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Abstract 

In this paper, we investigate the dynamics of a bidimensional network of coupled water jets impinging from below on 
a water/air interface. For each jet, a transition is observed at a critical flow rate value for which the surface bump at the 
vertical of the jet starts oscillating at a well-defined frequency. We infer that this oscillatory mode is the materialization 
at the surface of a helical instability of the submerged laminar jet. When coupled together, the bidimensionai network of 
oscillators exhibits monoperiodic collective modes whose spatial arrangements are similar to those encountered in crystals. 
A collection of phase-locking modes is observed for each geometry, and stability diagrams are constructed. Analysis of the 
coupling between the jets reveals a long distance coupling through surface waves. A tuning criterion is proposed to explain the 
bifurcation from one mode to another. Finally, the symmetries of the system are investigated using two different systematic 
schemes. The predictions are compared with the observations and some features of the particular topology of phase-locking 
modes are explained. 

PACS: 0545: 4755C: 0220 
Keywords: Jet: Helical instability: Phase-locking mode: Bifurcation: Symmetry 

I. Introduction 

The study of the collective dynamics of systems of 
coupled oscillators has received considerable interest 
in the last few years. This results from the wide vari- 
ety of problems it can be connected to: from the study 
of collective chaos in theoretical physics [ 1-7], to the 
study of the cooperative synchronization phenomenon 
and of biological rhythms in biology [8-14]. Indeed, 
mutual synchronization occurs very commonly in pop- 
ulations of biological oscillators: congregated fireflies 
flashing in synchrony at night [8,12], pacemaker cells 
of the heart working in unison [ 11 ] and women having 
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their menstrual periods in synchrony [9] are striking 
examples of cooperative synchronization. 

A first mathematical approach of the phenomenon 
of mutual synchronization was proposed by Winfree 
[15]. He considered populations of weakly coupled 
oscillators ,whose individual limit cycles were not 
perturbed, so that only phase variations had to be 
considered. He discovered that synchronization oc- 
curs above some coupling strength threshold value. 
His phase model was reformulated by Kuramoto [16]. 
Three different regimes were observed, depending 
on the coupling strength relative to the frequency 
bandwidth of the population of oscillators [4]: (i) in- 
coherence, where the oscillators beat at different 
frequencies, (ii) phase-locking modes, including the 
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trivial mode of synchrony, where the oscillators beat 
at the same frequency, but present constant phase- 
shift relative to each other, (iii) partial locking, a state 
intermediate between the latter two. The most strik- 
ing example of phase-locking mode in nature is in 
the locomotion of animals [14,17], where the differ- 
ent gates of quadrupeds correspond to phase-locking 
modes of different symmetry. 

As a further step, models with stronger coupling 
between oscillators were considered, allowing am- 
plitude variations of limit cycles. This led to the 
discovery of unsteady collective modes, such as col- 
lective chaos, that were not observable with the earlier 
phase models [4]. The collective behaviour of net- 
works of coupled oscillators is now investigated by 
many physicists, using the formalism of discretized 
complex Ginzburg-Landau equations [6-7]. Among 
other things, the chaotic dynamics in such systems is 
expected to exhibit characters intermediate between 
low-dimensional chaos and spatio-temporal chaos [7]. 

Parallel to this intensive numerical work, the 
spatio-temp0ral behaviour of experimental systems 
of coupled oscillators has been investigated too, in- 
volving Josephson-junction series arrays [18] or 2D 
lattices of coupled units such as vortices [19] or elec- 
tronic devices [20]. In this paper, we propose to study 
the collective dynamics of a 2D network of coupled 
oscillators using an original experimental device: 
co-flowing water jets impinging (from below) on a 
water/air interface. 

Although many studies have been devoted to the 
problem of a jet impinging on a flat solid surface [21- 
23], few have been devoted to the imI.~igement of 
a submerged jet on a water/air interface, and if so 
[24,25], for a jet flow parallel to the surface only. The 
present experimental set-up, namely a jet impingement 
normal to the water/air interface has, to our knowl- 
edge, not been investigated yet. Thus we propose to 
study the collective dynamics of bidimensional net- 
works of such co-flowing jets. Note that Villermaux 
and Hopfinger [26] studied large-scale instabilities in 
a bidimensional network of co-flowing air jets, but no 
interface was present. 

First, the experimental device is presented. Then the 
case of a single jet is considered: above some flow rate 

threshold value, a single water jet exhibits a monope- 
riodic oscillatory mode. The characteristics and mech- 
anism of transition are studied in detail. Then, the 
dynamics of two coupled jets, a line of jets and fi- 
nally bidimensional lattices of such co-flowing water 
jets are investigated, using perforated plates of differ- 
ent geometries and solidities. Collective phase-locking 
modes are observed, whose topology is commented 
upon. For each set of plate parameters, diagrams of - 
stability are constructed which" are used to investigate 
the coupling mechanism between jets, as well as the 
criteria of transition from one phase-locking mode to 
another. In a last step, considerations of symmetry 
are used to highlight the particular topology of phase- 
locking modes, with two different approaches. The 
first approach is specific to the present experiment, 
and is derived from the empirical procedure which was 
adopted for observations, while the second is more 
generic, and uses group theory. 

2. Experimental set-up 

In the present experiment, we study the collective 
dynamics of a bidimensional network of coupled wa- 
ter jets. To generate the jets, a plexiglass tranquiliza- 
tion chamber is used (Fig. I). The water comes in 
through a thin cylinder and penetrates in the chamber 
through two 3 mm holes perforated at its end. The tur- 
bulent flow is then homogenized using a grid and a 
5 cm thick dense sponge. A sponge was preferred to 
straws because the vertical size of the whole appara- 
tus had to be limited. The flow then comes through 
a 6 mm thick perforated plate, generating co-flowing 
water jets. Note that in a first prototype, the jets issued 
from 30 mm long pipes instead, in order to facilitate 
the backward recirculation of the flow. However, since 
no quantitative change in the collective dynamics was 
observed, we opted for the more convenient device 
of Fig. 1. Indeed, since the perforated plates are re- 
movable, various geometries and plate parameters can 
be tested. Three geometries have been investigated: 
square, hexagonal (honeycomb) and triangular, with 
different plate parameters for each of them (Table 1). 
The square, hexagonal and triangular meshes of the 
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Fig. !. Experimental device. A tranquilization chamber is used to homogenize the turbulent incoming flow. Then, the flow passes 
through a removable perforated plate, generating co-flowing water jets. 

Table I 
List of plate parameters 

Network mesh 

Jet diameter [ ~  Q 

0 = 1.44 mm 

0 --" I .Omm 

0 --" 0.5 mm 

N ffi 89, d = 8mm 
N = 57, d -  12, 6, 4mm 
N ffi 57, d -  12, 6ram 

N = 46, d = 12, 8 mm N - 6 8 ,  d = 12. 8mm 

Note: N - the number of jets of the network; d - the distance between nearest neighbours. 

network are represented by the corresponding symbols 
in ~ble  I. N is the number of jets of she network, 
while d is the distance between nearest neighbours. 
Except for the square geometry, only 1.0 mm holes 
have been used. 

The plexiglass tranquilization chamber is immersed 
in water in a 0.4 m deep, 0.4 m wide and 0.7 m long 
plexiglass water tank. The chamber can be positioned 
vertically using a micropositioner, so that the depth of 
the jets below the free-surface can be adjusted. The 
water is pumped at the bottom of the tank using a 
centrifugal pump, and reinjected at the bottom of the 
tranquilizafion chamber (Fig. 1). The free surface level 
is thus always constant in the tank. Moreover, the water 
tank itself is large enough for the pumping of the water 
not to create perturbations in the hydrodynamics of the 
jets. A flowmeter is used to control the total flow rate 
through the perforated plate. The homogeneity of the 

flow throughout the whole network of jets has been 
verified at low flow rate values, using an ombroscopic 
method. The homogeneity of the 2D light reflection 
patterns obtained, along with the great sensitivity of 
the method, allowed us to conclude that the flow rate 
was homogeneous throughout the network. 

