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Various simple structures have been proposed for modeling the transition to time dependence of convective
patterns in extended geometries. In order to further question their relevance to the dynamics of complex
structurestextures, we introduce a change of boundary conditions from both an experimental and a theoreti-
cal side. It consists in keeping the same roll structure but in separating the boundaries of the mean ows from
those of the roll "ows. This induces negligible effects on symmetric structtstaight rolls and fodi but
dramatic changes on asymmetric orlegus pairs and texturgsespecially regarding the onset of time depen-
dence. Both kinds of sensitivity to this change of boundary conditions are recovered from the Cross-Newell
equations. They reveal a correlation between symmetry and dynamics that prevents symmetric structures from
modeling asymmetric ones. On the opposite side, they point to focus pairs as a plausible prototype of the
mechanisms of time-dependence at work in textu@$063-651X96103912-8¢

PACS numbes!: 47.27.Cn, 47.20.Lz, 47.20.Bp

I. INTRODUCTION the following reasons. First, in moderate aspect ratios, ex-
periments show that the symmetry breaking undergone by
Owing to nonlinear interactions between spatial modesfoci yields steady states whose routes to time dependence
extended out-of-equilibrium systems provide fascinating bugictually display features similar to those observed in focus
complex dynamics, still far from being understood. This hagPairs: wavelength gradients and small-scale instabil@és
motivated a great deal of effort to model the interplay be-1%# Second, both foci and focus pairs exhibit at any Prandtl
tween their spatial and dynamical featu@ The present number almost the same onsets for time dependence, at val-
work aims at improving the selection of such models in aU€S Similar to those displayed by textu@9+24 From the
well-controlled dissipative system: the Rayleig%ed experimental side, both the qualitative and quantitative fea-

thermoconvection in moderate aspect ratio containers anres of these F“Ode' structures are thus actually so close that
small Prandtl number “uids it is not possible to decide which of them captures the

In extended containers and close to the convective thresrmeI(r:1h?)?(Ijserpioreifnporgilsl?h?rstti)gurgfbrir:)?j\g?gtructures and
old, the convective structures generated without speci®c ir{ﬁeir comparison pwith textures )\/Ne propose to modify the
duction usually involve spatially disordered rolls showingb ! b

d def H b def oundary conditions applied to convective structures. The
curvature and defectgt However, in between defects, change consists in separating the boundaries relevant to the

these so—c_alled textures display much more ordered substru&imary roll "ows from those relevant to the secondary mean
tures. Their geometry, much simpler than those of texturesyys py translating the latter into the conductive domain.
are close to those displayed by the following model struc-rhjs applied to focus pairs, has already revealed a large
tures: straight rolls, axisymmetrical rolisereafter called fo-  jnhibition of time dependence through an increase of their
cud, two patches of curved rolls facing each otHeereafter  onset by a factor of ter@5# The purpose of the present
called focus pal;, and, in large aspect ratio containers, spiralstudy consists in generalizing this change of con®guration to
rolls. all model structures and to textures.

In moderately large containers, the behavior of model Two different classes of behaviors are found depending
structures has been satisfactorily understood with a reasoln the structure: one involving a negligible change of the
able agreement between theories and experin@at¥t Ac-  onset of time dependence and the other a spectacularly large
cording to theories, important qualitative differences be-one. The ®rst class includes straight rolls and foci; the latter
tween model structures are in order however: in®nite straightontains focus pairs and textures. These quite different sen-
rolls provide large scale instabilitie@# and no intrinsic  sitivities to a change of boundary conditions show that foci
wavelength selection®,6# axisymmetrical rolls provide and focus pairs are not physically equivalent. Furthermore,
both an intrinsic selection mechanis@84and a large-scale for the present moderate aspect ratio container and small
instability breaking their rotational symmeti®,10% focus Prandtl number, texture behaviors appear compatible with a
pairs provide wavelength gradients and small-scale instabilimodelization by focus pairs but incompatible with a model-
ties yielding the nucleation of propagating defe@$+13¢ ization by foci.

Owing to these qualitative distinctions, one might expect The respective origins of the two different classes are
that the identi®cation of the structure suitably modeling texidenti®ed by analytically studying model structures. They re-
tures should be an easy task. This is not the case however faeal an essential role of asymmetric spatial distortions, what-
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ever their magnitude, in this convective system.

The paper is organized as follows. Section Il introduces
the so-called “open containers" in which the boundary con-
ditions are implemented. The experimental results and the
theoretical analysis are presented in Secs. Ill and IV, respec-
tively. Their consequences are drawn in Sec. V and the con-
clusion of the study is reported in Sec. VI.

II. OPEN CONTAINERS

The principle of open containers is based on the second-
ary mean ows generated by convection in extended geom-
etries. We recall their relevance to pattern dynamics in Sec.
Il A before addressing the de®nition and the main features of
open containers.

A. Mean ows

Apart from other nonvariational effects, an important phe-
nomenon breaking variationality has been pointed out by
Siggia and Zippelius on the Boussinesq equati@e# It
consists of mean "ows spontaneously produced, at ®nite
Prandtl number, by unbalanced Reynolds stresses, the roll
“ows playing the role of anisotropic “uctuations.

Usually, these “ows result from roll distortion and have a
scale large compared to the roll width. They have been evi-
denced by tracer advection on asymmetric f@bs# They
interact with rolls by an advection forcing that may end in
new pattern instabilitieg29,9+ 1% wave-number gradients
@8,12#, and time dependen@®=13¢ They also induce non-
locality, ®rst because, as any incompressible ow, they are
nonlocally related to their sources and, second, because their
advection forcing generates nonlocal interactions between
rolls. All the theories proposed for model structures actually FIG. 1. Sketch of open containersl The boundaries of roll

rely on them@=13,2% “ow and mean “ow differ; three different domains may be de®ned
according to the vanishing of convection, mean “ow vortidity or
B. De®nition of open containers none,~b! @¥ The conductive domain is forced by inserting a thin

. . _ . sheet that reduces the cell depth with minor consequences for the
Since both convective ows and mean ows are involved pean ow. When the sheet is in close contact with some dis-

in convective structures, it makes sense dealing with theifance from the bottom plate, rolls tangentiaiormal to boundaries
respective boundaries. We denote by closed" containergye stapilized.

the usual containers where the boundaries for mean ows

and for convective “ows are located at the same place. The

are simply achieved by enclosing the convective domain by ; i ) i
nolds stresses, and thus vanishes in the conductive domain.

rigid wall. > ) ) g
In contrast, we de®ne as ““open" containers the containMean ows are therefore rotational in the inner zone and

ers in which these boundaries are distant from each othePOtential in the outer zon@ig. 1-al# Their nature within the

Since convection is a source of mean ow at ®nite Prandtinterface is addressed in Sec. IV A 2.

number, the only achievable con®guration in practice corre-

sponds to a mean “ow boundary located outside the convec- C. Realization

tive domain. This gives rise to three different regions: an

inner convective zone, an outer conductive zone, and an in- Realizing open containers requires annihilating the roll

terface in-betweei@®ig. 1-al# “ow in an outer zone while preserving the mean ow. Tak-
The main difference between these domains traces back tog advantage of the sensitivity of the Rayleigh number Ra

the potential or rotational nature of mean “ows. Since theto the cell depthd, Rg d*, and of our proximity to the con-

self-advection of mean “ows is negligiblsee Appendix A  vective threshold, this selective action is obtained by slightly

the mean vertical vorticity only results from a balance be-reducingd in a de®nite part of the cell. The small channel

tween diffusion and forcing by mean Reynolds stressesieduction then produces subcritical conditions suppressing

However, in both the convective and the conductive do-convection but yields minor modi®cations on mean ~ows

mains, the horizontal scale of variations of the relevant ®eldssee Appendix D In this con®guration, the cell domain thus

is so large compared to the cell depth that the vertical diffu-splits into a convective domain of unreduced degitand a

sion dominates the horizontal diffusion. Mean vertical vor-conductive domain of reduced dept8 The roll "ow

icity is then directly linked, at each location, to mean Rey-
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boundary corresponds to the limit of the convective domairigibly perturbed: convective zone radilRb 12.5d, cell ra-

and the mean “ow boundary is located, as usual, at the lateralius R& 1.1R, conductive zone extensidR& R5 1.25d.

walls of the cell@ig. 1-al# The only remaining in uence could therefore only arise from
In practice, the reduction of the cell depth has beerthermics. However, as expected, no modi®cation, either

achieved by inserting a thin sheet of cardboard at some de@ualitative or quantitative, has been noticed with respect to a

nite places of a normal ce®igs. Hb! and ke# Its position ~ closed circular container of same aspect rétio

with respect to the bottom plate determines the roll boundary

condition: in the case of a close conta@g. 1-b'# rolls E. Roll boundary condition

tangential to the sheet boundary are expected; on the oppo- Although the sheet has a passive role with respect to pat-
site case®ig. 1-¢!# the usual situation corresponding to rolls tern behavior, it actually provides a new roll boundary con-
perpendicular to the boundary is recovered. dition that we clarify in the following. When the sheet, what-
When contact between sheet and plate is avoided, thever its size, is placed in close contact with the bottom plate,
sheet is placed at a distande of the bottom plate. Neglect- it enhances the inhomogeneity of thermal conductivity and
ing its thickness with respect to the cell demthwe note thus induces horizontal thermal gradients. Rolls are then ex-
d,5 d2 d, its distance to the top plate. We chodgb d/4  pected to end tangentially to the boundaries, as con®rmed by
andd,5 3d/4 in order to provide a large depth available to experiment in Sec. Il C. B
mean “ows. Since the vertical temperature gradient is uni- When the sheet is placed in between the uid layer, it
form, the threshold of convection is increased by a factoimposes an additional rigid boundary condition at a quarter
(d/d,!*5 ~4/3* in the conductive domain compared to its _of the cell depth. Since the fundamental mode of convection
value in the convective one. Moreover, denoting by Ra thdnvolves nodes at the upper and lower plates only, it cannot
Rayleigh number and Rats value at onset of convection, satisfy this cpndltlon ar_1d_ therefore vanishes at the _sheet
the reduced Rayleigh numbers in the convective domaifoundary, as if it was a rigid wall. The same con®guration as
«&RRZRa!/Ra, and in the conductive one that observed in closed containers, i.e., rolls normal to
«& -Ra® Rag/Ra@are related by8l 15 ~d,/d!* ~d 11. No ~ boundaries is then expected. This is actually con®rmed by
rolls can thus appear in the conductive domain udti.16.  direct observations, as shown below.
In addition, for higher values of, the roll amplitudeA8in
the conductive domain is weakened compared to its vAlue . EXPERIMENT
in the convective domain in a ratib@A5 («8«!*2 smaller

than 0.3 untiks 3. The purpose of the following series of experiments con-

sists in comparing, at low Prandtl number and for moderate
aspect ratios, the behavior of convective structures in closed
and open containers. Each of the following structures,

Since our study aims at clarifying intrinsic mechanisms ofstraight rolls, foci, focus pairs, and textures, have thus been
pattern dynamics, one must ®rst ensure that the trick used sdudied in both kinds of containers. For the sake of a mean-
realize open containers does not modify pattern behaviors fdngful comparison, closed and open containers have been
a different cause than a change of mean “ow boundary conmade within the same experimental setup and, for each struc-
ditions. ture, with the same convective domain geometry.

