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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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PACS. 47.20 - Hydrodynamic stability and instability. 
PACS. 47.25 - Turbulent flows, convection, and heat transfer. 

Abstract. - Rayleigh-BBnard convection is studied in a rectangular geometry with a spatial 
forcing induced in one direction by electric wires. When using fluids of relatively large Prandtl 
numbers, this forcing allows the existence of a perfect one-dimensional pattern until the onset of 
bimodal convection. The transition to bidimensional convection is studied for increasing 
Rayleigh number and reveals the existence of different spatio-temporal regimes depending on 
the value of the forcing. At the onset of the transition, a stationary pattern is observed for weak 
forcing, while travelling waves are evidenced for strong forcing. Both behaviours give place to 
collective oscillations at higher Rayleigh number. 

In the past few years, many studies both experimental and theoretical have been devoted 
to the problem of the evolution toward turbulent states of convective systems with large 
aspect ratios [l-41. However, these systems exhibit defects and display imperfect patterns 
when the Rayleigh number is increased above the onset of convection. The resulting spatio- 
temporal regimes are generally very complex and difficult to analyse, except in some 
particular cases (see, e.g., [5,6]). On the other hand, the study of one-dimensional periodic 
systems has recently provided a new approach to the problem of transition to turbulence in 
weakly confined systems. In these systems, one dimension is larger than the others so that 
the physical quantities only depend on one space parameter plus time. Related experiments 
involving Rayleigh-B6nard slot convection [7] and theoretical studies of partial differential 
equations [8] and coupled map chains [9,10] have revealed a transition to spatio-temporal 
chaos through spatio-temporal intermittency. In order to increase the number of space 
parameters while keeping a simple spatial structure, interest has also concentrated on 
the dynamical regimes of two-dimensional (2D) periodic patterns which destabilize when 
a control parameter is varied. Experiments involving parametrically forced surface 
waves [ll],  convection in binary mixtures [12] and in nematic liquid crystals [131 have 
revealed a richness of pattern formation and dynamical behaviours. 

We present here an experimental study of Rayleigh-Benard convection in a rectangular 
geometry with a spatial forcing which allows the existence of a perfect 2D cellular pattern. 



EUROPHYSICS LETTERS 668 

We fist describe the experimental set-up and the data acquisition techniques. The different 
spatio-temporal regimes which are observed when the Rayleigh number Ra is increased 
above the threshold of bimodal convection are then described. We finally analyse and discuss 
these results. 

The experiment was performed in a rectangular cell filled with silicon oil of Prandtl 
number 30 at 293 K. The vertical side walls were made of plexiglass (d = 5.00 mm high), 
while the horizontal plates were made of glass to allow visualization of the convective 
structures. The rectangular cell had a longitudinal aspect ratio T,=L,ld=28 and a 
transverse aspect ratio I', = L,/d = 14. The temperature difference across the fluid layer 
was kept constant to within 0.01 K by means of circulating thermal regulated water. After 
each temperature increase, dynamical equilibrium was awaited for as long as 24 hours up to 
48 hours before each new set of measurement. This time is to be compared with the 
horizontal diffusion time (zH = LE/K= 20 h, with K the thermal diffusivity). 

The spatial forcing was achieved by electric wires regularly disposed parallel to the small 
side of the cell (y-axis) and near the horizontal hot plate (cf. fig. 1). The distance between 
them was fixed to e = 2 cm = 2A,, with A, the critical wavelength, at  the onset of convection 
(Ra = Ra,). This gap was chosen because it corresponds to the natural wavelength of the 
system at the threshold of bimodal convection (Ra = RaII), when locally measured in the 
absence of forcing. Experiments realized with a gap e = A, have indeed revealed a mismatch 
between the forcing and the preferred pattern leading to spatial defects [14]. The tension U, 
applied to the wires, and thus the forcing, could be varied. 

The convective structures were visualized by shadowgraphic imaging. A parallel light 
beam crossed the cell vertically through the horizontal glass plates. The beam deflection was 
thus integrated along the cell depth and a top view of the convective pattern was obtained 
(cf. fig. 3). The spatio-temporal evolution of the convective pattern was recorded using a 
video camera. The image was digitized in a matrix of 512 x 512 pixels with a grey scale of 256 
levels (see ref. [7] for details). The data acquisition was generally performed along a line of 
512 pixels parallel to the y-axis and the acquisition frequency was varied according to the 
natural frequency of the system. 
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Fig. 1. - Qualitative sketch of the experimental apparatus; the fluid is inserted between plexiglass 
walls and the forcing is achieved by the electric wires, parallel to the small side of the container. 