The presence of a water/air interface allows a 
bidimensional visualization of the system. In the 
counterpart, it introduces complexity in the physical 
processes, since the water jets are impinging on a de- 
formable surface. Actually, the interface is part of the 
physical system and reveals to be crucial, both for the 
development of the oscillatory phenomenon which is 
observed and for the coupling between the jets. 

The dynamics of the system is expected to depend 
both on (i) physical parameters governing the dy- 
namics of a jet: the flow F (or the velocity F/S) 
at the jet nozzle and the depth h of the jet nozzle 
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Fig. 2. Surface deformation at the vertical of a jet, for increas- 
ing values of the adimensional parameter e = ( F  - F c ) / F c .  

(~ = 1.44mm, h = lOmm): (a) e = -0.2;  (b) e = -0.1;  (c) 
e = O: a transition is observed where the bump starts oscillat- 
ing at a high eigenfrequency; (d) surface waves generated by 
the oscillatory motion of the bump. In both panels (c) and (d), 
stroboscopic lighting is used to visualize the phenomenon, in 
panels (a)-(c), the zoom magnification factor is 20. 

(iii) characteristics of the fluid: surface tension and 
viscosity. 

below the free-surface; (ii) geometrical parameters: 
the geometry of the network, the distance d between 
nearest neighbours in the lattice, the diameter ~ of 
the holes and the number N of jets in the network; 

3. Oscillatory mode for a single jet 

3. !. Observations 

The impingement of the jet on the water/air in- • 
terface induces an upward deflection of the interface 
at the vertical of the jet. The height of the deflection 
increases with increasing flow rate at the nozzle exit. 
Fig. 2 illustrates the evolution of the free-surface 
deformation as the flow rate increases. First, only a 
small and smooth swell is visible (Fig. 2(a)); then 
a higher bump bursts at the top of the small swell 
(Fig. 2(b)). Then this bump grows up to a critical 
height where it starts oscillating (Fig. 2(c)) in a cir- 
cular motion at the same time as surface waves are 
generated (Fig. 2(d)). The height of the bump at the 
threshold .is of a few millimeters, but depends both 
on the diameter ~ of the jet and on the depth h of 
the jet nozzle. The eigenfrequency of the oscillation 
is larger than the standard video frequency, and a 
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Fig. 3. Field of existence of the transition. Note that the tran- 
sition to the oscillatory mode is no longer observed for jet di-' 
ameters exceeding the capillary length of water (/c = 2.0 mm). 

stroboscopic lighting is thus necessary to visualize 
the phenomenon (Figs. 2(c) and (d)). 

The oscillatory transition is observed for very nar- 
row ranges of parameters. It is no longer observed for 
jet diameters larger than 2.5 mm, nor is it observed for 
too large depths h. Actually, the smaller the diamter 
of the jet, the deeper the transition can be observed: 
from a maximum depth of 1.5 cm for a 2.0 mm diam- 
eter jet to a maximum depth of 3 cm for a 0.5 mm di- 
ameter jet. This is summarized, qualitatively, in Fig. 3, 
where the shaded area represents the existence field 
of the transition: in this area, the oscillatory mode 
appears above a flow rate threshold value depending 
both on the diameter 0 and on the depth h of the 
jet.  

3.2. Measurements 

3.2.1. Measurements at the threshold 

Using a photodiode (placed above a given point of 
the free-surface) and a large spectrum lighting source, 
the time dependence of the surface deformation has 
been analysed using a spectrum analyser. Just above 
the threshold, the spectrum displays a fundamental 
mode harmonics (cf. [27]). The dependence of 
the frequency of the fundamental mode with the depth 
h and the diameter 0 of the jet nozzle has been ex- 
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Fig. 4. (a) Variations of the eigenfrequency of the oscillatory 
mode (at the threshold) versus depth. 0 = 1.44 mm. (b) Corre- 
lation between the eigenfrequency of the mode and the bump 
height (at the threshold). 0 = 1.44 mm. 

amined closely. Fig. 4(a) shows the variation of the 
frequency of the oscUlato:'y mode (at the threshold) 
versus the depth h for a 1.44 mm diameter jet. The fre- 
quency is a decreasing function of depth. Three linear 
trends can be distinguished- for very shallow depths, 
below .5 mm, a strong negative slope is observed; 
then, between 5 and 20mm, the slope is moderate; 
finally, between 20 and 30mm, the frequency de- 
creases only slightly with depth. For the same depths, 
the height of the bump (at the threshold) has also 
been measured. When the frequency is plotted versus 
the height of the bump (Fig. 4(b)), a liaear trend is 
observed, and the frequency decreases with increas- 
ing height. Note that the frequency (at the threshold) 
decreases from 40 to 20 Hz, while the bump height 
(at the threshold) increases from 2.2 to 3. I ram, when 
the depth h is increased from 1 to 30mm (Fig. 4(b)). 
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The dependence of the frequency upon the diameter 
of the jet has also been examined. For a depth of 
10mm, the frequency at the threshold is 36, 27 and 
20 Hz, respectively for jet diameters of 1.0, 1.44 and 
2.0 mm: the frequency decreases when the diameter of 

the jet increases. 

3.2.2. Measurements above the threshold (at a fixed 

depth) 
When the flow is increased above the threshold, the 

fundamental peak is enlarged and the harmonics dis- 
appear, buried in the background noise: the sharpness 
of the monoperiodic mode decreases as the spread- 
ing from the threshold increases. Indeed, the motion 
of the bump appears to be more complex: the oscil- 
lation in the horizontal plane is contaminated by the 
vertical gravitational collapses of the bump, hence the 
enlargement of the peak. At the end, the spectrum has 
become large and the jet is in the well-known foun- 
tain regime. In Fig. 5(a), tile frequency is plotted ver- 
sus the relative spreading e = (F - Fc)/Fc from the 
flow rate threshold Fc, at depths of 2, 5 and I0 mm, 
for a jet diameter of 1.44 mm. For a given depth, 
two different symbols are used to distinguish the os- 
cillatory regime (diamonds) and the fountain regime 
(squares). Note that the frequency of the oscillatory 
mode decreases linearly as ~ increases. The slope is 
the same for depths of 5 and 10 mm, but is slightly 
different for a depth of 2 mm. In Fig. 5(b), the corre- 
sponding bump height is plotted versus e for depths 
of 5 and 10mm. The symbols are the same as in 
Fig. 5(a), except that a third symbol (circles) is used 
for negative values of e, corresponding to the case 
of Figs. 2(a) and (b). In the oscillatory regime, the 
height of the bump increases linearly as e increases. 

When plotted together, the frequency and the bump 
height still display a negative linear tendency as in 
Fig. 4(b), but the slope is smaller. The difference in 
slope may result from the vertic::l fluctuations of the 
bump observed above the threshold: the height which 
is indeed measured is the maximum height reached 
by the bump. The physical link with the frequency is 

thus perhaps not as direct as for the measures at the 

threshold. 
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Fig. 5. (a) Variations of the eigenfrequency of the oscilla- 
tory mode for increasing flow rate values above the thresh- 
old. 0 = 1.44mm; x+: h = 2ram: o.~: h - 5mm; @U: 
h - IOmm. (b) Variations of the bump height for increasing 
flow rate values above the threshold. O = 1.44 ram. Non-filled 
symbols: h = 5 mm; filled symbols: h = IOmm. oe: ~ < O, 
no motion; oO: ~ > O, oscillatory mode: E3,: e > 00 fountain 
regime. 