Apart from the expected hydrodynamical in"uence, the
sheet could modify convection by a thermal mean. Espe-
cially, owing to the large thermal conductivity of cardboard
compared to the convective "uid, here a gas, the heat current The setup has already been described in detail elsewhere
“owing within the plexiglass sidewall could be derived @1,1% It is designed so as to achieve and observe convec-
through the sheet well inside the cell and then modify tem+ion in argon gas at room temperature and at a Prandtl num-
perature ®elds even at the border of the convective domaiber of 0.71.

To prevent this effect, the cardboard sheet has not been at- The top and bottom horizontal plates are made of sapphire
tached to the sidewalls so as to cut the heat ow comingand copper, respectively. The top plate is thermally regulated
from it. In addition, its thicknesg’was reduced to a small by water circulation and the bottom plate by an electrical
fraction of the cell depthdb d/8! so as to minimize horizon- heater. The cell is made of Plexiglass and the sheet is made
tal heat transport. Its length was then suf®ciently large of cardboard. Compared to argon gad5 1.873 10°*
compared to its thicknesd/d 100 for ensuring a good W cn?!K?2?!at 30 bars and 300Kthe thermal conductivity
thermalization with the gas and thus a large reduction of thef materials are respectively32L0* ~coppet, 23 10° ~sap-
thermal perturbation brought about by the sidewalls. Alto-phire, and 10-Plexiglass and cardbodrtimes larger.

gether, these conditions have likely produced less thermal Pattern visualization is achieved by the shadowgraph
perturbations than in the weakly forcing con®guration studmethod. Owing to the low density of argon gas at room
ied by Ahlers and co-workers in which a thicke® d/3! and  temperature, increasing the temperature gradients and the op-
narrower~/d 10 spacer tab attached to the sidewall wastical properties of the medium are necessary for enhancing
used @9 the contrast of the images. This is obtained by raising the

In order to experimentally control the in uence of thermal pressure to 30 bars, following a previously described method
perturbations on dynamics, we have studied the route to tim@&?1,1 7%
dependence in a circular open container displaying a conduc- The cell depth is 1.6 mm and the critical temperature
tive zone so narrow that hydrodynamics could only be negdifference is 3.5 EC. Its uniformity is ensured by three cali-

D. Validation

A. Experimental setup
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brated spacers within an accuracy of?#0nm. Measure- rectangle, two thin cardboard strips in close contact with the
ments of pressure reveal its stability at better than 1%. Théottom plate. Then straight rolls parallel to the smallest sides
temperature difference between the top and bottom plates &f the container are actually induced close to the convective
measured by a series of thermocouples. It is electronicallthreshold.
regulated to within 162 EC. In both open and closed containers, straight rolls show the
Images of the convective layer are made on a chargedsameroute to time dependence. It is displayed in Fig. 2 in
coupled device camera by an afocal doublet of telescopehe case of open containers. The wave number is selected
quality lens. The contrast of the images is adjusted by vary@igs. 2a and 2¢!#but, as observed in a number of closed
ing the camera position and has been enhanced by imag®ntainers@4,17,2% its value changes by defect nucleation
processing. each time the skewed-varicose instability is encountered
Except in the study of straight rollsSec. Il B!, the ge- @®igs. 2b! and 2d# asymptotic states are then stationary
ometries of both the mean "ow boundaries and the roll "ow until an oscillatory motion of rolls induced by the oscillatory
boundaries have been taken to be circular. The former, whichnstability @#occurs at high values &f The only noticeable
corresponds to the cell boundary, displays an aspectiR&io difference regarding the kind of container is thus at most
~the ratio of its radius to the cell depth of R& 25. Theroll  quantitative, but, as shown in Fig-=e2, small enough to con-
“ow boundary is determined by the sheet boundary. Exceptclude: the route to time dependence of straight rolls is inde-
in a validation experimentSec. Il D, its aspect ratiR has  pendent of the mean “ow boundary condition.
been ®xed tR5 R25 12.5.
According to the thermal diffusivityk of argon~45 0.69 C. Foci
cn?*! at 30 bars and 300 K the vertical and horizontal
thermal diffusion times in the convective domains dte
5 d?/k5 3.7 s andt,5 R?d?/ k' 10 min. Since the present
experiments aim at studying intrinsic mechanisms of patter
dynamics, only asymptotic states observed beyond transie
decays have been considered. Following theoretical analysiz\g
@+#and observation@3# this has required waiting times of
at leastR?t,’ 25 h, unless limit cycles or stationary states
were reached. No hysteresis has been noticed on any of t
structures studied.

The open container is made with a cardboard sheet in-
volving a circular hole so as to ®t the geometry of foci. In
ﬁ)rder to generate a roll tangent to the bound@ig. 1-b!#

Eﬁne sheet is placed in close contact with the bottom plate.

e aspect ratios afe5 12.5 for the convective domain and
& 2R for the conductive one.

The closed container is achieved by taking a circular
exiglass cell ®lling the entire conductive domain
, r, R8 Then a thin cardboard strip is placed all along its
inner boundary in close contact with the bottom plate so as to
_ induce a circular roll there.
B. Straight rolls Experimental observations show a similar route to time

Outside defect cores, straight rolls may be considered asdependence in both closed and open contai@8# figs. 3
local approximation of textures as far as roll curvature isand 4: The focus singularity ®rst shifts asincreases, the
neglected. From this point of view, they stand as the mospattern being still stationar@®igs. 3al and 4al# The am-
natural candidate for modeling textur@ However, at low plitude of this off-centering is similar in both kinds of con-
Prandtl number, closed containers have revealed a large difainers, a bit larger in closed containers, howeveg. 5.
ference between the onset of time dependence of straight The ®rst dynamical event appears «&0.20 in both
rolls ~«' 0.5 and that of textures«' 0.1!. This is suf®cent closed and open containers and consists in defect nucleation
to conclude that straight rolls fail to capture the mechanismdy roll pinching atr’ 3R/4 @igs. 3¢! and 4b'# In both
of texture time dependend®0,21,29,3@ Although they are  con®gurations, two dislocations are generated and climb on a
disquali®ed for modeling textures, their behavior in opercircular roll, one on the left of the off-centering direction, the
containers is nonetheless interesting in understanding thether on the right. They thus rotate in opposite directions but
sensitivity of patterns to mean ow boundary conditions. Weeventually glide to the focus where they disappear, as illus-
thus report it below. trated in Figs. X!+34! for the open container and Figs.

The open container is made with a cardboard sheet ind-b!+4+! for the closed container. At this time, a roll pair
volving a rectangular hole so as to ®t the geometry ohas been lost. However, the focus singularity generates it
straight rolls. It delimits a convective domain of dimensionsback and allows the same scenario to resume. One thus ob-
253 19 in cell depth units. At the small sides of the rectangle tains a limit cycle, as already observed in containers with
the sheet is put in close contact with the bottom plate so as teimilar aspect ratio®1,18,1# An important difference be-
stabilize tangential rolls. At the large sides of the rectanglefween containers is in order however: whereas foci show
the sheet is put at some height above the bottom plate so @ermanent oscillations in closed containers as soon as
to induce normal rolls. By this way, all the roll boundary «5 0.20, they are able to restabilize in open containers in
conditions are compatible with straight rolls parallel to thebetween 0.28«< 0.25 @ig. 3b'#
small side of the rectangle. As expected, they give rise to a This periodic dynamics contrasts with that reported in
straight roll structure close to the convective threshold. smaller @5# or larger aspect ratiog9,32 where no limit

The closed container consists of a rectangular Plexiglassycles involving defect nucleation have been observed. In
cell ®lling the entire conductive domain and is in close con{articular, in the latter case, foci emit phase traveling waves
tact with the top and bottom plates. Rolls normal to allbut fail in reaching a stable state as soon as defects are nucle-
boundaries should then be induced. This tendency is howated: their center then moves towards the sidewalls where it
ever inhibited by placing, along the smallest sides of thedisappears, leaving a textured structure.
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I

Straight Rolls

15 2 25 3 35 4 45
k

(e)

FIG. 2. Instability of straight rolls in an open contain€;G,5 253 19. -a Stationary state«, 1.01,-b! skewed-varicose instability:
«5 1.01,~¢! stationary state: 1.01«, 1.75,~d! skewed-varicose instabilityg5 1.75,-€! stability diagrams in closed and open containers:
is the reduced Rayleigh number anthe wave number of straight rolls; the symbols M, E, SV, and OSC refer to the marginal, the Eckhaus,
the skewed-varicose, and the oscillatory stability curves.