Fig. 2. - Stability diagram of the convective state as a function of c and U,; 1DS stands for a one- 
dimensional stationary pattern (diamonds), 2DS for a two-dimensional stationary pattern (crosses), 
2DTW for travelling waves (open squares) and 2DC0 for collective oscillations (triangles); mixed 
states are represented by dark squares; full lines and dashed lines correspond, respectively, to perfect 
or imperfect transitions. 
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The transition from one-dimensional (1D) convection above Ra, to two-dimensional (2D) 
convection above RaII is studied as a function of the two control parameters U. and 
E = (Ra - RaJRa,. The results are reported on the stability diagram of fig. 2. Bimodal 
convection appears under the form of second rolls, which start to grow at Ra = RaII and are 
oriented at  right angles with the basic roll pattern. This phenomenon is caused by the 
instability of the thermal boundary layers and can only be observed in fluids with a 
relatively large Prandtl number (see ref. [l] for details). First of all, in the absence of spatial 
forcing (Uo = 0) ,  the 1D convective structure displays defects and instabilities such as the 
cross-roll and the skewed-varicose instability before the threshold of 2D convection. The 
transition to bimodal convection occurs for E = 14 (the exact value depends on the local 
wavelength) but the pattern is inhomogeneous and unstable. These observations are in 
agreement with the results of Busse [l] and Krishnamurti [2] for the corresponding Prandtl 
number. As E is increased further, the two-dimensional pattern destabilizes and spokes are 
observed (cf. ref. [l]). In fact, even when U. = 0, the electric wires slightly force the pattern 
along the x-axis and the destabilization first occurs along the y-axis (cf. fig. 3a)). 

Fig. 3. - Shadowgraphic pictures of the convective structure; a) U0 = 0 V and E = 25, b) U0 = 5 V and 
E = 25. 

On the contrary, the presence of forcing (Uo # 0 V) allows the existence of a stable and 
stationary one-dimensional pattern (domain labelled by 1DS in fig. 2) until the onset of 
bimodal convection E = qI. The wavelength A, of this first set of rolls is fixed by the electric 
wires and does not change with E ,  at least until E = 35 for U. = 5 V (A, = 2A,). A similar result 
can be obtained, but only near the onset of convection, by using electric wires at  the lateral 
boundaries [XI. For E > E ~ ~ ,  a second set of rolls appears and a quasi-perfect 2D pattern is 
observed (cf. fig. 3b)) but its temporal evolution strongly depends on the value of the 
forcing. As is shown on the stability diagram of fig. 2, a stationary pattern is observed for a 
weak forcing (Uo < 6 V, domain labelled by 2DS), while travelling waves are evidenced for a 
strong forcing (Uo > 6 V, domain labelled by 2DTW). However, in both cases, the pattern is 
stable over periods of several horizontal diffusion times zH and no defects are observed. The 
threshold of bimodal convection sII slightly increases with the forcing Uo, whereas the 
wavelength A, of the second set of rolls, which are parallel to the large side of the cell (x- 
axis), decreases when U. or E increases (A, = 0.78AC for U. = 4 V and E = 20). The transition 
from 1DS to 2DS or 2DTW is well defined and no hysteresis has been observed. When E is 
increased further, both behaviours give place to collective oscillations of the second set of 
rolls (domain labelled by 2DCO). However, the transition from 2DS or 2DTW to 2DC0 is 
imperfect and hysteretic, and mixed states of two different dynamical regimes can be 
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observed. In the following, we describe the different spatio-temporal regimes that are 
observed, depending on the forcing. 