To summarize: 
- above some flow rate threshold value, the bump 

at the vertical of the .jet exhibits a monoperiodic 

oscillatory mode, 
- at the same time, surface waves with a spiral geom- 

etry are generated, 
- at the threshold, the frequncy of the mode decreases 

with increasing depth or with increasing diameter of 
the jet. The decrease is more pronounced at shallow 

depths, 
- when the flow rate is increased above the threshold, 

the bump height increases while both the sharpness 

of the mode and its frequency decrease, 
- t h e  frequency decreases linearly with increasing 

bump height. 
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3.3. Jet instability 

At this stage, we would like to give some highlights 
on the possible origin and mechanism of the transi- 
tion. The existence of a water/air interface is likely 
to play a crucial role in the oscillatory phenomenon 
which is observed, Indeed, the role of the capillary 
forces is pointed out (Fig. 3), by the fact that the tran- 
sition is no longer observed for jet diameters larger 
than the capillary length of water (Ic =2 mm [26]). 
The role of surface tension has been verified by adding 
drops of liquid soap: the threshold of the transition 
is then reduced significantly, whereas the frequency 
of the oscillation is only slightly modified. Below the 
threshold, a steady deformation of the surface is ob- 
served (Figs. 2(a) and (b)), which results from the ver-" 
tical balance of the following forces: gravity, which 
tends to reduce the height of the bump; surface tension, 
which tends to minimize the surface of the bump; and 
the thrusting force of the jet, which tends to increase 
the height of the bump, which is interpreted as an en- 
trainment motion initiated by a jet helical instability. 

At the threshold, the surface bump undergoes a 
circular motion (Fig. 2(c)), generating surface ripples 
with a spiral pattern (Fig. 2(b)). The spiral pattern 
indicates that the source radiating the ripples is rotat- 
ing at the frequency of the bump motion itself. Since 
laminar jets display helical instabilities that would 
well explain the particular geometry of the waves at 
the surface, we think that the instability we observe 
originates in the submerged water jet beneath the 
bump. 

Few studies have been devoted to instabilities in a 
laminar jet. Batchelor and Gill [291, using a linear sta- 
bility analysis in an inviscid fluid, showed that the he- 
lical and sinuous modes were the preferred modes of 
instability for a laminar jet. In an early dye experiment, 
Reynolds [30] observed sinuous undulations in a natu- 
rally excited liquid jet for a Reynolds number between 
10 and 300. Both experimental [31-33] and theoreti- 
cal [31,34,351 studies have since confirmed the exis- 
tence and predominance of helical instabilities in such 
laminar jets. In the present experiment, the Reynolds 
number Re = uO/t, of the jets (where u = F/S is the 
ratio of the flow rate over the nozzle surface, and 

the diameter of the jet) remains moderate - 300-600 
at the transition threshold - but is large enough for 
instabilities to be able to develop [36]. However, the 
development of instabilities in unstable jets is highly 
dependent on the velocity profile at the nozzle exit 
of the jet. In our experiment, the moderate Reynolds 
number Re of the jets, along with the large nozzle 
length to nozzle diameter ratio r of the jets (r = 6 
with perforated plates, r = 20 with the early prototype 
with pipes), should make this profile rather smooth, if 
not that of a laminar jet exactly. 

As a conclusion, we think that the oscillatory mo- 
tion of the surface bump is a materialization of the 
helical instabilities which develop in the submerged 
water jet. Since a dynamic upward pressure is needed 
to maintain the surface bump to a given height, and 
since no variation of the bump height is observed dur- 
ing its oscillatory motion (at the threshold at least), 
it shows that the surface bump just follows the rotary 
motion of the jet column in perfect synchrony. How- 
ever, the existence of a correlation between the surface 
bump height and the eigenfrequency of the oscillation 
(Section 3.2) indicates that the surface, which is the 
upper limit of the oscillating jet column, may control 
the eigenfrequen'cy of the instability through the size 
of the bump. Indeed, considering the bump like the 
mass of an inverted pendulum would well explain the 
decrease of frequency observed for increasing bump 
height (or increasing flow rate). 

Note that a sinuous mode is also observed for rather 
shallow depths (a few millimeters) and for flow rates 
just above the threshold. The bump then describes a 
rectilinear motion and hemi-,circular concentric ripples 
are generated. However, when the depth is increased, 
or when the flow rate above the threshold is increased, 
only the helical mode is observed, in agreement with 
previous observations or stability analysis [29,31]. 

4. Collective modes 

4. !. Two coupled jets and line of coupled jets 

Above the flow rate threshold value, each jet is 
an oscillator whose eigenfrequency depends both 
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on the depth h and on the flow rate F. To be- 
gin with, we conducted simple experiments with 
two coupled oscillating jets. The influence of the 
depth h, the flow rate F and the distance d be- 
tween the jets was investigated. When d is smaller 
or equal to 12mm, the jets oscillate at the same 
frequency and are either in phase (acoustic mode) 
or :t phase-shifted (optical mode). Transitions are 
observed between the two modes with varying flow 
rate or depth. When the distance d between the jets 
is increased, the jets begin to display incoherency, 
oscillating at two distinct frequencies. However, the 
difference A f  depends on the depth of the jets be- 
low the surface. For instance, for d = 24mm, we 
measured A f  for different depths at the flow rate 
threshold of the instability, we obtained A f  = 4 Hz 
at h = 2ram; A f  = 2.5Hz at h -- 5mm; Af  = 
l.SHz at h = 10mm and A f  = 0 (synchrony) 
for depths larger than 13 mm. One should keep in 
mind that the deeper the jets below the surface, the 
larger the bumps at the surface at the critical flow 
rate, and the stronger the surface waves. If, as will 
be developed in a following section, we think that 
the oscillators couple through the surface waves 
radiating from the bumps, it should not be surpris- 
ing that synchrony is recovered for large depths. It 
is thus uneasy to determine a unique critical dis- 
tance of interaction between the jets. Moreover, 
for a given depth h, the critical distance depends 
also on the couple of jets chosen. For instance, tbr 
one couple, incoherency appeared at d = 48 mm, 
whereas synchrony still prevailed for another couple. 
This may result from little differences in diame- 
ter when the holes are machined. The "population" 
of oscillating jets could then present a frequency 
bandwidth A f  depending on the quality of the 
machining. 

Systems consisting of lines of jets have also been in- 
vestigated. Acoustic and optical modes similar to those 
of systems of lines of vortices [ 19l were observed, with 
transitions between the two modes when the flow rate 
or the depth are varied. It should be noted that when 
increasing the flow rate, the instabilities usually ap- 
pear first for the two jets situated at the end of the line. 

4.2. Bidimensional networks 

4.2.1. Description o f  the modes 

Let us now explore the collective dynamics of 
bidimensional networks of such oscillators. To do 
that, a set of removable plexiglass plates has been 
machined, including three different geometries, and 
for each of them different sets of plate parameters 
(Table 1 ). 

When coupled together, the jets always remain syn- 
chronized at the same frequency and oscillate with the 
same amplitude. Note that unlike in the two-jet system, 
and because of the necessary confinement of the exper- 
iment, the first neighbours of any jet are now always 
closer than 12 mm (Table I). The collective modes 
display a monoperiodic time dependence simply char- 
acterized by its eigenfrequency. The spatial organi- 
zation of the system is dominated by phase-locking 
phenomena: the initial network of jets subdivides into 
several sublattices of in-phase jets. To determine the 
spatial organization of the system, a stroboscopic light- 
ing is used, at a frequency close to that of the eigen- 
frequency, and the residual motion of the network 
of bumps is observed. A grazing or vertical (using a 
beam-splitter plate) stroboscopic lighting is used, and 
a video recorder is placed at the vertical of the system. 

In the helical instability mode, each oscillator, or 
bump, is characterized by its direction of rotation and 
by its phase shift relative to other bumps. To deter- 
mine the latter, note that since the source of the rip- 
ples is rotating, the initiating point of the spiral pattern 
(Fig. 2(d)) can be identified easily at every instant. To 
identify the different collective modes, the following 
procedure is adopted: a given jet is taken as a refer- 
ence, and the comparative state of its nearest neigh- 
bouts is observed (comparative direction of the helix 
and phase-shift). This empirical procedure proved to 
be the most accurate since all collective modes show 
invariance by translation properties. 