A more accurate observation of the limit cycles revealsthe dynamics becomes more and more symmetric and the
that, in both containers, the motion of the two dislocations isperiod decreases to about 3 min, i.e., £,3 at «5 0.36.
not synchronous. Near the onset of the dynamics, the dislo- At this value of«, the limit cycles show a period doubling
cation which climbs clockwise moves quicker than the otheiin both kinds of containers: dislocations are still not synchro-
®@igs. 3d! and 4d'# and, in closed containers, even disap-nous but the quickest dislocation changes at each cycle, one
pears sooner at the foc@ig. 4-€'# the period is then about time that climbing clockwise, the other time that climbing
20 min, i.e., Z,,. As « increases, dislocations are nucleatedcounterclockwise. Labeling the clockwise directiorl ™
closer to the sidewallsr’ R! and are better synchronized: and the counterclockwise direction2™ the dynamics
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(b)

(d) (e) ®

FIG. 3. Instability of foci in an open containgR5 12.5,R& 25. ~al Stable focus¢, 0.20. An off-centering of the focus singularity is
noticeableb! Stationary state: 0.20«, 0.25,~¢!+~! Time-dependent focus: 0.2%. Notice the small asymmetry of defect climbing-fi.

may then be symbolized by the series of directions displayed Regarding the transition to time dependence, the only dif-

by the quickest dislocationd ,2 ,1 ,2,.... ference with respect to the kind of container is thus a resta-
A period-four regime is then observed &b 0.42. It is  bilization of foci in open containers un5 0.25. Since this

induced by the nucleation of another dislocation pair beforejelay is quite short, their route to time dependence may be

the previous pair has disappeared. Although both pairs argonsidered as nearly independent of the mean “ow boundary
simultaneously present for a while, their dislocations nevegondition.

collide, the slowest dislocation of the oldest pair reaching the
focus center before the quickest dislocation of the youngest D. Focus pairs
one. Their coupling, however, modi®es the dynamical se- .
quence, the quickest dislocation showing the same direction The open and closed containers are the same as those used
during two cycles before switching to the other direction.for_foc' _except that the sheet is placed at a quarter_of _the cell
This generates the following series of quickest dislocations€ight in order to allow rolls normal to boundarigsig.
4,1,2,2,1,1,.1. The states referring to the simultaneous 1 ¢'# The aspect ratio of the cell and of the convective do-
presence of consecutive pairs of dislocations may be identf'an are stillR8 2R andR5 12.5. The main geometry of
®ed by quoting the couples of their quickest dis-focus pairs is shown in Fig.-8! in the case of open contain-
locations. They then correspond to the series®'s: _ S
@-1!4212212,11-41!,.4#and thus to a period- _ E_xper_|ments reveal qualitative S|m|Iar|t|(_as but large quan-
four regime. titative dllfferences _between thg routes to t!me dependence of
We emphasize that the change from the period-two ref0CUS pairs according to the kind of container.
gime to the period-four regime does not correspond to a
modulation of the former regimel ,2,1,2,..! but to a
modi®cation of its switching period from one dynamical The observed route to time-dependence is the same as that
state~1 ! to its symmetric2!: 1,1,2,2,1,1,..!. This bi- reported in the literature@1,17,1% Focus pairs display
furcation should therefore not be confused with a usual pewave-number gradients and, especially, a roll compression
riod doubling. As for the similar bifurcations of focus pair on the line joining foci. The largest compression is reached
dynamics, its origin may trace back to symmetry breaking ofat the pattern center, on the central roll separating foci. Quite
the mean “ow con®guratio@3# near the onset of convection, &b 0.08, this roll becomes

1. Closed container
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(@)

FIG. 4. Instability of foci in a closed containeR5 12.5,R& R. ~al Stable focus¢, 0.20. An off-centering of the focus singularity is
noticeable,~b! Defect nucleationi«5 0.20, ~€!+-€! Defect evolution by climbing and glidingsf! Elimination of defects at the focus
singularity. Notice the large asymmetry of defect climbing-ih

unstable and shrinks, yielding the nucleation of a dislocation
pair. These defects climb and glide to the sidewalls where
they disappear, leading back to a defectless focus pair. As
this structure involves less rolls than the original focus pair,
all of them are less compressed and actually stable. This does
not imply steadiness, however. Instead, this focus pair dis-
plays a slow evolution at large scale increasing its compres-
sion until a new dislocation nucleation occurs. A new cycle
then repeats generating a spatiotemporal periodic dynamics.

Farther from onset, tilk5 0.45, a detailed study of the
dynamics@3# not undergone here, reveals bifurcations of
the limit cycle explained by successive symmetry breakings
of the mean "ow ®eld. A stationary state is then displayed in
between 0.45«, 0.66 before an aperiodic persistent dy-
namics occurs for 0.66«.

Quantitative evolutions of pattern distortion on the route
to time dependence are provided by local wave-number mea-
surements. Figure 7 displays those performed at the most and
of the pattern, and the reduced Rayleigh number. The evolution is least compressed points of steady focus pairs: the pattern
continuous from the onset of convection, in contradiction with theCenter and the end of the central roll, resfpeCt'VPTIY' _The wave
concept of spontaneous instability beyond some distance from th@umper at the pattern center grows unt|I_the vicinity of the
onset of convection. Black circles refer to closed containgts ( Stability boundary of in®nite straight rolls is reached. Then a

5 12.5) and open squares to open contain&s (2.5, RS 2R). local instability is triggered there together with the bifurca-
tion to time dependence.

FIG. 5. Measurement of the reduced off-centefdR of stable
foci before time dependencB. represents the distance between the
center of the smallest roll and the geometrical cerfRethe radius
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Cc

FIG. 6. Stationary patterns in open containers: focus pairg ¢! and texture ind!. R5 12.5,R& 25. & «5 0.03. A dislocation has
been nucleated by a localized Eckhaus instability near the boundary of the upper-right giariér0.40. Focus pair: rolls are still
perpendicular to the boundaries! 0.56 «, 0.60. Focus pair: one roll pair has been lost by localized instability and defect elimination.
0.74 «, 1.2. Stationary texture.

2. Open container 6~¢l#and is thus stationary. It contains one roll pair less than
We describe the route to time dependence in open corf® previous focus pair, however. _
tainers for increasing: Close to onsetk, 0.1, the roll cur- This second focus pair remains stationary uil0.74. It

vature is too weak for providing rolls normal to boundaries.then undergoes defect nucleation and restabilizes in a sta-
At «' 0.1, a dislocation spontaneously occurs by roll pinch-tionary pattern again. However, in contrast with the previous
ing at the boundary of the central ra@ig. 6-al# It remains ~ case, its geometry is more complex than a focus pair and
at this place until it reaches some slightly higher valuecof displays, as shown in Fig~@, several foci joined by grain
and then disappears by gliding to a focus. A steady focuboundaries. It remains stationary urtd 1.2.
pair is then displayed up to a surprisingly large value<of Above «5 1.2, no stationary states have been observed,
«5 0.56 @ig. 6Hl# despite very large waiting times of ordBft,, Figs. 9 and

At «5 0.56, it undergoes a defect nucleation at the patterd0l. The corresponding time-dependent states will be de-
center in a way similar to that displayed in a closed containescribed in Sec. Il E.
~Fig. 8. Especially, after elimination of defects at focus cen- Local wave numbers of steady focus pairs have been mea-
ters, the new focus pair hereto involves stable rolls. Howsured at three locations: the pattern cemtgr, the focik,
ever, in contrast to the behavior observed in closed contairand the boundary of the central rdd},. The corresponding
ers, it displays no evolution at a large scale. It has thuwalues are displayed tik5 0.74 on Fig. 7.
reached a small-scale equilibriumny roll is stablé as well The wave numbek, is quite close to the Eckhaus insta-
as a large-scale equilibriusthe roll patches are stedd@®@ig.  bility. This is consistent with the nucleation of a dislocation
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observations, its local stability is then restored.

3. Comparison between closed and open containers

In both kinds of containers, the route to time dependence
of focus pairs shows similar qualitative features, especially
roll compression and roll pinching. This suggests that the
mechanism for time dependence is presumably the same in
both cases. However, quantitative comparison of wave num-
bers points out that, although the wave-number band quickly
explodes in closed containers, it remains nearly constant in
open ones¥ig. 71. The main destabilizing factor of focus
pairs, roll compression, has thus been largely weakened by
opening the container. This results in a large delay of the
onset of persistent time dependergeas big as an order of
magnitude:«y5 0.74 in open containers instead of 0.08 in
closed containers.

E. Textures

The closed and open containers are designed so as to al-
low rolls normal to boundaries. They are thus the same as
those used for focus pairs. In either closed or open contain-
ers, textureg®igs. 6d!, 9, and 1&show the following im-

FIG. 7. Stability diagram of in®nite straight rolls at5.7, ~ portant properties: except for a few marginal ca@s# the
displaying the marginatM!, the EckhausE!, and the skewed- dynamics beyond transient decay is independent of the kind
varicose~SV! stability curves.« and k denote reduced Rayleigh of texture chosen as initial condition, of the way the onset of
numbers and wave numbers. We have plotted the local wave nunconvection is crosseglowly or suddenly, and more gener-
bers measured on focus pairs in closed and open containers. Blagly, on the history. This legitimizes the concept of a com-
squares correspond to the band of wave numbers in a closed comon route to time dependence for textures. Moreover, in
tainer. Open squares, crosses, and triangles correspond to the waygch kind of container, textures and focus pairs show the
numbers in an open container, at the pattern cekerthe focus  same route to time dependence: the same asymptotic states,
ki, and the boundary of the central réd}, respectively. The bold  the same onsets of time dependence, and the same events
line shows the maximal wave numbley, displayed by the solution  triggering dynamics by local instabilities and defect nucle-
of the Cross-Newell equ_atlons in open contalners,_ the viscous stresgion. Especially, we emphasize that textures show the same
of the annular sheet being taken into account. It is computed from, .t4cyar inhibition of time dependence in open containers
the relations20! and-21!, and-D1!+-D3! of Appendix D forp5 0, than focus pairs, whatever their initial condition
a5 2 P15 0.7,r5 2, anddb 1. As it should be reached at the pattern ' : L
Cen?er it should correspo‘rlld I _We now focus attention _to texture pehawors_ in open con-