In the case of a weak forcing and above cII, the 2D pattern is first stationary for 
cII < E < €111 and then displays a collective oscillating mode for E > qII. The phase of the rolls 
of the second set oscillates along the direction of the first set of rolls (y-axis) around a mean 
position with a maximum amplitude A,/3. Hot streams and cold streams oscillate in phase 
opposition and the frequencyfis the same in all the container. This frequency slightly 
increases with E as  EO.^ (f = 0.03 Hz, i.e. T = l/f= 0.08d2/~ for E = 26 and U. = 5 V). The 
values of the oscillation frequencies f are in agreement with the results obtained by Busse 
and Clever [l] and Krishnamurti [2], who have also observed an increase offwith E ,  however 
with a different exponent (f-P). This regime is represented on the spatio-temporal 
diagram of fig. 4a). The data acquisition has been performed over 512 pixels along a vertical 
line parallel to the y-axis, between two electric wires and near a cold stream of the first set 
of rolls. Thus, only the cold streams (bright lines) of the second set of oscillating rolls can be 
seen in fig. 4a), but the behaviour of the hot streams is similar. A phase delay can be noticed 
between the middle of the container and the edges. The behaviour is the same between each 
couple of electric wires and so there is no x-dependence in the amplitude of the oscillations. 
Only a phase delay has been observed along the x-axis. This regime is similar to the optical 
mode which had been observed in a one-dimensional chain of convective rolls [16]. However, 
the threshold qII is not so well defined here because of hysteresis and inhomogeneous 
oscillating regimes can be observed. In fact, the amplitude of oscillation depends on E and on 
the local wavelength A,. The appearance of a new pair of rolls in the y-direction, e.g. when E 

is increased, can locally stop the oscillations [17]. Such a behaviour can be seen in fig. 2 for 
Uo=4V: when E is varied from ~ = 2 7  to ~ = 2 8 ,  the 2DC0 regime (represented by a 
triangle) corresponding to A, = 0.78Ac is replaced by a stationary regime (represented by a 
cross) corresponding to A, = 0.70Ac. On the contrary, a 2DC0 regime obtained for U. = 5 V 
by increasing E up to 30 can remain stable down to E = 27 when E is decreased. 

Fig. 4. - Space-times evolution of the convective pattern; spatial digitization is made over 512 pixels 
along a vertical line parallel to an electric wire and the light intensity is plotted using a grey scale with 
256 levels. "he total observation time is 512 seconds; a) 2DCO regime, b)  ZDTW regime, c )  mixed 
state. 
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In the case of a strong forcing and for E > eII, bimodal convection appears as a second set 
of rolls which propagate along the first set, parallel to the electric wires. More precisely, this 
regime consists of two waves coming from the large sides of the container (sources) and 
going to the centre (sink) as is shown in fig. 4b). The sink is situated near the centre when 
the two waves the same amplitude but can move near one edge (e.g., the right edge) when 
the amplitude of one wave (the left wave) is greater than the other. This regime is 
homogeneous in all the container and the phase velocity w of these waves slightly increases 
with E but does not decrease to zero near the threshold. The corresponding frequency is 
similar to that observed for the oscillating regime at the same E value, except for a small 
increase due to Uo. The threshold qI is well-defined and no hysteretic phenomenon has been 
observed. On the contrary, when E is increasing, the transition between 2DTW and 2DC0 is 
complex and mixed states showing simultaneously both propagation and oscillation can be 
present (cf. fig. 4c)). The same phenomenon occurs when U, is varied and E kept constant 
along this transition line. 

In both cases, only collective oscillations were observed above ~ = 3 5 .  The dynamical 
behaviour then becomes more complex for E > 40. The convective structure displays 
intermittent oscillations, whose amplitude is a function of space and time, before showing 
spokes structures and finally entering spatio-temporal chaos. 

This study shows that Rayleigh-Bknard convection in a rectangular geometry with a 
spatial forcing allows the existence of perfect and stable 1D and 2D periodic patterns. The 
similarity between the structure of bimodal convection and a 2D crystal lattice is striking 
and leads to study its stability ws. the two control parameters. New spatio-temporal regimes 
have been evidenced. The oscillating mode, which corresponds to a phase oscillation, can be 
compared with the regime observed by Busse and Whitehead [l], though their experimental 
procedure is different and only allows the existence of transients. In fact, the patterns 
studied in ref. [ 11 are created by controlled initial conditions (illumination of a grid over in an 
otherwise normal convection container) and are not stable over long time periods. The 
oscillating bimodal cells thus cannot be generated in a strictly homogeneous pattern. Busse 
and Clever have performed a stability analysis of the fully 3D nonlinear problem of bimodal 
convection [l]. Their numerical results explain the collective oscillation of the bimodal cells 
in terms of an oscillatory instability and the destabilization of the bimodal pattern to spokes 
in terms of a knot instability. In the case of a weak forcing, our experimental results seem to 
agree, at least qualitatively, with this approach. However, the frequencies obtained in their 
calculations (for a Prandtl number 7) are inferior to our experimental values. 