For each network geometry, different sets of plate 
parameters have been tested (Table 1), and a few col- 
lective modes have been identified. For each mode, 
a name has been given, specific to the particular ar- 
rangement of the bumps. All the modes that have been 
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Fig. 6. Collective phase-locking modes. Fol each mode, the 
direction of rotation and the phase of the oscillators are repre- 
sented using a surrounding arrow and grey pattern circle, re- 
spectively. Jets in phase are represented by same patterns and 
define sublattices whose mesh is drawn with either thin or thick 
lines, according to the direction of rotation. Square geometry: 
(a) diagonal mode, (b) gearing mode, (c) simultaneity mode. 
The arrows indicate the comparative instantaneous vector posi- 
tion of four neighbouring jets. Hexagonal geometry: (d) acous- 
tic mode, (e) inscribed triangles mode, (f) asymmetrical 2d 
hexagon mode, (g) 3d hexagon mode. Triangular geometry: (h) 
acoustic mode, (i) parallel mode, (j) asymmetrical 2d hexagon 
mode. 

identified in the three geometries are represented in 
Fig. 6. For each mode, the direction of rotation and 
file phase of the oscillator are represented using a sur- 
rounding arrow and a grey pattern circle, respectively. 

(d) 

Fig. 6. Continued 

Circles with the same grey pattern correspond to jets 
rotating in phase in the same direction. 

In the square geometry, three modes have been iden- 
tified: diagonal, gearing and simultaneity. 

The diagonal mode is rather simple: all the jets 
rotate in the same direction (see Fig. 6(a) for the 
schematic representation, and Fig. 7 for the real 
system). The first neighbours of a given jet of ref- 
erence are phase-shifted by 7r with it, whereas its 
second neighbours are in phase with it. The jets in 
phase arrange thus in two sublattices phase-shifted 
of ~r, whose mesh is a square of size , j ~  (thin line 
squares of Fig. 6(a)). Arrows are used to represent 
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the instantaneous position vector of the four nearest 
neighbours. 

In the gearing (Fig. 6(b)) and simultaneity 
(Fig. 6(c)) modes, the jets arrange in two distinct sub- 
networks (one for each direction of rotation). Each 
subnetwork is subdivided into two a- phase-shifted 
sublattices where the jets rotate in phase in the same 
direction. The mesh of the sublattice is a square of 
size 2d (thick and thin lines are used to distinguish 
the two subnetworks or the two directions of rotation). 
The first neighbours of a given reference jet rotate in 
the direction opposite to that of the reference, whereas 
the second neighbours rotate in the same direction 
but display a phase-shift of n" with it. The differ- 
ence between the gearing and simultaneity modes is 
the comparative instantaneous position of the near~ 
est neighbours: in the gearing mode (Fig. 6(b)), the 
arrows point alternatively at the centre of a four-jet 
unit, whereas in the simultaneity mode (Fig. 6(c)), 
they all point at the centre simultaneously, hence the 
respective names. 

In the hexagonal geomet~., four different modes 
have been identified: acoustic, inscribed triangles, 
asymmetrical 2d hexagon and 3d hexagon. 

The acoustic mode (Fig. 6(d)) is the simplest one: 
all the jets rotate in phase in the same direction. 

The inscribed triangles mode (Fig. 6(e)) is the trans- 
position of the diagonal mode to the hexagonal geom- 
etry: the squares of size ~ are replaced by equilat- 
eral triangles of size ~f~ .  

The asymmetrical 2d hexagon mode (Fig. 6(0) 
is less symmetric than the previous ones. The jets 
arrange again in two distinct subnetworks (one for 
each direction of rotation), but one quarter of them 
rotate in the first direction whereas the other three 
rotate in the opposite direction. For the jets of ref- 
erences of the first type (blank circles of Fig. 6(f)), 
all the first neighbours rotate in the direction oppo- 
site to that of the reference, whereas for the jets of 
reference of the second type (black and grey circles), 
one-third of them rotate in the direction opposite 
to that of the reference and the other two-thirds ro- 
tate in the same direction. The jets in phase of the 
first type arrange in one sublattice of hexagons of 
size 2d, The jets in phase of the second type at- 

S. Houard et aL/Physica D99(1996) 38 
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Fig. 7. Collective diagonal mode for a square geometry (seen 
from above). 

range in three phase-shifted sublattices of hexagons 
of size 2d. The difference between all the previous 
modes is that two jets of reference (one of each 
type) are now needed to derive the spatial organiza- 
tion of the network using invariance by translation 
properties. 

In the 3d hexagon mode (Fig. 6(g)), the jets arrange 
in two distinct subnetworks too (one for each direction 
of rotation). Each subnetwork subdivides into three 
phase-shifted sublattices where the jets rotate in phase 
in the same direction. The mesh of the sublattice is 
a hexagon of size 3d. For both subnetworks, the first 
and third neighbours of a given reference jet rotate in a 
direction opposite to that of the reference, whereas the 
second neighbours rotate in the same direction but are 
phase-shifted with it. Note that in contrast ,with all the 
previous modes, the phase-shift of the second neigh- 
bours depends on the eigendirections of the network. 

In the triangular geometry, three different modes 
have been identified: acoustic, asymmetrical 2d 
hexagon and parallell 

The acoustic mode (Fig. 6(h)) is simply the trans- 
position of the acoustic mode of the hexagonal geom- 
etry. The same remark stands for the asymmetrical 2d 
hexagon mode (Fig. 60)) too. 

The parallel mode (Fig. 60)) is specific to the trian- 
gular geometry. The jets arrange in two distinct sub- 
networks (one for each direction of rotation). Each 
subnetwork is subdivided into two n" phase-shifted 
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sublattices where the jets rotate in phase in the same 
direction. The mesh of the sublattice is a hexagon of 
size 2d (thick and thin lines are used to distinguish 
the two subnetworks, or the two directions of rota- 
tion). In contrast with all the previous modes, all the 
first neighbours of a given reference jet do not ro- 
tate in the same direction: one-third of them rotate in 
the same direction as the jet of reference, whereas the 
other two-third rotate in the opposite direction. 

4.2.2. Diagrams of stability 
For each set of plate parameters of Table 1, a stabil- 

ity diagram has been constructed, where the field of ex- 
istence of the different collective modes is represented 
in a bidimensiona! flow rate (F)/depth (h) space. 
Two diagrams are represented for the square geometry 
(Fig. 8) and the hexagonal geometry (Fig. 9). The dia- 
grams are built up using the following procedure: the 
flow rate is decreased by regular steps, and for each 
flow rate value, the plate is lifted by 2 mm steps, from a 
depth of 3 cm to the surface (the transition for a single 
jet is not observed deeper). For each diagram, a sym- 
bol representing the state of the system is reported for 
each couple of discrete (Fi, hi) values of the param- 
eters F and h. The filled-square symbols correspond 
to low flow rate values (below the threshold): no indi- 
vidual or collective instability is observed. The filled- 
diamond symbols correspond to high flow rate values: 
each water jet is in a fountain regime and no collec- 
tive mode is observed. In-between, each symbol zone 
represents a particular collective mode among those 
described above. Plus symbols represent regimes inter- 
mediate between two well determined phase-locking 
modes. Cross symbols represent regimes with inter- 
mittent coupling of the bumps: such regimes are ob- 
served just above the threshold. In Fig. 8(a), the dashed 
curve represents the variation of the flow rate thresh- 
old versus the depth of the plate: note that the thresh- 
old increases roughly linearly with the depth. 

For the square geometry (Figs. 8(a) and (b)), the 
diagonal, gearing and simultaneity modes are repre- 
sented by circle, square and triangle-right symbols, 
respectively. Two other modes have been observed 
marginally at rather shallow depths: triangle-up sym- 
bols correspond to an optical mode between the lines 
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Fig. 8. Collective modes' stability diagrams - Square geometry: 
(a)  N = 57,  d = 12 mm, O = 1.0 ram; (b) N = 57;  d = 6 mm: 
O = 0.5 mm. l :  no collective dynamics; O: fountain regime; 
×: nonpermanent regime: 4-: unidentified regime: o: diagonal 
mode; n: gearing mode; ~: simulta,eity mode: 4: optical mode: 
*: shear mode. 