' ¢ tainers. As in closed containe@3# their relaxation time to

asymptotic states is quite long, usually of the order of several
Rt,, except at bifurcation points where it varies in a large

at the boundary of the central roll fe¢ 0.1 @ig. 6-8l%# On  range: it is of the order of a few,, only at the transition

the other hand, the wave numbess. andk; show similar  between focus pairs® 0.56 but lasts as long aRf}, at the

values. Since their difference results from the phase advedransition to complex stationary structuress 0.74. This

tion by the mean "ow on the axis joining the pattern centersuggests that stationary attractors are weakly attracting in

to a focus, this indicates that mean ows display an ampli-phase space and are few in number, so that a long wandering

tude weaker than in a closed container and/or that thejs necessary to reach them.

change direction on this axis. Above «5 1.2, a persistent time dependence of textures is

At the transition between focus paitsb 0.56, the wave displayed in open containefkigs. 9 and 10 Two different
number at the pattern center lies slightly inside the instabilitytypes of dynamics may be distinguished, depending on the
domain of in®nite straight rolls with respect to the skewedscale of the destabilized spatial modes. Fret1.2 to
varicose instability+Fig. 7. Any other local wave number is «5 1.5, patterns are still in equilibrium at a large scale, but
stable however. This agrees with the observation of a singlaot at a small scale. They then show localized dynamical
local instability at the pattern center displaying a roll modu-events involving periodic cross-roll-like instabilities or
lation analogous to a skewed-varicose distortifig. 8. grain-boundary motions, but no evolution of the large-scale
The slight difference between the marginal stabilities ofgeometry~Fig. 9. Above «5 1.5, pattern equilibrium is de-
straight rolls and focus pairs is not surprising owing to thestroyed both at large and a small scale: large-scale erratic
®nite size of the container and the spatial inhomogeneity ofvolutions occur, together with defect nucleations, small-
the structure. scale instabilities, and rotating spirals reminiscent of those

Finally, as may be noticed in Fig. 7, the new focus pairrecently observed in larger aspect rat@s,34* +ig. 10.
displays a reduced wave-number band that ®ts entirely into We ®nally notice that, in any dynamical regime, transient
the stable domain of straight rolls. In agreement with ouror turbulent, a phenomenon speci®c to open containers is



362 A. POCHEAU AND F. DAVIAUD 55

FIG. 8. Transition between stationary focus pairs in open contairg8:56,R5 12.5,R8 25.-al Localized skewed-varicose instability
at the pattern centerb!, ~! Defect nucleation;d! +~f! Defect elimination at the foci.

displayed: focus singularities not only generate new rolls astructures, the focus pairs, involve a discrete symmetry since

in closed containers, but also sometimes absorb rolls. all substructures delimited by the central roll and the line
joining foci are superposable. Focusing attention here on
F. Conclusion continuous symmetries only, we shall thus consider them as

Convective structures display two opposite sensitivities td?*SYMmetric

a change of mean ow boundary conditions! quasi-
invariance of spatiotemporal features including the onset of IV. ANALYSIS
time-dependenceti! large modi®cation of spatiotemporal

features including a weakening of roll compression and &nodel structures, the origin of the two kinds of sensitivity to

spectacular delay of the onset of time-dependence. " X . .
These experimental evidences reveal two kinds of dynam?houndary cci_ndmon evtlj(_jencted eh>§p;-‘ r;hmentally.. Itis :J?s;?f on
ics corresponding to two classes of structures. € assumption according to which the experimental arrier-

(i) Boundary independent dynamichis class includes ence between closed and open containers i; purely hydrody-
straight rolls and foci. It is not related to the degree of sta"@mical and only traces back to a separation of the mean
bility of structures since straight rolls involve the most stable ©W Poundary from the roll ow boundary. This is actually
structures whereas foci show time dependence much clos€kPported by the experimental evidence of unchanged behav-
to onset of convection at low Prandtl number. However, Weior when these boundaries are distinct, but close to one an-
notice that each of these model structures disptatinuous  Other-see Sec. Il D
symmetrief the wave-vector ®eld: translational symmetry A suitable framework for studying the consequences of a
for straight rolls and rotational symmetry for foci. change of mean ow boundary conditions is the Cross-
(i) Boundary sensitive dynamic$his class includes fo- Newell equations. It will be applied for the two types of
cus pairs and textures. We notice that all of them display thetructures relevant to each kind of sensitivity: those involv-
same degree of stability: low or high in closed or open conding continuous symmetry of the wave-vector ®didreafter
tainers, respectively, and at low Prandtl number. We als@alled symmetric structuregand those involving nonehere-
emphasize that none of these structures displays continuoadter called asymmetric structute3 he sensitivity of each of
symmetries of the wave-vector ®eld. Only the most regulathem will be derived. This will yield the link between geom-

This section aims at clarifying, by analytical study of
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FIG. 10. Phase turbulence in an open container:, %5
R5 12.5, andR8b 25. Notice the rotating spiral reminiscent of those
observed in spiral defect cha@3,34¢

Herek5 “ wis the phase gradien the roll amplitudepP a
pressure ®eld, arl(k,Ra,Pt, tk,Ra,Pt, andgP1 suitable
scalar functionsg being nearly proportional to Pt.

The physics of these equations is recalled in Appendix A.
Their validity is restricted to ®rst order in the inverse aspect
ratio 1RR. Moreover, the mean "ow equatiof2! neglects the
mean ow dynamics and is only valid close to the convective
threshold~«¢ 1!.

2. Hydrodynamic interface

At a large scale, the interface between the inner and outer
zones appears as a discontinuity of the large-scale vorticity
@®@ig. 1-al# Of course, this is not realistic since vorticity is a
divergence-free ®eld that cannot vanish abruptly. In fact,
some vorticity sources are also generated there, either by
mean Reynolds stresses or by mean ow shear.

The small extension of this interface does not allow us to
neglect its vorticity contribution, since the short-scale varia-
tions induced in it may yield a large vorticity magnitude.
gspecially, it is shown in Appendix C that it actually domi-
nates the net mean vorticity generated in the convective do-
main.

The different kinds of vorticity sources might be dif®cult
to compute separately. Fortunately, their net contribution
1. The Cross-Newell equations will be determined directly by using the continuity of the
jpressure ®eld across the interfasee Appendix B

FIG. 9. Patterns showing local dynamiesnly a part of the
pattern is unsteadiyand large-scale equilibriuapattern geometry is
steady at large-scdlén an open container: 1.2, 1.5, R512.5,
R& 25.-al Localized cross-roll instability at the bottom left of the
picture,~b! Grain-boundary motion.

etry and dynamics in this extended convective system.

In the following, the indexes, o, andl will refer to the
inner convective zone, the outer conductive zone, and th
interface in-betweei@®ig. l-al#

A. The model

The exact form of the large-scale equations of convectio
governing the coupled dynamics of the phase ®edahd the
mean “ow ®eldF has been obtained by Newell, Passot, and
Souli from the Boussinesq equatior@®0# It closely re- We denote by the boundary normals. Foci involve a roll
sembles the Cross-Newei{LN! equations@#previously de- tangential to boundary:
rived from approximate models of convection, with negli-
gible corrections close to onset of convectie® 0.5. Since k3n50 atr5R.
the exact equations are more complex to use than the CN
equations but validate their main features, we prefer to wor
with the latter in the following:

FW G D ken50 at r5R.
t]—tl keF\J “s «B!5 01 o !

Mean “ows vanish at the impermeable boundary:

3. Boundary conditions

lf:ocus pairs involve rolls normal to boundary:

SUSTRPOUN. 1)
F52 gk“s ~kA%11“~PI1o0 2! Fen50 atr5R8
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B. Symmetric structures 3. Basic state of instability

1. De®nition and approach Since, whatever the kind of container, symmetric struc-

W I tric struct the struct f hich th tures involve no mean “ow, their phase ®eld is the same in
€ call Symmetric structures, the structures 1orwhich € case. The difference between their stability analysis
wave-vector ®eld satis®es cantinuoussymmetry, either

. i ) i therefore traces back to a change not of the basic state of
translational or rotational. This selects parallel or radial WaV&nstability but of the mean ows. We shall denot, this

vectors and thus straight rol@ig. 2-al#or foci @igs. 38! mean Tow variation induced by the sole change of mean

and 4al# - . “ow boundary conditions. We address its main features be-
The stability analysis of these structures turns out to solvegy.

the linearized CN equations, together with their boundary

conditions, for normal modes of perturbations. Linear stabil- 4. Mean “ow perturbation
ity is then deduced from the resulting dispersion relation. For - - .
straight rolls, this procedure is readily achieved with Fourier As mean ows vanish in symmetric structures, whatever

modes since the partial differential equations are homoget-he kind of container, the mean ow modi®catiaf brought

neous@7.8 It is however much more complex to imple- about by the change of boundary conditions only results

) ) . ; . from that induced on mean “ow perturbations. It is thus at
ment in foci since the corresponding equations 'nVOIVeleast of the same order as the phase perturbatiand dis-
space-dependent terms. Evidence of instability is then Ohf)lays at ®rst order im, the same growth rate as

tained from integral considerations and numerical calcula- 5 the other hand according #!, the mean ow vor-

tions @10+ o . . ticity generated in the convective domain only follows from
In the following, our goal consists in comparing the linear yo|| modulation, independently of the kind of container. This
stability analysis of symmetric structures in closed and opemneans that the change of mean “ow boundary condition
containers without deriving explicitly either of them. We prings no additional vorticity in the inner zone by itself and
shall ®rst notice that their basic state of instability does nothus that the corresponding mean “ow modi®cati#n can
depend on the kind of container. This will lead us to focusonly be a potential "ow satisfying mass conservation. Both
attention to the modi®cation brought about on mean “ows byts potential and its stream function therefore satisfy a laplace
the sole change of boundary conditions. Analyzing its conequation:aF;5 “ (ap)5 “ 3 (je,) with D(ap)5 D(j)5 0.
sequence on the instability spectra will show the indepen-
dence of the onsets of instability with respect to mean "ow 5. Dispersion relation

boundary conditions. At ®rst order in phase perturbation, the only difference

brought about by the change of containers comes from the
2. Mean “ow sources mean ow variation aF; through the advection term
Is<u- aF;, k, denoting the wave vector of the unperturbed

