. Zhou, Interacting scales and energy transfer in isotropic turbulence, Physics of Fluids A: Fluid Dynamics, vol.5, issue.10, pp.2511-2524, 1993.
DOI : 10.1063/1.858764

. Obukhov, On the distribution of energy in the spectrum of turbulent flow, Dokl. Akad. Nauk SSSR, vol.32, pp.22-24, 1941.

J. Thomson, Criteria for the selection of stochastic models of particle trajectories in turbulent flows, Journal of Fluid Mechanics, vol.8, issue.-1, pp.529-556, 1987.
DOI : 10.1175/1520-0450(1980)019 2.0.CO;2

-. Laval, B. Dubrulle, and J. Mcwilliams, Langevin models of turbulence: Renormalization group, distant interaction algorithms or rapid distortion theory?, Physics of Fluids, vol.15, issue.5, p.1327, 2003.
DOI : 10.1063/1.1564826

URL : https://hal.archives-ouvertes.fr/hal-00139437

. Friedrich, Statistics of Lagrangian Velocities in Turbulent Flows, Physical Review Letters, vol.90, issue.8, p.84501, 2003.
DOI : 10.1103/PhysRevLett.90.084501

R. Baule and . Friedrich, Joint probability distributions for a class of non-Markovian processes, Physical Review E, vol.71, issue.2, p.26101, 2005.
DOI : 10.1103/PhysRevE.71.026101

M. Aringazin and . Mazhitov, STOCHASTIC MODELS OF LAGRANGIAN ACCELERATION OF FLUID PARTICLE IN DEVELOPED TURBULENCE, International Journal of Modern Physics B, vol.18, issue.23n24, pp.3095-3168, 2004.
DOI : 10.1142/S0217979204026433

M. Aringazin and . Mazhitov, One-dimensional Langevin models of fluid particle acceleration in developed turbulence, Physical Review E, vol.69, issue.2, p.26305, 2004.
DOI : 10.1103/PhysRevE.69.026305

H. Franses and D. Van-dijk, Non-linear Time Series Models in Empirical Finance, 2000.

. Guiot, ARMA techniques for modelling tree-ring response to climate and for reconstructing variations of paleoclimates, Ecological Modelling, vol.33, issue.2-4, pp.149-171, 1986.
DOI : 10.1016/0304-3800(86)90038-4

F. Marié and . Daviaud, Experimental measurement of the scale-by-scale momentum transport budget in a turbulent shear flow, Physics of Fluids, vol.16, issue.2, p.457, 2004.
DOI : 10.1063/1.1637602

-. Cortet, A. Chiffaudel, F. Daviaud, and B. Dubrulle, Experimental Evidence of a Phase Transition in a Closed Turbulent Flow, Physical Review Letters, vol.105, issue.21, p.214501, 2010.
DOI : 10.1103/PhysRevLett.105.214501

URL : https://hal.archives-ouvertes.fr/cea-01373378

R. Naso, P. Monchaux, B. Chavanis, and . Dubrulle, Statistical mechanics of Beltrami flows in axisymmetric geometry: Theory reexamined, Physical Review E, vol.81, issue.6, p.66318, 2010.
DOI : 10.1103/PhysRevE.81.066318

URL : https://hal.archives-ouvertes.fr/hal-00646796

B. Saint-michel, L. Dubrulle, F. Marié, F. Ravelet, and . Daviaud, Evidence for Forcing-Dependent Steady States in a Turbulent Swirling Flow, Physical Review Letters, vol.111, issue.23, p.234502, 2013.
DOI : 10.1103/PhysRevLett.111.234502

URL : https://hal.archives-ouvertes.fr/hal-00773512

L. Leprovost, B. Marié, and . Dubrulle, A stochastic model of torques in von Karman swirling flow, The European Physical Journal B, vol.12, issue.1, pp.121-129, 2004.
DOI : 10.1140/epjb/e2004-00177-x

H. Titon and O. Cadot, The statistics of power injected in a closed turbulent flow: Constant torque forcing versus constant velocity forcing, Physics of Fluids, vol.15, issue.3, pp.625-640, 2003.
DOI : 10.1063/1.1539856

. Tennekes, Similarity relations, scaling laws and spectral dynamics, " in Atmospheric Turbulence and Air Pollution Modeling, pp.37-68, 1982.