(or the columns) of the square network, whereas star 
symbols correspond to a shear mode between the lines 
(or the columns). Note that in these two modes, the 
jets are in the sinuous instability mode and not in the 
helical mode as for all the previous collective modes. 
The plate parameters for the diagram of Fig. 8(a) are 
N = 57, d = 12 mm and 0 = 1.0 mm, whereas those 
for Fig. 8(b) are N = 57, d = 6 mm and 0 = 0.5 mm 
(Table 1). Note that the d/dp ratio (d/O = 12) is kept 
constant for both diagrams. 

First, a comparison between the two diagrams 
shows that the field of existence of the different col- 
lective modes is shifted. Moreover, the simultanei~ 
mode is observed in Fig. 8(b), but not in Fig. 8(a). 
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Fig, 9. Collective modes' stability diagrams - Hexagonal ge- 
ometry: (a) N = 46, d = 12ram, ¢) = 1.0mm; (b) N = 46, 
d -- 8 ram, ~ = 1.0 ram. I :  no collective dynamics: @: tbun- 
rain regime: ×: nonpermanent regime: +: unidentified regime,: 
o: acoustic mode: [3: 3d hexagon mode:/1: inscribed triangles 
mode: *: asymmetrical 2d hexagon mode. The same scaling is 
applied for both panels (a) and (b). 

Second, the same modes can be observed for flow 
rate values far different: the diagonal and gearing 
modes are observed in both diagrams 8(a) and (b), 
corresponding to 1.0 and, 0.5 mm diameter jets, re- 
spectively. Third, for each diagram, transitions are 
observed from one mode to another when the flow 
rate F (alone) or the depth h (alone) is modified: note 
for instance the transition from the gearing to the 
simultanei~, mode when the flow rate increases, for 
a depth of lOmm, or when the depth decreases for a 
flow rate of 37.5 dma/h (Fig. 8(b)). 

For the hexagonal geometry (Figs. 9(a) and (b)), the 
acoustic, inscribed triangles, 3d hexagon and asym- 

metrical 2d hexagon modes are represented by circle, 
triangle-up, square and star symbols respectively. In 
this geometry, no collective mode corresponding to the 
sinuous instability mode of the jets has been observed. 
The plate parameters for the diagram of Fig. 9(a) are 
N = 46, d = 12 mm and 0 = 1.0 mm, whereas those 
for Fig. 9(b) are N = 46, d = 8 mm and 0 = 1.0 mm. 
This time, only the distance d between nearest jets has 
been changed (from 12 to 8 mm). The significance of 
the vertical dashed line drawn for a depth of l0 mm 
will be examined in the next section. 

A comparison between the two diagrams shows, 
again, that the field of existence of the different col- 
lective modes is shifted. Transitions from one mode 
to another are observed, again, when the flow rate F 
(alone) or the depth h (alone) is changed: note for 
instance the transition from the acoustic to the 3d 
hexagon, then from the 3d hexagon to the inscribed 
triangles mode when the flow rate is increased for a 
depth of 10mm (Fig. 9(b)). 

4.3. Mechanism of coupling between the jets 

Two major questions arise concerning tile coupling 
between the jets:' (i) By what mechanism do the os- 
cillating jets couple to each other? (ii) What governs 
the transitions that are observed between the different 
collective modes? 

In the bidimensional system of co-flowing air-jets 
of Villermaux and Hopfinger [26], the existence of a 
fluid recirculation cavity due to the confinement of 
the jets by their nearest neighbours is crucial to the 
phenomenon of individual and collective oscillation. 
In the present experiment, the 3D recirculation of the 
jets does not seem to be of crucial importance. In- 
deed, a gi~;en collective mode can be observed with 
either a system of tubes (see Section 2) or perforated 
plates, and for depths of either 1 or 3cm, provid- 
ing quite different recirculating patterns for the jets. 
On the other hand, no coupling between the jets has 
ever been observed in the absence of surface waves 
radiating from the oscillating bumps. As pointed out 
above for two-jet systems, the coupling between the 
jets seems to be stronger when the jets are set deep 
below the surface, generat ag stronger surface ripples. 
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Surface waves could thus convey the interaction be- 
tween the jets, providing long distance rather than dif- 
fusive coupling of the oscillators. 

Concerning the transitions observed between the 
different modes in the stability diagrams, a first intu- 
itive interpretation is that the bifurcations result from 
the co~|finous increase (or decrease) of a pertinent cou- 
pling parameter. Since surface waves provide the most 
plausible mechanism of coupling, the pertinent cou- 
pling parameter should include some of the character- 
istics of the waves. 

The experiment is governed by three parameters: 
the flow rate F, the depth h and the distance d be- 
tween nearest neighbours (for a given geometry). 
Using the different stability diagrams obtained for 
the sets of plate parameters of Table 1, the respec- 
tive role of the three parameters is highlighted using 
three different transformations where one of the three 
parameters is changed while the other two are left 
constant. We consider thus transformation o~: h and 
d constant, F increases, transformation fl: F and d 
constant, h decreases and transformation y: F and h 
constant, d decreases. For each geometry, the same 
sequence of bifurcations from one mode to another is 
observed for the three transformations: 
square geometry - diagonal-, gearing - ,  simui- 
tanei~, mode; hexagonal geometry - plus symbol - ,  
acoustic - ,  3d hexagon --, inscribed triangles mode; 
triangular geometry - parallel - ,  acoustic mode. 

Note that the validity of the above sequences can 
be partially checked using the stability diagrams of 
Figs. 8 (square geometry) and 9 (hexagonal geome- 
try). The term "partially" stems from the fact that a 
complete sequence is never observed along a single 
horizontal or vertical profile of a stability diagram (at 
best, two transitions can be observed along the same 
profile: vertical dashed line of Fig. 9(b)). To derive the 
above sequences, a complete set of stability diagrams 

is thus required. 
A surprising feature is observed, which is not rep- 

resented here: in many cases, the sequence of bifur- 
cations loops, so that increasing (or decreasing) again 
the single parameter of the transformation induces the 
first mode of the series to replace the last one. This is 
observed for transformations (o~) and (fl) in the square 

geometry, for transformation (or) in the hexagonal ge- 
ometry, and for transformations (o~), ( i l l  and (y) in 
the triangular geometry. Finally, collective modes with 
very reduced existence fields in the diagrams (optical 
and shear modes in the square geometry, and asymmet- 
rical 2d hexagon modes in the hexagonal and triangu- 
lar geometries) have not been included in the present 
analysis. 

Different coupling scenarios are now considered, , 
whose validity is examined with regard to the above 
sequence of modes. First, the role of the flow rate F 
and of the jet velocity u0 at the nozzle exit is exam- 
ined briefly: as pointed out above itt the comparison of 
diagrams 8(a) and (b), the same collective mode can 
be observed for very different flow rate values: this 
shows that the flow rate is not a relevant quantity for 
the coupling between the jets. The mean velocity u0 
at the jet exit is neither a relevant quantity: transitions 
are observed between modes when d is decreased at 
constant F and 4, values (and thus at constant u0 = 
cte* F/02). Finally, the marked difference between di- 
agrams 8(a) and (b) shows that d/O is not a relevant 

quantity either. 
The next scenario was to consider the height of sur- 

face bumps as a possible quantity relevant to coupling. 
First, the oscillatory mode for a single bump starts 
when the height of the bump reaches a threshold value 
(Fig. 2). Second, the same height can indeed be ob- 
tained for flow rate values far different if the diam- 
eter of the jet is changed, like in Figs. 8(a) and (b). • 
Third, the frequency of the oscillatory mode and the 
height of the bump are correlated (Section 3.2). In the 
case of a single jet, we have verified that when the 
flow rate (alone) increases, or when the depth (alone) 
decreases, the height of the bump increases. The se- 
quence of modes observed for both transformations 
ot and fl could then be interpreted as a consequence 
of the continuous increase of bump height. However, 
this hypothesis breaks down when transformation y is 
considered: when the distance between the jets is re- 
duced, at constant F and h, the height of the bumps 
is left unchanged, whereas transitions between collec- 

tive modes are still observed. 
Let us now consider that the coupling is not gov- 

erned by the height of the bump itself but by the 
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Fig. 10. The frequency of the collective modes is measured 
across the vertical dashed line profile of Fig. 9(b), for increasing 
values of the flow rate above the threshold. The symbols are 
the same as in Fig. 9(b). Note the marked jump of frequency 
each time the system switches to a new mode. 