Since mean “ow sources correspond to mean Reynold . . )
: : .. Structure. We determine below its consequence on the insta-
stresses, they derive from roll modulation and thus Sat's%ility spectrum

the sdame ;ymrznetrlﬁs as the roll structu:jg. Within the convec-" A< the additional mean owF, and the phase perturba-
tive domain, they then generate, according to 4. mean 4, ¢ have the same growth rate, eliminating one of them

“ows normal to roll axis in a straight roll structure and radial {5y the Jinear stability analysis does not modify the insta-
mean ows in foci, up to a pressure gradient. In addition, theyjjity spectrum but provides the opportunity of focusing the
former ows are invariant by transl_auon along the roll axis analysis on essential modes. Elimination @, may be
and the latter are invariant by rotation around the focus Cenachieved as fo”ows: Tak|ng the Cur' to the mean _OW equa_
ter. Owing to these symmetries, no mean ow vorticity cantion 2! yields an equation linking the mean “ow vorticity
be generated in both cases in the convective domain. to the phase perturbation. It is decoupled fromaF; since
Within the interface, the roll direction is either normal or aF; drives no vorticity.
parallel to the roll boundary, in either straight rolls and foci  On the other hand, applying a suitable differential opera-
and in either kinds of containerfigs. 2+4. The roll struc- tor P~! to the phase equatiof! yields a dynamical equa-
ture therefore satis®es a translational symmetry along th#n for the phase perturbatianthat only involves the mean
interface and a re ection symmetry with respect to the inter- ow difference aF; via P%k*dF;!. When the basic structure
face normal. Since its mean Reynolds stresses must satisfpnsists of straight rollg, is a constant vectde.e, . Taking
the same symmetries, they can only be a vector ®eld paralll(¢)5 D~! then yieldsPk e dF;!5 kJD~gp!/]x5 0. On the
to the boundary normal and independent of the orthogonadther hand, when the basic structure is a focksg, is
direction. No ®eld of this kind can generate vertical vorticity.a radial vector kie,. Taking P(+)5 D(rk?1s) yields
We emphasize that this statement is valid in stable or unP~k dF;!5 JD+!/]1b 0. In both casesgF; disappears from
stable regimes, since the boundary rolls stay the same anyhe equation and, ®nally, from the stability analysis.
way. According to the above statements, the mean “ow differ-
The mean "ows generated by symmetric structures and bgnce oF between containers cannot modify the dispersion
boundary rolls can thus only be potential, incompressiblerelation and thus the onset of linear instability; it only
and free of singularity. However, no “ow of this kind can changes the shape of the unstable modes by driving an addi-
exist in a closed cell. Neither symmetric structures in stabldional phase distortiomc displaying the same growth rate
states nor their interface in unstable states can therefore getiran the other dynamical modes and yielding no mean “ow
erate mean “ow, in any kind of container. vorticity. Symmetric structures therefore keep the same onset
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of instability in either closed or open containers.

C. Asymmetric structures
1. De®nition and approach

We call asymmetric structures the structures whose wave-
vector ®eld satis®es no continuous symmetry, either transla-
tional or rotational@®igs. 64d!, 9, and 1& They thus corre-
spond to any structures different from straight rolls or foci
and therefore involve some distortion.
Since asymmetric structures differ from straight rolls,
they display wave-vector rotations. However, we emphasize
that they also involve wave-number gradientskek!p 0.
Otherwise, sincd is a gradient ®eldke" k5 “ Kkek!/21 k
3“ 3 k would vanish, except at the singular points whire
is not de®ned. The ®eld lineslofwould then be similar to
the stream lines of a steady “ow with no total derivative and
would thus correspond to straight lines between singular _ _
points. Since an intersection of two ®eld linekd$ a phase FIG. 11. Sketch of the _phase ®eld and the coordinate frame in
singularity, the only possibilities for keeping their density POth closed or open containers.
®nite would then be either no intersection or a single one in
the whole domain. The former case corresponds to a constafate. However, owing to the wave-number gradients, the
wave-vector ®eldk5 ke, and thus to straight rolls. The linearized equations would involve space-dependent coef®-

latter case Corresponds to a radial wave-vector @ad*'fer , cients that could I|kE|y result in a localization of the grOWth
and thus to foci. Both involve continuous symmetries, infates of the perturbations: ~s!b 0. Especially, in a WKB
contrast with asymmetric structures. approximation, a local crossing of the stability boundary of

OW|ng to these wave-vector gradientsy asymmetric Struc[O”S by extremal wave numbers would induce a local pOSi'
tures trigger some mean ow sources WhiCh, because of thgve grOWth rate and thus a localized |nsta.b|||ty Motivated
absence of continuous symmetry, generate some mean oy this statement and by experimental observations, we
vorticity. They thus cannot be compensated by a pressurghose to perform the stability analysis in two steps: ®rst,
gradient' so that the resumng mean ows are necessar”y ndietermination of the basic state of |nStab|I|ty and second,
zero:Fp 0. This important feature contrasts with the vanish-investigation of its local stability.
ing of mean “ow in symmetric structures and makes all the This procedure is implemented below on a model of
difference between the two kinds of patterns. Especially, th@symmetric structure: the focus pair. It is similar to that al-
change of container is now suitable for modifying the mearf€ady used in closed containe@l +13tbut is supplemented
“ows of asymmetric structures and consequently their phaselere by an analysis of the conductive zone, of the interface,
even in their stable regime. Not only the mean ow pertur-and of their effects on the convective zone. Owing to the
bations but also the basic state of instability may then nov@nalytical complexity of the CN equations as far as no con-
depend on the kind of container. Compared to Symmetriéinuous Symmetry is inVOIVed, the basic state of |nStab|l|ty is
structures, this provides an additional opportunity of beingsolved by a perturbative method. A relevant polynomial ex-
sensitive to a change of mean “ow boundary conditions. ~Pansion of the phase ®eld is introduced and the resulting

Another important difference brought about by asymme-nean ows are determined at the same order of expansion.
try is the following. As a result of phase advectiBrkb 0, Both ®elds are then substituted into the phase equation, from
mean “ows, whatever their magnitude, stretch the roll waveWhich an algebraic system governing the expansion coef®-
|ength and thus induce a small but continuous Wave-numbé}ients is obtained. Its SOlUtion, Compatible with the bOUndary
drift a|0ng mean ow Stream|ine@8,12¢ Its consequences Conditions, prOVideS the identi®cation of the basic state of
are enhanced in large aspect ratio cells since, being intdostability. Its stability at any location is ®nally investigated
grated over long distances, this drift may result in considerby comparison of its local wave numbers with the stability
able wave-number shifts. This important effect actually cor-domain of in®nite straight rolls, hereafter called the Busse
responds to the accumulation of a nonlinear phase shift frorRalloon @
rolls to rolls and thus to a secular behavior in space, the
spatial cycles being provided by rolls and the secularity by 2. Phase ®eld
the wave number increase. Following it, unstable wave num- ¢ cenral roll line and the line joining foci are denoted

b_ers may thergfore be re.achkentally S0 tha.t_local instabili- andy axis, respectivelyFig. 11. Following the symme-
ties may be triggered prior to any instability of large-scaleyjes of focus pairs with respect to them, the phase ®eld is
®elds. This, again, contrasts with symmetric structures Wher@xpanded as

an evolution of geometry could only be generated by large-

scale instabilities. 5 ) 4 -
A priori, the stability analysis of asymmetric patterns | ~ | E oy oy Xy

might proceed as in symmetric structures, by seeking the WXY15 ko-11 Dly[12 gzl bR21 Cral d R*

dispersion relation of phase perturbations around some basic 3!
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where kq, the wave number selected by foci, satis®es
B(kg,«,Pr)5 0 @#

Here,a, b, ¢, d, and D are expansion parameters. The
parametefa drives phase curvature and the remaining ones
b, ¢, d, andD, phase compression. In agreement with per-
turbative analysis, they are all considered much smaller than
unity. Moreover, following experimental observations show-
ing a weak compression compared to curvat@ig. 6b'#
we anticipate thab, c, d, andD are second order in, as
con®rmed at the course of the derivation.

3. Mean ow ®eld

(a) Mean “ow vorticity Expansion of Eq-2! yields, ac-
cording to Eq.-3!,

r2 zD
V.5 v@sin~2u!1 o> ~4!

where v5 2gk,A%(k,)d, o5 a?(12 5p)2 3d(11 p), and
p5 ] In(A?)/] Ink(k,). By symmetry of the underlying pat-
tern, the polar harmonics of the mean vertical vorticity in the
interfaceV ,, are even but only the quadrupolar mode is reso-
nant with the other modes of the problem. Disregarding the
other harmonics, we thus write

VZ|5Tv,sm~2u!10 R? 5l

where AR) is the delta function and whene, will be de-
termined later. Finally, the mean vertical vorticit,, van-
ishes in the outer zone:

V,45 0. 6!

(b) Stream functions; potential®wing to the symmetries
of the pattern, the stream functighof F is sought as a
second polar harmonicg:, 5 j~+!sin2u. It is obtained by
integration of the Poisson equati@j52 V, where, accord-

ing to Eqgs.~4!+-6!, V5V (r)sin2u: - FIG. 12. Closed contair_1er5 1, b527l. Sketch ofﬂ' the mean
ow ®eld on a square latticdh! mean ow stream lines fof 5 0,
E r2 G 20.05,20.1,2 0.15, and2 0.20. Notice the back “ow joining foci
j=152 r : 3V ~tldt ds2 — I R21 g—= 2 ~! and pattern center. This focalization of the mean “ow is responsible

for a dangerous roll compression at the pattern center.

We note thatb and g, to be determined later, drive a poten-
tial "ow. Owing to ~4!+-6!, j may be written in both the
inner and outer zones:

5Fjp1 Fir, Fo5 Fopl For. We make the choice,5 0
andF;,5 “ 3 (j i 2) wherej;, is the value ofj; for b5 g5 0.
The corresponding potential parks, and F,, then drive

v F“ r2 RZG from the following pressure ®elds:
r, R: ji52 1—2 El b@l gr—z n—2u!

8!
A i s
. . — 11
| VF 2 =2 r, Rt P;52 B —22 97z s2ul, 11
r. Ri jo52 —[~b2 m 1!=1 ~g1 m—-5\gn2u!
12 R r v r2 R2

9! : _F~ |—2 ~ —Go !

r. Ri P,52 1 b2mll.R22 glm!r2 s2u!
with ~12

|_'1 v.G . with Fig5 1P andFy,5 P
2 51 37 -10! (c) Mean ow ®eldMean ows satisfy three boundary
conditions.