-. Pinton and R. Labbé, Correction to the Taylor hypothesis in swirling flows, Journal de Physique II, vol.4, issue.9, pp.1461-1468, 1994.
DOI : 10.1051/jp2:1994211

URL : https://hal.archives-ouvertes.fr/jpa-00248055

J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 1990.

E. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, 1970.
DOI : 10.1002/9781118619193

F. Saint-michel, B. Daviaud, and . Dubrulle, A zero-mode mechanism for spontaneous symmetry breaking in a turbulent von K??rm??n flow, New Journal of Physics, vol.16, issue.1, p.13055, 2014.
DOI : 10.1088/1367-2630/16/1/013055

-. Cortet, E. Herbert, A. Chiffaudel, F. Daviaud, B. Dubrulle et al., Susceptibility divergence, phase transition and multistability of a highly turbulent closed flow, Journal of Statistical Mechanics: Theory and Experiment, vol.2011, issue.07, p.7012, 2011.
DOI : 10.1088/1742-5468/2011/07/P07012

URL : https://hal.archives-ouvertes.fr/cea-01373365

I. Taylor, Statistical theory of turbulence, Proc. R. Soc. London, Ser. A, vol.151873, pp.421-444, 1935.

L. Ravelet, A. Marié, F. Chiffaudel, and . Daviaud, Multistability and Memory Effect in a Highly Turbulent Flow: Experimental Evidence for a Global Bifurcation, Physical Review Letters, vol.93, issue.16, p.164501, 2004.
DOI : 10.1103/PhysRevLett.93.164501

URL : https://hal.archives-ouvertes.fr/hal-00002925

D. B. Faranda, F. M. Pons, F. Emanuele, and . Daviaud, Probing turbulence intermittency via auto-regressive movingaverage model, pp.1407-5478, 2014.

D. Nikora, R. Goring, and . Camussi, Intermittency and interrelationships between turbulence scaling exponents: Phase-randomization tests, Physics of Fluids, vol.13, issue.5, pp.1404-1414, 2001.
DOI : 10.1063/1.1360193

J. Prichard and . Theiler, Generating surrogate data for time series with several simultaneously measured variables, Physical Review Letters, vol.73, issue.7, p.951, 1994.
DOI : 10.1103/PhysRevLett.73.951

I. Biferale, A. Daumont, F. Lanotte, and . Toschi, Anomalous and dimensional scaling in anisotropic turbulence, Physical Review E, vol.66, issue.5, p.56306, 2002.
DOI : 10.1103/PhysRevE.66.056306

M. Celani and . Vergassola, Statistical Geometry in Scalar Turbulence, Physical Review Letters, vol.86, issue.3, p.424, 2001.
DOI : 10.1103/PhysRevLett.86.424

. Beran, Statistics for Long-Memory Processes, 1994.

B. Mandelbrot and J. W. Van-ness, Fractional Brownian Motions, Fractional Noises and Applications, SIAM Review, vol.10, issue.4, pp.422-437, 1968.
DOI : 10.1137/1010093

. Weron, Estimating long-range dependence: finite sample properties and confidence intervals, Physica A: Statistical Mechanics and its Applications, vol.312, issue.1-2, pp.285-299, 2002.
DOI : 10.1016/S0378-4371(02)00961-5

. Faranda, Modelling and analysis of turbulent datasets using Auto Regressive Moving Average processes, Physics of Fluids, vol.26, issue.10, p.105101, 2014.
DOI : 10.1063/1.4896637

URL : https://hal.archives-ouvertes.fr/cea-01370486

C. Arneodo, F. Baudet, R. Belin, B. Benzi, B. Castaing et al., Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity, Europhysics Letters (EPL), vol.34, issue.6, p.411, 1996.
DOI : 10.1209/epl/i1996-00472-2

B. Laval, S. Dubrulle, and . Nazarenko, Nonlocality and intermittency in three-dimensional turbulence, Physics of Fluids, vol.13, issue.7, pp.1995-2012, 2001.
DOI : 10.1063/1.1373686

E. Saint-michel, J. Herbert, C. Salort, M. B. Baudet, P. Mardion et al., Probing quantum and classical turbulence analogy through global bifurcations in a von Kármán liquid Helium experiment, p.7117, 2014.

A. C. Connaughton, Y. Newell, and . Pomeau, Non-stationary spectra of local wave turbulence, Physica D: Nonlinear Phenomena, vol.184, issue.1-4, pp.64-85, 2003.
DOI : 10.1016/S0167-2789(03)00213-6

URL : https://hal.archives-ouvertes.fr/hal-00000319

J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting, 2002.