amplitude of the surface ripples that are generated at 
a distance d from the radiating bump (see Section 3). 
Note that this is equivalent to considering an adimen- 
sional coupling parameter constructed as the ratio of 
the bump height to the distance d of the first neigh- 
bouts. This explanation is still coherent with the se- 
quence of modes observed for both transformations 
and ~: if the height of the bump increases, the am- 
plitude of the surface ripples increases in the same 
way. It is also coherent with the sequence observed for 
transformation 3,: the conservation of energy implies 

decrease of the amplitude of the ripples when the 
radial distance from the point source increases. Thus, 
if the jets are brought closer, the amplitude of the rip- 
pies at the distance of the first neighbours increases, 
in agreement with the sequence of bifurcations. How- 
ever, this scenario does not account for the looping of 
the sequence of modes. 

Anyway, surface wav=s remain the most plausible 
means of coupling, One should thus consider the thor- 
ough interaction between an oscillating jet and the 
surface waves that propagate from all the other jets 
of the network, in particular resonance effects such as 
the tuning be~een the wavelength of the collective 
modes and the discrete wavelengths of the network. 
This tuning effect could well explain the looping phe- 
nomenon observed for the sequence of modes, and 
would provide a valuable insight into the mechanism 

of transition from one mode to another. In Fig. 10, the 
frequency of the collective modes has been measured 
along the vertical dashed-line profile of Fig. 9(b), using 
a photodiode and a spectrum analyser (same set-up as 
in S~tion 3), ~ e  variations of the frequency are plot- 
ted for increasing flow rate values above the thresh- 
old, for a depth of 10 mm. The symbols are the same 
as those used in Fig. 9(b). When the system remains 
in the same phase-locking mode, the frequency de- 
creases smoothly with increasing flow rate. However, 
each time the system switches to another mode (from 
the acoustic to the 3d hexagon mode, then from the 3d 
hexagon to the inscribed triangles mode), a sharp drop 
of frequency occurs. Now decreasing the flow rate in 
a reverse path, a slight hysteresis phenomenon is ob- 
served, which is not represented in Fig. 10. In contrast 
with the case of a single jet (Section 3), the sharpness 
of the collective mode does not decrease when the 
flow rate above the onset of the mode increases. The 
peak of frequency ;.n the spectrum remains narrow in- 
stead. In our opinion, this results from the possibility 
of bifurcating from one collective mode to another. 

At this stage, we propose the bifurcation from one 
mode to another to be governed by a tuning criterion 
between the wa~/elength of the oscillatory mode of the 
jets and the discrete wavelengths associated with the 
periodic bidimensional pattern of the network. The 
mechanism might be as follows: the frequency, and 
hence the wavelength of the oscillatory mode of the 
jets are governed by external variations of the param- 
eters F and h and by the surface waves. The system 
adjusts until the tuning of the present collective mode 
(imps below that of a new collective mode, with some 
hysteresis however. Thea the system bifurcates to the 
new mode. 

4.4. Considerations of symmetry 

General conclusions can be drawn from the descrip- 
tion of the collective modes (Section 4.2.1): 
- the jets always oscillate at the same frequency and 

with the same amplitude, 
- the sublattices defined by the jets in phase are reg- 

ular polygons whose symmetry is that of the perfo- 
rated plate, 
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- the mesh of all different sublattices is the same, 
- the spatial arrangements display no modulation, and 

thus look similar to those encountered in crystals 
(for example, the gearing mode of Fig. 3(a) is the 
analogous of a NaCl crystallographic structure). 

All this is relevant to a strong coupling between the 
jets. However, the coupling is not strong enough to 
perturb the limit cycles of the oscillators [4]. Although 
a mechanism has been proposed in the previous sec- 
tion to explain the transitions between the collective 
modes, the criteria of selection of the particular topol- 
ogy of the collective modes (see Section 4.2. !) are still 
unclear. For example, the diagonal (square geometry) 
and inscribed triangles (hexagonal geometry) modes 
have no equivalent in the triangular geometry, and the 
gearing and simultaneity modes have no equivalent in 
the hexagonal and triangular geometries. 

Using considerations of symmetry, it is indeed pos- 
sible to explain some of these features. To investigate 
the symmetries of the system of coupled water jets, 
two different approaches are considered: the reference 
jet approach and the group theory approach. The first 
one is rather specific to the present experiment and 
derives from the experimental procedure adopted to 
observe the collective modes. The second one is more 
generic and examines the spatio-temporal symmetry 
groups of the collective modes. 

4.4.1. Reference jet approach 
This approach derives naturally from the obser- 

vations: it stems from the fact that the collective 
modes display invariance by translation properties. 
Indeed, except for the asymmetrical 2d hexagon 
mode, the spatial arrangement of the network can 
be reconstructed using one reference jet only, a ba- 
sic pattern for its nearest neighbours, and invariance 
by translation properties. Nov/using this invariance 
by translation property as a basic postulate, a sys- 
tematic investigation of all the possible modes is 
undertaken. With this aim, the following procedure 
has been adopted: a given jet is taken as a reference, 
and a systematic investigation of all the possible pat- 
terns defined by the comparative state of its nearest 
neighbours is carded out. The comparative state of a 

1 "~ Neighbouts 
+1 A~ffiO 

gl" .! 

!]" 
+.~1 ¢qui" partition 

" 1 ( + I ) 1 2  (-I ]  

2 (+1)1 ! (-l l 

+l A~ =0 Not Obs I acou~¢ acou~/¢ 
+!  Z~ = O diagonal l ~ 

+I ,t~ ffi 0 di~oonal2 Not Obs 2 ~ ~  

- 1 Not  Obs 4 

+1 : _ ~  Not Obs 5 parallel 

Fig. i 1. Schematic representation of the systematic scheme 
used to investigate the symmetries of the system. A given jet 
is taken as a reference, and the comparative state of its first 
and second neighbours is explored (comparative direction of 
rotation: " -  1" if opposite, " +  I" if same as reference, and for the 
latter comparative phase shift with the reference jet AO). The 
corresponding spatial mode is reported for the three geometries. 
The degree of complexity increases from top to bottom. When 
the spatial mode violates the basic hypothesis of invariance by 
translation, an oblique line is drawn in the corresponding box. 

neigbouring jet is, again, characterized by the com- 
parative direction of rotation of its helical mode and, 
if same direction, by its phase-shift with the reference 
jet. The procedure is thus the same as that applied for 
the observations (Section 4.2.1.), but it is extended 
here to a systematic and comprehensive investigation. 

The systematic investigation is summarized in de- 
tail in Fig. 11. The two columns "first neighbours" 
and "second neighbours" at the left describe the com- 
parative state of the first and second neighbours of • 
the jet of reference. The "+  1" (" -1")  signify that the 
neighbouring jets rotate in the same (opposite) direc- 
tion as that of the reference jet. When in the same 
direction, their phase-shift with the reference jet is in- 
dicated by the AO value. When the phase-shift is not 
isotropic but takes different values along the differ- 
ent eigendirections of the network, a A0 = AO(dir) 
designation is used. In the three columns at the right, 
the corresponding spatial arrangement of the jets is re- 
ported for the three network geometries. Three cases 
can be distinguished: (i) when the corresponding spa- 
tial arrangment violates the basic hypothesis of invari- 
ance by translation, an oblique line is drawn across 
the box, (ii) when the spatial arrangement has been 
observed experimentally and is one of the collective 
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modes descried in Section 4.2.1, the specific name 
given in Section 4.2.1 is reported, in italics (iii) when 
the spatial mode has not been observed, a "Not Obs" 
designation is used. 