We shall ®nd it convenient to split the corresponding mean -! Impenetrability at the cell wallFen5 0 atr5 R8 This
“ow ®eldsF;5“ 3,z andF,5 “ 3 (j,2) into a rotational implies j,(R®50 and thus b52 11 m2 r?4 where
and a potential part, indexed bryand p, respectively:F; r5 RER.
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FIG. 13. Open container5 2, b' 2 % Sketch of-al the mean
“ow ®eld on a square latticé! mean ow stream lines5 0.4, 0.3,
0.2, 0.1, 0,2 0.02,2 0.04, and2 0.06 forr, R andl 5 n/32 with

n50, 0.5, 2, 4, 6, 8, 10, and 12 for. R. Notice the mean ow
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r, Rt F52

vlF ) 2 cos~2u!D
r-+<1 bRl

5 R* sinr2ul

2
8.2, B8D
sin2u! )
4

C
L, R2 g2 12 RS %D
r. Rt F,52 1—2r—3 - lal r4
simr2u! RE
~15!
Its streamlines, parametrized by satisfy
r2 3; R 1
— —2 —| 4 | ~16l
r, R: RZ 52 2R842 5 i2u'5 1, 16!
R: RERE2 1% 2uU'5 | 17
r. . ?WSII’}* u! . !

The mean "ow ®elds and the mean ow stream lines are
sketched in Fig. 12 for closed container$ 1, 52 1! and

in Fig. 13 for open containers5 2, b' 2 3). A focalization

of mean ows on the line joining the foci is noticeable in
closed containers but is largely weakened in open ones. This
difference only traces back to the potential “ow driven fy

We determine below its consequences on the phase ®eld.

4. Basic state of instability

(a) The phase boundary condition#/ithin the expansion
3!, the conditiorken5 0 at the roll boundary can be written:
sin u @2 3acos~u#l O(a?!5 0. It is always ful®lled at the
central roll ~5 0!, never at focus centerahs6 p/2! and
never simultaneously on the whole boundary. Additional
modes not taken into account in the present expansion of the
phase ®eld would thus be required to achieve it exactly.
However, we emphasize that the status of this boundary con-
dition is more phenomenological than analytical and, in par-
ticular, has not been addressed for the large curvatures en-
countered near the focus centers. We thus use it as a useful

shear at the hydrodynamic interface and the low amplitude of thénean for estimating the curvature parametesy imposing
back “ow on the line joining foci and pattern center, compared toalmost perpendicular rolls fow aboutp/4. We then obtain
that displayed in closed containers. Roll compression at the pattera5 51 o(a). A value of order unity ofa, although required
center is weaker and time dependence is inhibited inside the Bus¢e model satisfactorily the phase ®eld, might appear incom-

balloon.

~i! No singularity at the pattern center. This givgs 0.

ii! Continuity of the pressure ®eld®;, and P, at the
interface, as derived in Appendix B. This yield$ 3 from
Egs.~-11! and~12 and, from Eq-~10!, v,52 v/3. Altogether,
these constraints yield

b52 ~11r2%1/2, ¢50, nb i ~3

We note that the value ab changes fron2 1 to 2 3 from
closed~r5 1! to largely opened containers@L!.

patible with a perturbative expansion. Our guess is that the
physical mechanism of pattern destabilization derived at
weak curvature is suf®ciently generic to operate at large
ones. Then, applying our procedure &6 2 should be con-
sidered as a quantitative extrapolation of a qualitatively cor-
rect mechanism. This will be supported by the agreement
between the corresponding solution and the experimental ob-
servations. Another phase boundary condition is in order at
the locations of largest curvatuse the focus centers. When
foci are in equilibrium, the phase advection by mean "ow, of
order O(a?/R), balances the phase diffusion, of order
@(0,6 R)2 ky# Sincex is of O(1) near a focus center, this
gives k(0,6 R)2 k,5 O(a?/R) where a5 O(1) and R

5 0(10) in extended cells. We then obtak{0,6 R)2 k,

One ®nally obtains the following expression for the mearb o(a?) that expresses the wave-number selection by foci.

“ow ®eld F:

Within the expansion3!, this yieldsD52 3b2 5c.
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(b) The basic state of instabilityntroducing the mean
“ow ®eld F found in Egs~14 and-15! into the phase equa-
tion ~! yields

]W5k D P:bbzz D2 badq—l SOCZ ag@
]_t obi a 3 3 M

yx?

1 ~10a%1 6d2 acﬂ.F -8

with

|'_gkA2tG< F]«B!G(
ab2 == 0,«,PI’!, D,52 —]—k 0,<(,PI1.

1BIk t
49

As (]B/]K)(k,,«,Pr) is negative and(k,,«,Pr)5 0, both
variablesa andD; are positive.

We notice that each mode of the phase equati@ is
actually involved in the phase-®eld expansi8h This en-
sures the closure of the expansion of the CN equations and
enables us to rewrite them as an algebraic dynamical system,
by a mode to mode identi®cation. Solving it in steady states
gives the following determination of the basic states of in-
stability at second order ia:

@,c,d1 2a?,D,ads D.@b,2,22 ~11 2b!,124 20!

a
2 - 211
Dc5 a 21 a~11 p!- 21

As assumed at the earliest stage, the compression param-
etersb, c, d, andD are second order ia. On the other hand, ) __ _
dand therefores appear to be always positive. The constant FIG. 14. Sketch of the dllagram of Stabl|lt¥ of straight rolls, the
sign of v implies, from Eq.<14!, that the direction oF is Busse balloon, as a function of the Rayleigh number at a low
solely governed byb in steady focus pairs. As expected, lPrandtI numper~Pr‘| 1! ~dashed domaln The wave Pumber se
relation20! then shows that the basic state of instability of €6t€d bY focike=«] crosses the balloon at the “top," at values of

focus bpairs is parametrizeld We emphasize that this means < of the same order of magnitude &s, the« limit of stable straight
that it F;ctuall pde ends on the kindpof container rolls. The local wave numbers of focus pairs are compute@$00,
y dep ) a5 3 and P 0.7.-al Closed containersh52 1. Focus pairs dis-

play a wave-number band that crosses the Busse balloon at the
“*side." This induces a local instability at values @f «,, much

We consider the local wave numbers displayed by steadgmaller than«g: «/«g5 O~10?1. ! Open containersr‘@t,
focus pairs and investigate whether they belong to the Busskb2 3. Crossing of the Busse balloon occurs near the “'top," at
balloon. The minimal wave numbers of the phase ®ald values of «, «,, of the order of its highest allowable value
are reached at the boundanes Of the Central rotL'yX «B/«BS O-1!. Time dependence is thus inhibited inside the Busse
5 (6 R,0). They amount tk(6 R,0)5 k,~12 al1 o(a?! and  balloon.
may Yield roll nucleation by a localized Eckhaus instability,

5. Local stability analysis

actually observed experimentali@@ig. 6-al# The ®rst case is not dangerous since, at least fo0Pr,
The maximal wave numbd,, takes place on thg axis.  k, lies well inside the Busse balloon up to large value of
Here,k reduces to the following expression: @5# On the opposite side, the second case may well yield a

5 local instability at the pattern center for suf®ciently large
values ofD. SinceD is proportional to11 26!, this means
k-0y!5 kOEl DC|-£71 bDZ b1 1!2‘B 22 that the local stability of focus pairs depends on the kind of
container, as analyzed below.
According to it, both the location and the valuekgf depend In closed containers,r51, b52 1, D5D., and
on b. kS ko311 D,!. At low Prandtl number Prl, Fig. 14&
4! For b52 3, k., is reached at both focus centessy)  shows thaD, grows suf®ciently fast witk to makek,, cross
5 (0,0) and the pattern centex,§)5 (0,0). ThenD5 0 and the stability boundaries as soon &s0.1. Focus pairs are
Ky Ko - then locally unstable well inside the Busse balloon.
4! For b,2 3, k., is reached only at the pattern center ~ As r grows fromr5 1 ~closed containetsto r5 * ~open
(%,¥)5 (0,0). ThenD. 0 andk,5 k,~11 D!. containery b increases fron2 1 to 2 3 and D decreases
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from D, to 0, whatever the Prandtl number. Meanwhile the
maximal wave number is still reached at the pattern center
but the roll compression decreasds;5 k,~11 D!. This
makes the threshold of local instability rise, as shown in Fig.
14-b!. In particular, in the limit of widely opened containers,
r*@1, D vanishes so that,,5 k,, at any Prandtl number. No
pinching can then occur unti, crosses the Busse balloon.
At least for Pr 0.5 @5# this prevents time dependence up to
values of« of the order of its highest allowable valug
@g 1, «g' 2.5 in Fig. 14bl# Focus pairs are thus locally
stable in the same range as the Busse balloon.

