order parameter. The gap calculated in
the framework of model A shows instead a linear evolution
with the order parameter [see Fig.2(d)]. The difference
between the linear and squared order variations is most
pronounced in a narrow temperature range spanningTN to
0.6× TN . Unfortunately, in this temperature range, we believe
that the experimental uncertainty in Ref. [24] is too large to
allow one to discriminate between the two behaviors. Further
experiments are planned to shed light on this issue.

Conclusion.To conclude, the present study shows that
the molecular �eld induced admixture between CEF levels
generates an effective magnetic anisotropy as a plausible
mechanism [25] for an energetic selection of the� 2 state.
The proposed model captures a number of key features of
the inelastic neutron scattering data, including the opening
of a spin gap. Its order of magnitude shows that the pro-
posed mechanism appears as ef�cient as the ObD scenario,
questioning the completeness of the projected pseudospin 1/ 2
model [7–10] as a minimal model of Er2Ti2O7. Our study
raises the question of whether cooperating quantum [7–9]
and thermal [10] order by disorder is the sole or even the
principal mechanism for the selection of� 2 in this material,
and whether its advocacy as a rare example of ObD [7–10,12]
will stand the test of time. On a more positive note, it seems
plausible that quantum �uctuationsandanisotropy induced by
CEF admixing cooperate to select� 2 in Er2Ti2O7. Conversely,
one might ask whether theircompetitionmight be responsible
in part for some of the perplexing properties of Er2Sn2O7 [26].
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