The degree of complexity of the pattern defined by 
the first and second neighbours increases from the top 
to the bottom of Fig. 11. To begin with, the simplest 
pattern is considered: all the first neighbours rotate in 
the same direction as that of the reference jet ("+1") 
and are in phase with it. The following step towards 
more complexity is to consider that all the first neigh- 
bours rotate in the same direction as that of the ref- 
erence jet, but present a same phase-shift A0 with it. 
The step further is then to consider that the phase-shift 
is not the same for all the first neighbours, but takes 
different values according to the different eigendirec- 
tions of the network (two in the square geometry, 
three in both hexagonal and triangular geometries): 
A0 = AOi. As a consequence of the invariance by 
translation property, the second neighbours rotate in 
the same direction as that of the reference ("+1") but 
can be phase-shifted with it. Actually, the comparative 
state of the third, fourth and even farther neighbours 
could also be considered, in the present investigation, 
only first and second neighbours have been retained, 
although the analysis has been extended to the third 
neighbours in some cases. This was motivated by the 
small size of the experimental system of coupled os- 
cillators (N ranges from 46 to 89 in Table I). 

in a next step, the first neighbours rotate all in 
the direction opposite to that of the reference C - I " )  
whereas the second neighbours still rotate in the same 
direction as that of the reference ("+l") .  In anal- 
ogy with the previous scheme, different cases can be 
considered according to the comparative phase-shift 
of the second neighbours .with the reference jet. The 
cases of zero, non-zero and direction dependent phase- 
shifts are thus considered successively for the second 
neighbours. A logical continuation of the investigation 
scheme is then to consider that both first and second 
neighbours rotate in the direction opposite to that of 
the reference jet ( " - I " ,  " - I " ) .  

Finally, in a last step, the case where the first neigh- 
bouts of the reference jet do not rotate all in the same 
direction is examined. A further subdivision is made 

depending on whether the two directions of rotation 
are partitioned equally among the first neighbours or 
not. 

Using Fig. I I, let us now compare our predictions 
to the observations: 

First, on the lO collective modes of Section 4.2.1 
(helical instability mode of the jet) eight are predicted 
using the systematic scheme of Fig. l 1. The complex 
spatial arrangements presented in Fig. 6 are retrieved 
exactly, which post-validates the observations. The 
two collective modes which do not appear in Fig. I I 
are the asymmetrical 2d hexagon modes, observed 
for the hexagonal and triangular geometries. Actually, 
these can be recovered using a slightly different inves- 
tigation scheme. Indeed, if two different types of refer- 
ence jet are now considered, with a distinct pattern for 
the first and second neighbours, new collective modes 
can be predicted, among them the asymmetrical 2d 
hexagon mode, that still satisfy some invariance by 
translation properties (although in a weaker sense). In 
the asymmetrical 2d hexagon mode, one of the two ref- 
erence jets has the ( " - I*" ,  " - I * " )  pattern of Fig. I! 
for the columns "first neighbours" and "second neigh- 
bours", whereas the other one has the 2 (+ I) / l ( -  l) 
pattern of Fig. I ! for the column "first neighbours". 
This can be verified in Fig. 60) for instance, where 
the blank circle symbols have the ( " - I*" ,  " - 1 ' " )  
pattern, whereas all the grey circle symbols have the 
2(+ 1 ) / 1 ( -  1 ) pattern. 

Second, using the systematic investigation scheme 
of Fig. 11, it is possible to explain some of the discrep- 
ancies observed between the square, hexagonal and 
triangular geometries. As pointed out above in the text, 
the diagonal (square geometry) and inscribed trian- 
gles (hexagonal geometry) modes have no equivalent 
in the triangular geometry, whereas the gearing and 
simultaneiO, modes (square geometry) have no equiv- 
alent in the hexagonal and triangular geometries. 

In both the diagonal and inscribed triangles modes, 
all the first neighbours present the same phase-shift 
with the reference jet, A¢ = 7r, Fig. 11. The invari- 
ance by translation satisfied by these modes implies 
that the same first neighbours must also display a 
phase-shift of n" with their own first neighbours. This 
requires, among other things, the first neighbours not 
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...O 

Fig. 12. Illustration of noninvariance properties for a triangular 
geometry. 

to be first neighbours among them. If this is verified 
in the square and hexagonal geometries (see Figs. 6(a) 
and (e) for instance), this is not the case in the triangu- 
lar geometry. This is illustrated in Fig. 12: a given jet 
is taken as a reference, and its first six neighbours are 
phase-shifted by ~ with it (full line hexagon). If one 
of the first neighbours of the reference jet is now taken 
as the new reference, two of its own first six neigh- 
bours (dashed line hexagon) are then in phase with it. 
This is the reason why a mode equivalent to the diag- 
onal or inscribed triangles modes is not observed in 
this geometry. 

In the gearing or shnu/taneity modes (square ge- 
ometry), the first neighbours of a given reference jet 
rotate all in the direction opposite to that of the ref- 
erence. Again, tbr the same reason as that mentioned 
above, this state of things is not possible in the tri- 
angular geometry. For the hexagonal geometry how- 
ever, no problem occurs with the first neighbours since 
each jet has three first neighbours which are only sec- 
ond neighbours between them. In the gearing mode 
(Fig. 6(b)), the second neighbours of a given reference 
jet rotate in the same direction as that of the reference 
but display all the same phase-shift (rr) with it. For a 
hexagonal network, the second neighbours of a given 
reference jet define a triangular sublattice: using again 
the same argument as before (Ibr the second neigh- 
bours this time), a mode equivalent to the gearing or 
simultaneity modes in the square geometry cannot be 
observed in the hexagonal geometry. 

The third point is that some spatial collective modes 
are predicted that are not observed. They correspond 
to the "Not Obs" designation in Fig. 1 I. In most cases, 

modes with the same symmetry are observed in other 
geometries. This is the case for the acoustic and 3d 
hexagon modes in the square geometry, and for the 
diagonal 2 and parallel modes in the hexagonal ge- 
ometry. 

Several reasons can be invoked: 
- First, the range of plate parameters has not been 

fully explored: for instance, the diagonal 2 mode 
has been observed with a 13-jet-square network, 
but never with the 57-jet~sqtiare network. Networks 
with so small a number of jets have been tested in 
the square geometry only, explaining perhaps the 
"Not Obs" mode No. 2 in the hexagonal geometry. 

- Second, very complex (poorly symmetric) spatial 
organizations are unlikely to be stable given the 
small size of the system (N ranges from 46 to 89 in 
Table 1). For instance, in the "Not Obs" mode No. 
4, jets in-phase arrange in two subnetworks of four. 
phase-shifted sublattices whose mesh is a square 
of size 2Vr2-3. In the same way, in the "Not Obs" 
No. 6, jets in-phase arrange in two subnetworks 
of four phase-shifted sublattices whose mesh is a 
hexagon of size 2vc3-d. Similarly, collective modes 
of intermediate complexity may not be observed be- 
cause simpler modes (more symmetric) already ex- 
ist. This is the case of the "Not Obs" mode No. 3 
in the square geometry, where the diagonal gear- 
ing and simultaneity modes are observed, and of the 
"Not Obs" mode No. 5 in the hexagonal geome- 
try, where the acoustic, blscribed triangles and 3d 
hexagon modes are already observed. Note that, in 
constrast, no collective mode of intermediate com- 
plexity is predicted in the triangular geometry, and 
that a complex parallel mode is observed. 

- Third, and perhaps the most important, the presea~ 
symmetry considerations do not take into account 
the comparative stability of the different modes. 

However, we see no obvious reason why the acoustic 
mode ("Not Obs" mode No. I ) should not be observed 

in the square geometry. 