In open containers, time dependence of focus pairs is thus
inhibited inside the Busse balloon at least for any Prandtl
number larger than 0.5. This effect is hardly noticeable at
high Prandtl number since, owing to the vanishing of mean
“ow sources, closed and open containers become physically
equivalent, in particular regarding focus pair stability:
Pl ", g 0, a 0,D' 0, andk,! kg, in either kind of
Contain(?rs. It is howe\_/er spectacular at low PrandtI. number, FIG. 15. Sketch of the threshold of time-dependence of various
Pr 1, since focus pairs are much more unstable in closedyciures in closed and open containers. Straight rolls, foci, and
containers than in open ones. In the latter, their time depenycuys pairs are labeled SR, F, and FP, respectively. Notice the sen-
dence is then surprisingly suppressed within the Busse bakitiyity -independendeof focus pairs and texturestraight rolls and
loon, not by removing mean ows as in the large Prandtlfocil to the type of container. Notice also the similarity of the
number limit, but by weakening their focalization on the pat-threshold of time dependence of focus pairs and textures with that
tern center. of foci in closed containers and that of straight rolls in open ones.
Opening containers thus changes the status of asymmetric structures
from that of most unstable structures to that of nearly most stable
structures.
We confront the experimental observations to the results

of our analysis, following the above splitting between sym-  The main ®ndings of our analysis are a delay of the onset
metric and asymmetric structures. We then focus attention ogs time dependence and an equality of the wave numbers at
f[he role of geometry with respect to the mechanisms governgq pattern center and at the fa@ig. 14bl# Both are nicely
ing convective structures. corroborated by our experimenig. 7. However, for the
sake of a better accuracy of this comparison, we take into
A. Symmetric structures account in Appendix D the perturbations induced by the an-
nular sheet on the mean "ow. It gives rise to an additional
ack ow on the line joining the focus to the pattern center.
he maximal wave number is then reached at the pattern
center only, so that local instability and defect nucleation
should occur there, in agreement with Fig. 8. On the other
Qand, its valuek,. should be slightly larger than that dis-

V. DISCUSSION

The instability displayed by straight rolls agrees with the
skewed-varicose instability regarding both onset and for
~Fig. 2. On the other hand, foci display a steady off-
centering of focus singularities starting frotd 0 and grow-
ing with « @4+19¢ Fig. 5. This does not ®t with a large-
scale instability starting from a de®nite onset above th

convective threshold. However the ampli®cation of the Oﬁ'plaX$tgrzitLg]?@Igfl;fe,f§; i%gii;‘igg Egsog::gﬂfzg' ﬂétterns do
centering indicates a loss of stiffness that recovers the main P

features brought about by the focus instabil@y10t not exhibit periodic dynamics as in closed contain@3#

Both these symmetric structures show, at most, very weaPUt restabilize in another focus pair involving one less roll
changes of their spatiotemporal behaviors in open container82!" @ig. 6l A similar behavior may be observed on

This agrees with the conclusions of our analysis of their sta.—Stralght rolls as they encounter the skewed-varicose instabil-

bility: symmetric structures arenearly insensitive to mean Iltr)( twhgenrgnsce:ﬁ?i:i ﬁfézsst:gililzlgﬁoin?ngefsgzizgggza o a
“ow boundary conditions. P * y y

slight dependence of the parametergoverning the local
stability with respect to the mean wave numh@ee Eg.
~191# removing one roll pair may then be suf®cient to reduce
In open containers, the analysis of focus pairs predicts @ below the critical value at which defect nucleation is trig-
weakening of the main dangerous mode: a focalization of thgered @3# In addition, sincea is proportional to«, the
mean ow on the axis joining foci to the pattern center. higher«is at the ®rst defect nucleation, the larger the reduc-
Evidencing directly this effect is not an easy task, owing totion of a may be and the better are the chances of observing
the dif®culties inherent to mean "ow measurement or meanestabilization. In agreement with this statement, experi-
“ow visualization @6# and we did not achieve it. Instead, ments reveal that defect nucleation occurs too low in closed
we have checked its consequences by comparing our obseamentainers for allowing restabilization and suf®ciently high
vations with the predictions regarding both the onset of timgn open containers for achieving it. The experimental fea-
dependence and the wave-number ®eld. tures of focus pairs and especially their sensitivity to mean

B. Asymmetric structures
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“ow boundary conditions are thus well recovered from the®cation of both the route to time dependermgmmetry al-
CN equations. lows at most a slow evolution of wave number; asymmetry
enhances phase gradidngd the bifurcation to instability
C. The role of symmetry ~symmetry induces large-scale instability; asymmetry trig-
rs local instability.
As con®rmed by the different sensitivities to mean “ow
boundary conditions, the above distinctions especially indi-
cate that symmetric and asymmetric structures are not physi-
ally equivalentfig. 19. Of course, this does not mean that
he physical ingredients governing these structures are differ-
t-e.g., primarily instability, mean Reynolds stresses, ow
ncompressibility, etd.but that the interplay between them
generates different mechanisms and then different behaviors.
Accordingly, asymmetries or distortions, whatever their
magnitude, stand as essential modes of extended patterns.
Continuous symmetry of the phase ®eld precludes the ex- A consequence of these statements is that, despite their
istence of mean owsF5 0! and thus denies to mean ow apparent similarity, foci and focus pairs refer to different
boundary conditions any in‘uence on symmetric statesphysical mechanisms. In particular, focus pairs cannot be
These boundary conditions might however in uence theviewed as the mere juxtaposition of two foci nor can an
symmetry-breaking instabilities, either the local ones or theasymmetric or a distorted structure be analyzed in terms of
large-scale ones. symmetric structures. By contrast, the similarity between the
In straight rolls, local instabilities are rejected since thebehaviors of textures and focus pairs in both closed and open
wave number is selected: all rolls are unstable or none are. lgontainers validates the latter as a good candidate for mod-
foci, local unstable wave numbers might arise since waveeling textures. This suggests that, at least for moderate aspect
number selection is only reached at large distance from theatios, focus pair might actually capture the essential mecha-
focus center. However, they would then be encountered opisms governing textures dynamics.
all azimuths so that the growth of instability could be com-
patible with the preservation of rotational symmetry. We
note that such rotationally invariant dynamical states are ac- VI. CONCLUSION
tually observed as phase-traveling waves in simulat@6g

and experiments@9,32 in large aspect ratio containers.

However, since they do not modify pattern geometry the);1amical scales, the roll scale and the pattern scale. They thus
stand out’side the scope of the problem addressed he,re. provide a minimal model for studying scale interactions. We

Only large-scale instabilities can thus yield a time depen—have been studying it by focusing on model structures in-

dence of symmetric geometries. Although they involve meaﬁ’OIVIng simple geometries.

“ows, our analysis has shown that their onsets are indepeq— Althdquglh dlfferﬁnt_or)l a fnurpber (.)f pomtsl, motd_el strut(r:]- ¢
dent on mean ow boundary conditions. ures display such similar features in usual containers tha

one can hardly decide which of them accurately models tex-
tures. In order to improve their comparison, we have intro-
2. Asymmetry duced a change of boundary condition by separating the

In contrast with symmetric structures, asymmetric strucimean ow boundary from the roll “ow boundary. This made
tures involve some mean ows, even in steady stafs0.  the boundary of the convective domain permeable to mean
As shown on the model of asymmetric pattern, the focusOws and therefore transformed the usual ““closed" contain-
pair, these “ows raise phase gradients not only through thei@rs into ~open” ones regarding these ows. _ .
rotational part but also through their potential part. This re- The change of container has been applied while keeping
sults in a localization of pattern stress whose features deperifi€ same convective structures and thus the same mean ow
on the mean pressure gradient and thus on mean “ow boungources. It has resulted in two opposite behaviors: straight
ary conditions. rolls and axisymmetrical rollsfoci! kept the same behavior;

Owing to the low magnitude of mean “ows, the conse-focus pairs and textures displayed a spectacularly large delay
quence of pattern stress might be thought to be negligible?f time dependence. The former structures involve a continu-
They are however enhanced by the aspect ratio owing to th@us symmetry of the wave-vector ®eld and the latter struc-
cumulative effect of mean ow stretch. At least at low tures none. Their respective sensitivity to the change of mean
Prandtl number and moderate aspect ratio, they then succee@v boundary condition has been recovered analytically by

in inducing local instabilityprior to large-scale instability. ~ exploiting the consequences of the existence or of the failure
of such symmetry. The origin of the sensitivity differences

traces back to the degeneracy displayed in symmetric struc-
tures through the vanishing of mean "ows. This actually de-
The difference of behaviors of symmetric structures com-couples not only steady states but also their onset of insta-
pared to asymmetric ones traces back to the vanishing dfility from mean "ow boundary conditions. On the opposite
their mean "ows-F5 0!. This important degeneracy inhibits side, asymmetry generates mean ows that enhance phase
the retroaction of large scale§! on small scalesk! and gradients by cumulative roll stretch. The resulting localiza-
prevents localization of pattern stress. This results in a modition of pattern stress then succeeds in triggering local insta-

Both experiment and analysis agree with a link betweer?
the sensitivity to mean ow boundary conditions and the
symmetry of the wave-vector ®eld. This correlation is
sketched in Fig. 15 by drawing a comparison between th
onset of time dependence of structures in the two kinds o
containers. We address below its origin and its consequenc
by investigating the essential role of symmetry with respecy
to the route to time dependence.

1. Continuous symmetry

Convective structures are governed by only two hydrody-

3. Correlation between symmetry and bifurcation
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bility prior to large scale instability, at least in moderate  Since the horizontal spatial scale of the mean “ow is large
aspect ratio cells and at low Prandtl number. compared to the cell depth, horizontal diffusion may be ne-
The opposite behaviors of symmetric and asymmetriglected with respect to vertical diffusion. Length scales being
structures show that their physics actually differ. In particu-nondimensionalized with the cell depth and time scales with
lar, textures cannot be modeled by foci but, to the presenthe vertical diffusion time, the order of magnitude of mean
analysis, by focus pairs. This points to the physical mecha-ow self-advection, mean “ow diffusion, and mean "ow
nism governing focus pairssee Sec. IV C as a relevant sources are, according to Eg2!, PP'R?!F2 F, and
prototype of those at work in textures, at least for the modPr* 1R? 1« respectively. Then, for Prl, R 10, and«, 1,
erate aspect ratios addressed here. the condition of equilibrium between the two former terms
The fact that our experiment has been performed at modand the latter give§' PP R?! «2 The effective Reynolds
erate aspect ratio raises some questions regarding pattern dydmber ReF!, i.e., the ratio (Z)g the self-advection to diffu-
namics in larger cells. Then more substructures than in thsion, is then, R&!5 O-Pr22R"“. In the present case of
present case would interact, some of them being cut bgxtended cellsR@1! and in the vicinity of the convective
boundaries, the other being located in the bulk. The formethreshold~¢ 1!, it is quite small so that the self-advection of
structures are bound by impermeable walls and the latter bl may be neglected compared to its diffusion.
permeable ones regarding mean ows. Do they behave as in When taken into account simultaneously, these interac-
closed containers or rather as in open ones? Do they shotions yield the Cross-Newell equatiord and-2! where the
the same dynamics or not? What is their respective sensiti®rst equationl! is a phase-diffusion equation supplemented
ity to a change of mean “ow boundary condition? Answeringby an advection term of the phase by the mean ow and the
these questions would improve our understanding of strucsecond equation2! expresses the Siggia-Zippelius mecha-
tures interactions and of the in'uence of boundary on thenism.
bulk dynamics.
. Both our observations and analysis have_®na|ly revealgd 3 PPENDIX B: CONTINUITY OF THE PRESSURE EIELD
link between the geometry and the dynamics of convective AT THE INTERFACE
structures. According to it, distortion is a dangerous mode
which, whatever its magnitude, modi®es the route to time The hydrodynamical interfaceR8 r, R!) separates an
dependence by bringing about a coupling between large aridner zone (, R?) from an outer zoneR*, r, R8 @®ig.
small scales. This property traces back to the nonlocalityi-al# Two pressure ®eld8; andP , have been de®ned by
generated in distorted states but inhibited in symmetric one€qgs.~11! and~12! in each of them. Our purpose is to evalu-
Here, this nonlocality is provided by hydrodynamics. Inate the corresponding pressure drdp across their inter-
other systems, other long-range interactions induced by eledace:
tromagnetic ®elds or chemical mediators may play this role.

