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We study in detail the hydrodynamic theories describing the transition to collective motion in polar active
matter, exempli�ed by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the
existence of an in�nity of propagative solutions, describing both phase and microphase separation, that we fully
characterize. We also show that the same results hold speci�cally in the hydrodynamic equations derived in the
literature for the active Ising model and for a simpli�ed version of the Vicsek model. We then study numerically
the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which,
however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards
phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to
qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the
corresponding microscopic models.
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I. INTRODUCTION

Collective motion is the ability of large groups of motile
agents to move coherently on scales much larger than their
individual sizes. It is encountered at all scales in nature,
from macroscopic animal groups, such as bird �ocks, �sh
schools, or sheep herds, down to the cellular scale, where the
collective migration of cells [1] or bacteria [2] is commonly
observed. At the subcellular level,in vitro motility assays
of actin �laments [3] or microtubules [4] have shown the
spontaneous emergence of large vortices. Collective motion
is also observed in ensembles of human-made motile par-
ticles such as shaken polar grains [5], colloidal rollers [6],
self-propelled droplets [7], or assemblies of polymers and
molecular motors [3,4,8]. Despite the differences in their
propulsion and interaction mechanisms, these seemingly very
different systems share common macroscopic behaviors that
can be captured by minimal physical models. Of particular
interest is the emergence ofdirectedcollective motion, which
was �rst addressed in this context in a seminal work by
Vicsek and coworkers [9]. The Vicsek model consists of point
particles moving at constant speed and aligning imperfectly
with the direction of motion of their neighbors. When the
error on the alignment interaction is decreased, or the density
of particles is increased, a genuine phase transition from
a disordered to a symmetry-broken state is observed. This
�ocking transition gives rise to an emergent ordered phase,
with true long-range polar order even in two dimensions
(2D), where all the particles propel on average along the
same direction. Toner and Tu showed analytically, using
a phenomenological �uctuating hydrodynamic description,
how this ordered state, which would be forbidden by the
Mermin-Wagner theorem at equilibrium [10], is stabilized by
self-propulsion [11]. The transition to collective motion in
the Vicsek model has a richer phenomenology than originally
thought. As �rst pointed out numerically in Ref. [12], at the
onset of collective motion, translational symmetry is broken

as well. In periodic simulation boxes, high-density ordered
bands of particles move coherently through a low-density
disordered background. The transition between these bands
and the homogeneous disordered pro�le is discontinuous, with
metastability and hysteresis loops. These spatial patterns and
the �rst-order nature of the transition can be encompassed in a
wider framework, which describes the emergence to collective
motion as a liquid-gas phase separation [13,14]. The traveling
bands result from the phase coexistence between a disordered
gas and an ordered polarized liquid. This framework captures
many of the characteristics of the transition, from the scaling
of the order parameter to the shape of the phase diagram. This
phase-separation picture is robust to the very details of the
propulsion and interaction mechanisms. More speci�cally, it
has also been quantitatively demonstrated in the active Ising
model [13] in which particles can diffuse in a 2D space but
self-propel, and align, only along one axis. However, the
speci�cs of the emergent spatial patterns and the type of phase
separation depend on the symmetry of the orientational degrees
of freedom. While the active Ising model model shows a bulk
phase separation, the Vicsek model is akin to an activeXY
model and is associated with a microphase separation where
the coherently moving polar patterns self-organize into smectic
structures [14] (see Fig.1).

In this paper, building on the two prototypical models that
are the Vicsek model and the active Ising model, we provide
a comprehensive description of the emergent patterns found
at the onset of the �ocking transition from a hydrodynamic
perspective. We �rst recall the de�nitions and phenomenolo-
gies of these two models in Sec.II . In Sec.III , we provide a
simpli�ed hydrodynamic description of the �ocking models.
In line with Refs. [15,16], we show that these models support
nonlinear propagative solutions whose shape is described
using a mapping onto the trajectories of pointlike particles
in one-dimensional potentials. Finding such solutions thus
reduces to a classical mechanics problem with one degree of
freedom. For given values of all the hydrodynamic coef�cients,

1539-3755/2015/92(6)/062111(18) 062111-1 ©2015 American Physical Society



SOLON, CAUSSIN, BARTOLO, CHAT́E, AND TAILLEUR PHYSICAL REVIEW E 92, 062111 (2015)

FIG. 1. (Color online) Top: Micro-phase separation in the Vicsek model.� = 0.4,v0 = 0.5,� 0 = 0.83, 1.05, 1.93. Bottom: Phase separation
in the active Ising model.D = 1, � = 0.9, � = 1.9, � 0 = 1.5, 2.35, 4.7. System sizes 800× 100. High-density bands propagate as indicated
by the red arrows on the left snapshots.

and hence of all underlying microscopic parameters, we �nd
an in�nity of solutions, describing both phase and microphase
separations, that we fully characterize. We then show that the
same results hold speci�cally for the hydrodynamic equations
explicitly derived for the active Ising model [13] and for
a simpli�ed version of the Vicsek model [15]. Next, we
investigate the linear stability of these solutions as solutions of
the hydrodynamic equations in Sec.VI and their coarsening
dynamics in Sec.VII . Finally, we provide full phase diagrams
constructed from the hydrodynamic model in Sec.VIII . We
close by discussing the similarities and differences with the
phenomenology of the agent-based models and conjecture on
the role of the hydrodynamic noise in the selection of the band
patterns.