4.4.2. Group theoly approach 
The second approach is more general, and has been 

widely used in crystallography or in the description of 
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the symmetries of systems of coupled oscillators [37]. 
A group theory approach has been recently proposed 
to analyse the symmetries of animal gaits [14,15]. 
Since the reference jet approach leads to conclusive 
results already, our purpose here is not to present a 
comprehensive ~atment  of the symmetries of the sys- 
tem using grou~theoretics, but to introduce the key 
points necessary to the specific treatment of the sys- 
tem of coupled water jets. The analysis will thus be 
limited to the case of a square geometry. 

Although the treatment is derived from that of a 
system of four coupled oscillators, such as in the prob- 
lem of the quadruped locomotion [ 14], some features 
are specific to the present system. First, the size of 
the system (N ~ 50) is too large tor a comprehensive 
classification of the groups of symmetry of the global 
system to be carded out. Second, for each oscillator, 
two directions of rotations are possible, so that both 
the direction of rotation and the phase of the oscillator 
are needed to characterize its state. 

To investigate the spatio-temporai symmetries of the 
present system, cyclic permutations of the oscillators, 
temporal phase-shifts, translations along the eigen- 
directions of the bidimensional lattice and symmetries 
respective to a plane perpendicular to the plane of the 
network have to be composed. The tbrmer two are 
used to describe the symmetries of a system of four 
oscillators in the quadruped locomotion problem [I 4]. 
The latter two are specific to the present system. In- 
deed, since the oscillators are arranged perio0ically in 
a bidimensional square lattice (Figs. 6(a)-(c)), a logi- 
cal issue is to combine the spatio-temporal symmetries 
of a basic four-jet system (Fig. 13(a)) with invariance 
by translation properties, Moreover, to describe the 
spatio-temporal symmetries of the four-jet system of 
Fig. 13(a), symmetries across a plane perpendicular to 
the plane of the figure are required to relate jets which 
rotate in opposite directions, like in the ge~ing and 
simultaneity modes. 

The state of a given oscillator i can be character- 
ized by its direction of rotation (ei = 4-1) and by its 
phase (0i = Oi(t)). The latter is represented by posi., 
tion vectors in Fig. 13. 

Thus consider the four-jet system of Fig. 13(a), 
where the oscillators are numerated from I to 4, Let 0" 

® ® 

® ® 
(a) 

(c) (,I) 

P : 

| 

(e) (0 
Fig. 13. Description of the symmetries of the collective modes 
using group theoretics: (a) basic system with four oscillators, 
(b) diago#ai mode pattern, (c) gearing mode pattern, (d) left: 
oscillators I and 3 in the gearing mode pattern; right: state of 
oscillators ! and 3 obtained after symmetry with respect to the 
plane P, (e) simultaneity mode pattern, (f) left: oscillators I and 
3 in the simultaneity mode pattern; right: state of oscillators i 
and 3 obtained after symmetry with respect to the plane P. 

be a permutation which sends oscillator i to oscillator 
i'. or can be decomposed into three elementary (cyclic) 
permutatioqs: al = (12)(34) which interchanges os- 
cillators 1 and 2, and 3 and 4 (left-right reflection), 
0"2 = (13)(24)which interchanges oscillators 1 and 3, 
and 2 and 4 (front-back reflection), and 0"3 = 0"10"2 = 
(14)(23), their composite, which is an interchange 
across diagonals. I is the trivial permutation which 
sends oscillators i to i. Let S be the symmetry respec- 
tive to the plane P, which is the median plane of the 
line segment connecting oscillator i to oscillator i'. 
P is perpendicular to the plane of the figure, and has 
been represented in Figs. 13(d) and (f) permutation 0"1. 
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Note that S 2 "-" I, the identity transformation. More 
generally, SP = ! if p is even, and SP = S if p is odd. 
Let Tn.m be the translation which sends oscillator i 
with cartesian coordinates (xi, yi) to oscillator j with 
cartesian coordinates (xj = xi +ndl; yj = yi +mdJ), 
where d is the distance between nearest jets, and I and 
J are unit vectors in the x and y directions respec- 
tively. Finally, Let r~, be the translation which shifts 
time from t to t - 0. 

tySPTn.mrO is a spatio-temporal symmetry of the 
system if 

(ei, Oi(t)) = Tn,mSP(ei',Oi'(t - O)). 

Using compositions of o', SP, Tn,m and r¢~, a com- 
prehensive list of all the symmetry groups of the sys- 
tem of four jets could be carded out [ 14]. However, 
our purpose here is only to illustrate the method in the 
present case in a few examples. 

The spatial arrangements corresponding to the di- 
agonal, gearing and simultaneity collective modes are 
represented in Figs. 13(b), (c) and (e), respectively, 
for a four-jet system. Their symmetries can be derived 
easily using the symmetry groups. 

The symmetries of the diagonal mode (Fig. 13(b)) 
are thus: 
- pure permutations: the trivial permutation I and the 

composition otfl, 
- spatio-temporal compositions: ~'~o'i, rTrcr2, 
- pure plane symmetries: since all the jets rotate in 

the same direction, i is the only plane symmetry of 
the mode, 

- pure translations: T,z,m (with n and m multiple of 
2d). 
Note that the symmetries composed with transla- 

tions Ti,0 and T0,t are equivalent to the symmetries 
composed with the cyclic permutations o'! and tT2: 

r~rtrl = r~rTI,0; rTrtY2 = r~rTo, I 

and have thus not been considered. 
The gearing and simultaneity modes (Figs. 13(c) 

and (e)) share the same symmetries: 
- pure permutations: the trivial permutation 1, 
- spatio-temporal compositions: ~:~ro'ltr2, 
- pure translations: Tn,m (with n and m multiple of 

2d). 

Table 2 

Gearing mode Simultaneity mode 

Pure plane symmetries ! S, S', ! 
Compositions t~r Sol, r~r So2 Sol, So 2 

However, a discrimination appears when plane sym- 
metries are considered (Fig. 13, Table 2): 

In this more formal and generic approach, the sym- 
metries of the collective modes are clearly brought " 
out, unlike in the reference jet approach. Note that the 
gearing and simullaneity modes are now differentiated 
on the basis of distinct plane symmetries, unlike in 
Fig. I I. Moreover, the two types of collective modes 
based on either a sinuous or a helical instability mode 
of the jets can be reconciled into the same approach. 

5 .  C o n c l u s i o n  

In this paper, a new experimental set-up is presented 
where submerged water jets impinge from below at 
normal incidence on a water/air interface. Above some 
flow rate threshold value, each jet exhibits a transi- 
tion and starts oscillating at a well-defined frequency. 
When the oscillating jets are coupled together in bidi- 
mensional lattices, collective phase-locking modes are 
observed, whose spatial arrangement is similar to that 
encountered in crystals. For each geometry (square, 
hexagonal and triangular), different collective modes 
are identified and stability diagrams are constructed. 
The coupling mechanism between the jets is analysed. 
Surface waves provide the most plausible means of 
coupling, and a tuning criterion of stability is proposed 
to explain the bifurcations from one mode to another. 
The interaction of the oscillating jet with the surface 
waves emitted by the network is currently under in- 
vestigation. The symmetries of the system are then in- 
vestigated using two different approaches. Theoretical 
permitted modes are predicted that are compared to the 
observations, and the discrepancies observed between 
the three geometries are explained. The phase-locking 
modes observed for the system of coupled water jets 
are analogous to those encountered in systems of cou- 
pled oscillators in Nature, such as in animal loco- 
motion [14,15]. The phase ordering observed in the 
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collective modes displays no spatial modulation, and 
all the jets oscillate at the same frequency with the 
same amplitude. In order to destabilize the system to- 
wards spatio-temporal chaos, we propose either to in- 
crease the size N of the system and/or the frequency 
bandwid~ A f  of the ~ p u l a t i o n  of  oscillators, or to 

incw, ase the strength of thecoupl ing (testing different 

liquids) between the jets, as inferred from numerical 

modelling [4]. 
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