The results concerning the propagation of convective rolls are to our knowledge unknown 
in Rayleigh-Bhard convection with pure fluids at high Prandtl numbers. They remind us of 
the results obtained in the study of binary fluid mixtures [18] and oscillatory convection in 
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Fig. 5. - Wave amplitude profiles A corresponding to the travelling-wave state of fig. 4b). 
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low Prandtl number fluids [19], though the physical mechanism is different. In fact, this 
regime can be interpreted within the frame of amplitude equations and work is currently 
under progress in this direction [17]. By means of complex demodulation techniques (cf. 
ref. [19]), we have measured the amplitude profiles of the waves observed in the different 
spatio-temporal regimes. Figure 5 displays the profiles of the left-going and right-going 
waves corresponding to the travelling waves shown in fig. 4b). The amplitude of the left- 
going wave is large in the left part of the y-axis (source on the left) and decreases down to 
the sink after which it is dominated by the right-going wave. A phenomenological model 
based on two coupled Swift-Hohenberg equations is also being developed and the first 
results look promising [20]. However, the exact role of a local forcing on convection is still 
unknown and more theoretical work is necessary to explain, for instance, the propagations 
of rolls. 

In conclusion, 2D forced convection exhibits a rich variety of spatial and dynamical 
behaviours. It shows both stationary and propagative phenomena at the onset of bimodal 
convection, depending on the values of the control parameters. The possibility to have a 
perfect 2D periodic oscillating pattern seems also very interesting to study the transition to 
spatio-temporal chaos. 

* * *  
We wish to acknowledge G. BALZER, P. BERGE, V. CROQUETTE, M. DUBOIS, and C. 

PEREZ-GARCIA for fruitful discussions, and P. HEDE and B. OZENDA for their technical 
assistance. 

REFERENCES 

[l] BUSSE F. H. and WHITEHEAD J. A., J. Fluid Mech., 66 (1974) 67; BUSSE F. H. and CLEVER R. 
M., J. Fluid Mech., 91 (1979) 319; CLEVER R. M. and BUSSE F. H., J. Fluid Mech., 198 (1989) 
345. 

[2] KRISHNAMURTI R. ,  J. Fluid Mech., 42 (1970) 295. 
[3] ALHERS G. and BEHRINGER R. P., Phys. Rev. Lett., 40 (1978) 712. 
[4] PWHEAU A., CROQUETTE V. and LEGAL P., Phys. Rev. Lett., 55 (1985) 1094. 
[5] CROSS M. C. and NEWELL A. C., Physica D,  10 (1984) 299. 
[6] PWHEAU A., J. Phys. (Paris), 49 (1988) 1127. 
[7] DAVIAUD F., DUBOIS M. and BERGE P., Europhys. Lett., 9 (1989) 441; DAVIAUD F., BONETTI 

[8] CHATE H. and MANNEVILLE P., Phys. Rev. Lett., 58 (1988) 112. 
[91 JCANEKO K., Physica D,  34 (1989) 1. 

M. and DUBOIS M., Phys. Rev. A ,  42 (1990) 3388. 

[lo] CHATE H. and MANNEVILLE P., Physica D,  32 (1988) 409. 
1113 TRUFFIARO N., RAMSHANKAR R. and GOLLUB J. P., Phys. Rev. Lett., 62 (1989) 422; 

[121 STEINBERG V., MOSES E. and FINEBERG J., Nucl. Phys. E ,  2 (1987) 109. 
CILIBERTO S., DOUADY S. and FAUVE S., Europhys. Lett., 15 (1991) 23. 

[13] REHBERG I., RASENAT s., FINEBERG J., DE LA TORRE JUAREZ M. and STEINBERG v., Phys. 

[141 BALZER G., private communication; for an analysis of spatial resonant forcing in convection, see, 

[151 CROQUETTE V., Contemp. Phys., 30 (1989) 113. 
[MI DUBOIS M., DASILVA R., DAVIAUD F., BERGE P. and PETROV A., Europhys. Lett., 8 (1989) 

[17] DAVIAUD F., to be published. 
[181 KOLODNER P. and SURKO C. M., Phys. Rev. Lett., 61 (1988) 842. 
[191 CROQUETTE V. and WILLIAMS H. L., Physica D,  37 (1989) 300. 
1203 BESTEHORN M. and PEREZ-GARCIA C., Europhys. Lett., 16 (1991) 225. 

Rev. Lett., 61 (1988) 2449. 

e.g., KELLY R. E. and PAL D., J. Fluid Mech., 86 (1978) 433. 

135. 