II. PHENOMENOLOGY OF MICROSCOPIC MODELS

Let us �rst brie�y recall the phenomenology of the Vicsek
and active Ising models. They are both based on the same
two ingredients: Self-propulsion and a local alignment rule.
The major differences between the two models are thus the
symmetries of the alignment interaction and of the direction
of motion.

A. Vicsek model

In the Vicsek model [9], N pointlike particles, labeled by
an indexi , move at constant speedv0 on a rectangular plane
with periodic boundary conditions. At each discrete time step
�t = 1, the headings� i of all particles are updated in parallel
according to

� i (t + 1) = � � j (t)� j � Ni + � � t
i , (1)

whereNi is the disk of unit radius around particlei , � t
i a

random angle drawn uniformly in [Š	,	 ], and� sets the level
of noise, playing a role akin to that of a temperature in a
ferromagneticXY model. Then particles hop along their new
headings:r i (t + 1) = r i (t) + v0et+ 1

i , whereet+ 1
i is the unit

vector pointing in direction given by� i (t + 1).

B. Active Ising model

In the active Ising model [13], particles carry a spin± 1 and
move on a 2D lattice with periodic boundary conditions. Their
dynamics depend on the sign of their spin: A particle with spin
s jumps to the site on its right at rateD(1 + s� ) and to the site
on its left at rateD(1 Š s� ), where 0� � � 1 measures the
bias on the diffusion. On average,+ 1 particles thus self-propel
to the right andŠ1 particles to the left at a mean velocity
v0 � 2D� . Both types of particles diffuse symetrically at rate
D in the vertical direction.

The alignment interaction is purely local. On a sitei , a
particle �ips its spins at rate

Wi (s � Š s) = exp
�

Š
s
T

mi

� i

�
, (2)

whereT is a temperature andmi and� i are the magnetization
and number of particles on sitei . (An arbitrary number of
particles is allowed on each site since there is no excluded
volume interaction.)

C. A liquid-gas phase transition

The phase diagrams in the temperature-density (or
noise-density) ensemble are shown for both models in Fig.2,
highlighting their similarity. At high temperature (or noise) or
low density both systems are in a homogeneous disordered gas
state. At low temperature (or noise) and high density they are
homogeneous and ordered; in these liquid phases, all particles
move in average in the same direction. In the central region of
the phase diagram, inhomogeneous pro�les are observed, with
liquid domains moving in a disordered gaseous background.

The phase transitions of both models have all the features of
a liquid-gas transition, exhibiting metastability and hysteresis
close to the transition lines [12–14]. The main difference
between the two models lies in the coexistence region: In the
active Ising model, the particles phase separate in a gaseous
background and an ordered liquid band, both of macroscopic
sizes [13]. The coexisting densities depend only on tempera-
ture and bias but not on the average density; in the coexistence
region, increasing the density at �xedT ,� thus results in larger
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FIG. 2. (Color online) Phase diagrams of the microscopic mod-
els. The red (upper) and blue (lower) lines delimit the domain of
existence of (micro-) phase-separated pro�les. The black horizontal
lines and squares indicate the position of the snapshots shown in
Fig. 1. v0 = 0.5 for the Vicsek model,D = 1, and� = 0.9 for the
active Ising model.

and larger liquid domains whose density remains constant, as
shown in Fig.1. Conversely, in the Vicsek model, the system
forms arrays of ordered bands arranged periodically in space
which have a �nite width along their direction of motion:
A micro-phase separation occurs [14]. As shown in Fig.1,
increasing the density at constant noise, the number of bands
increases but their shape does not change [14].

Three types of propagating patterns can thus be observed at
phase coexistence, all shown in Fig.1: (i) localized compact
excitations, (ii) Smectic microphases, and (iii) phase-separated
polar liquid domains. In the vicinity of the left coexistence line,
collective motion emerges in the form of localized compact
excitations in both models [17]. At higher density, phase-
separated domains are found in the active Ising model and
periodic “smectic” bands in the Vicsek model. Understanding
the emergence of these three types of solutions will be the
focus of the rest of the paper.

