P. Manneville, Dissipative Structures and Weak Turbulence (Academic, 1990.

B. Hof, J. Westerweel, T. Schneider, and B. Eckhardt, Finite lifetime of turbulence in shear flows, Nature, vol.6, issue.7107, p.59, 2006.
DOI : 10.1007/BF00536526

P. Tabeling, Probability density functions, skewness, and flatness in large Reynolds number turbulence, Physical Review E, vol.53, issue.2, p.1613, 1996.
DOI : 10.1103/PhysRevE.53.1613

P. Tabeling and H. Willaime, Transition at dissipative scales in large-Reynolds-number turbulence, Physical Review E, vol.65, issue.6, p.66301, 2002.
DOI : 10.1103/PhysRevE.65.066301

F. Ravelet, L. Marié, A. Chiffaudel, and F. Daviaud, Multistability and Memory Effect in a Highly Turbulent Flow: Experimental Evidence for a Global Bifurcation, Physical Review Letters, vol.93, issue.16, p.164501, 2004.
DOI : 10.1103/PhysRevLett.93.164501

URL : https://hal.archives-ouvertes.fr/hal-00002925

F. Chillá, M. Rastello, S. Chaumat, and B. Castaing, Long relaxation times and tilt sensitivity in Rayleigh B??nard turbulence, The European Physical Journal B, vol.83, issue.2, p.223, 2004.
DOI : 10.1140/epjb/e2004-00261-3

N. Mujica and D. P. Lathrop, Hysteretic gravity-wave bifurcation in a highly turbulent swirling flow, Journal of Fluid Mechanics, vol.551, issue.-1, p.49, 2006.
DOI : 10.1017/S0022112005007901

R. Stevens, Transitions between Turbulent States in Rotating Rayleigh-B??nard Convection, Physical Review Letters, vol.103, issue.2, p.24503, 2009.
DOI : 10.1103/PhysRevLett.103.024503

P. Cortet, Normalized kinetic energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence, Physics of Fluids, vol.21, issue.2, p.25104, 2009.
DOI : 10.1063/1.3073745

URL : https://hal.archives-ouvertes.fr/cea-01378758

. Practically, IðtÞ is computed from PIV data restricted to a meridian plane only, but, since azimuthal flow fluctuations are strong, time average over several rotation periods? statistically equivalent to spatial azimuthal averaging? estimates correctly the 3D value of IðtÞ

A. De-la-torre and J. Burguete, Slow Dynamics in a Turbulent von K??rm??n Swirling Flow, Physical Review Letters, vol.99, issue.5, p.54101, 2007.
DOI : 10.1103/PhysRevLett.99.054101

J. Burguete and A. De-la-torre, HYSTERESIS AND VORTICES DYNAMICS IN A TURBULENT FLOW, International Journal of Bifurcation and Chaos, vol.19, issue.08, p.2695, 2009.
DOI : 10.1142/S0218127409024414

M. Gibert, Heat convection in a vertical channel: Plumes versus turbulent diffusion, Physics of Fluids, vol.21, issue.3, p.35109, 2009.
DOI : 10.1063/1.3085812

URL : https://hal.archives-ouvertes.fr/ensl-00377244

R. Monchaux, Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium, Physical Review Letters, vol.98, issue.4, p.44502, 2007.
DOI : 10.1103/PhysRevLett.98.044502

URL : https://hal.archives-ouvertes.fr/hal-00492342

R. Monchaux, The von K??rm??n Sodium experiment: Turbulent dynamical dynamos, Physics of Fluids, vol.21, issue.3, p.35108, 2009.
DOI : 10.1063/1.3085724

C. Van-den-broeck, J. M. Parrondo, and R. Toral, Noise-Induced Nonequilibrium Phase Transition, Physical Review Letters, vol.73, issue.25, p.3395, 1994.
DOI : 10.1103/PhysRevLett.73.3395

W. Genovese, M. A. Munoz, and P. L. Garrido, Mesoscopic description of the annealed Ising model, and multiplicative noise, Physical Review E, vol.58, issue.5, p.6828, 1998.
DOI : 10.1103/PhysRevE.58.6828