Then, the present system might appear as a minimal model aP5 P0~R1 U2 Pi~R2 . B1!
for the understanding of the inner mechanisms governing
their organization or their dynamics. This will be performed ®rst by determining a continuous

matching of the pressure gradiefit® in the interface, sec-
ond by evaluating its order of magnitude, and ®nally by de-
ducing the corresponding pressure dubp.

The Cross-Newell equations describe the basic interac-
tions between the phase ®eld and the mean ow @#d 1. Continuous matching of the pressure gradients

They may be split into self and mutual interactions. — . .
y may b The mean owF may be split in the whole system into a

! Roll-roll interaction. Diffusive terms of the Boussinesq ional partR and ial part P both di
equations give rise to a local interaction between neighbor0tational partk and a potential part P, both divergence-

ing rolls. This results in an anisotropic diffusion of the roll ree.
position and thus of the phase ®& F5R1“P. B2
+i! Roll action upon mean ows. It corresponds to the
Siggia-Zippelius mechanism by which distorted rolls behave
as local mean “ow source@6# The resulting mean ow is
linked to its sources in a nonlocal way.
~ii! Mean “ow action upon rolls. It results from the ad-

APPENDIX A: THE CROSS-NEWELL EQUATIONS

This splitting is not unique but examples afr&;; ,“ P;)

in the inner zone andF,,," P,) in the outer zone, as de-

®ned in Sec. IV C 3. Sinc€ is continuous in the whole

vection of roll "ows by the mean ow. Depending on the system, dgtermining a (iontin_uous matCthB of the pres-
gure gradients P; and“ P, in the interface turns out to

boundary conditions imposed on the phase ®eld, it resul I . . .
either in phase drift, phase distortions, or both of then,'c_:onstruct an explicit continuous expression of the rotational

@8,12¢t Whereas the link between phase advection and roll®W R in suc_h a way that it corresponds g in the inner

distortion islocal, the one between mean “ow and roll phase zone andr,, in the outer zone. .

results from a spatial integration of the phase advection and Let us Iapeer andR, its rad|_al and or?horadlal compo-

is thusnonlocal nents and introduce 'the foIIc_)vx_/lng coupling between mean
+4v! Mean-"ow+mean- ow interaction. It arises from the ©W SOUrces and vertical vorticity:

diffusion and the selfadvection of the mean “ow. It reduces

to vertical diffusion hereand thus, for a Poiseuille pro®le, to R 52 va cot2u! B3l

a multiplication by a constahfor the following reasons: ' 6" *? V '
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wherex is a function ofr, a priori undetermined. In order APPENDIX C: INTERFACE VORTICITY

for the vertical vorticity ofR to be equal to/ ,, the function AND MEAN FLOW SHEAR
R, must satisfy

I X
rR,5 ESI §Dzolr. B4l
0

In an open container, the net vertical vorticity in the
upper-right quarteD,, of the cell (Q r, R8 0, u, p/2)
may be deduced from relationrd! +-6!:

"4
Do 4

In the convective domain, the choia® 1 yieldsR5 Fi; . sincev,52 v/3, the interface vorticity dominates the verti-
In the conductive domain, relatio3! shows that the radial ca| vorticity produced in the bulk and imposes a negative
componenRR, of R is always zero sinc¥ , vanishes in the sign of the net vertical vorticity in the domal, . The cir-
outer zone. Its orthoradial componeR}, can be forced to culation of the mean “ow ®el# along the boundaries @,
vanish too, by choosingx in the interface so that must then be negativ@ig. 13al# This is in contrast with
R, (R;1 ,u)5 0. Then, in the outer zon®5 F,,5 0. the case of closed containers, where the analogous circula-

Different choices ofx satisfying the above requirements tion along the upper-right quarteD.(0, r, R, 0, v
may be made inside the interface. The relevance of this de- p/2) is positive@ig. 12-al#
gree of freedom is ensured by the fact that their differences At some places of the boundary &f,, the mean ow
correspond to potential ows whose pressure dithye cir-  Mmust therefore point in a direction opposite to that displayed
culation of the corresponding “ow between the two sides ofin @ closed container. Figure 13 shows that this mainly oc-

the interfacé vanishes, owing teB3! and-B4!. curs in the outer zone. In the remaining parts, especially in
the inner zone, the amplitude of the mean ow, and in par-

ticular the back ow, is reduced, but the direction is kept.
2. Order of magnitude of the pressure gradient in the interface The mean ow shear at the interface results from the large
, ) variations of the orthoradial componelite, across the in-
We seek to deduce the order of magnitude' & from (o306 Their origin may be understood as follows. Mass
those off andR in the interface. At ®rst, we assume that thec,nservation implies continuity dfer across the interface.
interface does not increase the order of magnitude of thgquating the circulation of the mean ow on an in®nitesimal

mean ow in the inner zone and outer zone. On the contrarygontour in the interface to the “Ux of vertical vorticity then
the roll compression would be larger than usual so that thgjelds

threshold of time dependence would be much smaller than in
closed containers. This scenario is rejected by experimental v,
observationssee Sec. Il D2 ThenF is still O(a?R) on @R, 12 FR; 1#ed €2
both sides of the interface so that its shear ra®({a?/R).

Since the spatial derivatives aB{1) inside the interface,  sq that the shear is directly produced by the interface vortic-
the order of magnitude df andR inside it are the same as jty v, . |ts magnitude i€(a%/R) sincev,5 O(v)5 O(a?).
that of their vertical VortiCitW 71+ This VortiCity results from It is thus of the same order as the mean _Evand modi®es

three different phenomena: roll distortion, mean ow shear,t considerably, as shown by the comparison between Figs.
and roll amplitude variations. The ®rst two contributé/tg 12 and 13.

to the same order of magnltudélR The contribution of the The interface Vorticity thus produces local effeetbear

last may be easily estimated by emphasizing that rolls engt the interfack but also important nonlocal effectsnean
norma”y to the interface. Then, IOC&”y, they look like a Set_OW direction, decrease of the back dvof primary impor-
of parallel rolls fadlng away a normal bOUndary. For reasongance for the transition to time dependence_

of symmetry, the mean ow that they produce by amplitude
decay must then be parallel to their axis and invariant by
translation along the boundary so that its vertical vorticity
vanishes. Put together, these estimates weJd, F, R, and

APPENDIX D: INFLUENCE OF THE SHEET
ON MEAN FLOWS

“ P to be at leasD(a*R) in the interface. Apart from local vorticity sources produced at the roll
boundaries by roll amplitude decay, the sheet induces a vis-
3. Pressure drop across the interface cous shear in the conductive domain that decreases the ow

driven by pressure gradien®ig. 1¢'# This additional ef-

Since the pressure gradiehP is well de®ned and con- foct b " luated b . Poiseuill @l
tinuous in the interface, evaluating the pressure dobp ect may be easlly evaluated by assuming a FoiSeullie pro®ie
fé)r the mean ow. This results in the following relation be-

across it makes sense. Its order of magnitude is that of th . i . )
pressure gradientO(a?/R), multiplied by the interface tween the potential mean ows in .the inner and outer zones
width, O(1) in the present problem, so tha®5 O(a?/R). Fip andF,, and the pressure ®@eRt

Since, in an extended ceR? 15 O(10? 1)5 o(1), we®nally ) .

obtain aP5 o(a?), so that the pressure ®elés, and P; Fip“ P, Fopdt" P, 512342 4!, DI

match continuously at second order in a: ] ] ] ]
where ds d,/d is the relative distance of the sheet to a hori-

P,R u2P~R ub5 0-a2l. B5! zontal plate and a transmission factor.
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The sheet perturbation may thus be handled by renormatwhich increases roll compression and lowers the onset of
izing the pressure ®elds in both the inner and outer zones liime dependence. Singg2 3, the maximum wave number
P.5 P, P,5tP, respectively. Since, the actual pressure ®elds reached at the pattern center so that a localized instability
P is continuoussee Appendix B this means introducing a should ®rst occur there. Its value is
virtual pressure drop at the interfac® 2 P;52 (1
2 t)P;. The remaining boundary conditions of the system k-0.05 k081 12 tDcD

— |
being unchanged, the basic state of instability can be found 11t bl
straightforwardly as in Sec. IV C 4. Only the value bfis ]
modi®ed: As expected,t5 1 corresponds to fully open containers

@(0,0)5 ko#, and t50 to closed containers k[0,0)
11 r24 5 k(11 D)#
b52 -D2!

In the present experiment5 3 andr5 2, so that5 &% and
b52 0.72. Taking fork, the expression determined close to
In the limit r@1, b simpli®es tab52 1/-11 t! which, for  onset of convection given by Manneville and Pique @@

t, 1, is smaller than the valu2 3 expected without sheet and recalling thaD. 5 a?a/@1 a(11 p)#with a5 4.19« at
perturbation {5 1). This indicates the presence of an addi-Pr5 0.71,p' 0, anda® % @,10% we obtain, for the wave
tional back ow on the line joining focus and pattern center,number at the pattern center, the curve plotted in Fig. 7.

22 ~12 t1-12 r24
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