III. HYDRODYNAMIC EQUATIONS

A lot of attention has been given in the literature to
hydrodynamic equations of �ocking models. Two different
approaches have been followed, starting from phenomenolog-
ical equations [11,16,18] or deriving explicitly coarse-grained
equations from a microscopic model [13,15,19–21]. All these
equations describe the dynamics of a conserved density �eld
� (�r,t ) coupled to a nonconserved magnetization �eld, the latter
being a vector�m(�r,t ) for continuous rotational symmetries, as
in the Vicsek model, or a scalarm(�r,t ), for discrete symmetries,
as in the active Ising model.

We �rst introduce in Sec.III A two sets of hydrodynamic
equations derived by coarse-graining microscopic models
which will be discussed in this paper. Then we turn in Sec.III B
to a simpler set of phenomenological hydrodynamic equations
on which we will establish our general results in Sec.IV.

A. Coarse-grained hydrodynamic descriptions

We �rst consider the equations proposed by Bertinet al.
to describe a simpli�ed version of the Vicsek model [15],
in which one solely considers binary collisions between the
particles. One can then use, assuming molecular chaos, a
Boltzmann equation formalism to arrive at the following

hydrodynamic equations for the density �eld and a vectorial
magnetization �eld [22],


�

t

= Š v0 �� · �m, (3)


 �m

t

+ � ( �m · �� ) �m = � � 2 �m Š
v0

2
�� � +



2

�� (| �m|2)

Š 
 ( �� · �m) �m + (µ Š � | �m2|) �m. (4)

The mass-conservation equation (3) simply describes the
advection of the density by the magnetization �eld. Equa-
tion (4) can be seen as a Navier-Stokes equation complemented
by a Ginzburg-Landau term (µ Š � | �m|2) �m, stemming from
some underlying alignment mechanism and leading to the
emergence of a spontaneous magnetization. Because particles
are self-propelled in a given frame of reference, these equations
break Galilean invariance so one can have� 	= 1 and
 	= 0
unlike, e.g., in the Navier-Stokes equation.

In Eqs. (3) and (4), to which we refer to as “Vicsek
hydrodynamic equations” hereafter, all the coef�cients� , � ,

 , µ , and� depend on the local density; see Ref. [15] for their
exact expression.

The second set of equations, which we refer to as “Ising
hydrodynamic equations” in the following, has been derived
to describe the large-scale phenomenology of the active Ising
model [13]. In this case, the dynamics of the density �eld
and the scalar magnetization—corresponding to the Ising
symmetry—are given by


�

t

= D�� Š v0
 xm, (5)


m

t

= D�m Š v0
 x � + 2
�

� Š 1 Š
r
�

�
m Š �

m3

� 2
, (6)

where� = 1/T , � andr are positive coef�cients depending
on � only, andv0 = 2D� . The advection termv0 �� · �m of
Eq. (3) is here replaced by a partial derivativev0
 xm because,
in the active Ising model, the density is advected by the
magnetization only in thex direction.

B. Phenomenological hydrodynamic equations
with constant coefÞcients

Coarse-grained hydrodynamic equations derived from mi-
croscopic models have the advantage of expressing the macro-
scopic transport coef�cients in terms of microscopic quantities
(noise, self-propulsion speed, etc.). However, these possibly
complicated relations may not be relevant to understand the
qualitative behavior of the models. Thus, before discussing the
Vicsek and Ising hydrodynamic equations in Sec.V, we �rst
study in detail, in Sec.IV, a simpler model,


 t � = Š v0 �� · �m, (7)


 t �m + � ( �m · �� ) �m = D� 2 �m Š � �� � + a2 �m Š a4| �m|2 �m, (8)

where the transport coef�cientsv0, � , D , � , and a4 are
constant. In the following, we refer to these equations as the
“phenomenological hydrodynamic equations”. This simpli�ed
model is very similar to that �rst introduced by Toner and
Tu from symmetry considerations [11]. However, unlike the
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original Toner and Tu model, we keep an explicit density
dependence ina2: a2(� ) = � Š � g, which is essential to
account for inhomogeneous pro�les [13,15,18].

The stability criteria of the homogeneous solutions
[� (r ,t ) = � 0, �m(r ,t ) = �m0] of Eqs. (7) and (8) are readily
computed:

(a) For� 0 < � g (a2(� 0) < 0) only the disordered solution
(� 0, | �m0| = 0) exists and is stable.

(b) For � 0 > � g (a2(� 0) > 0) the disordered solution
becomes unstable and ordered solutions [� 0, | �m0| =�

(� 0 Š � g)/a 4] appear.
(c) The ordered solutions are linearly stable only when

� 0 > � � = � g + 1
4a4v0+ 2� .

Thus, in the range� 0 � [� g,� � ], homogeneous solutions are
linearly unstable. In the language of the liquid-gas transition,
� g and � � are the gas and liquid spinodals, between which
the homogeneous phases are linearly unstable and spinodal
decomposition takes place. In the next section we address
the existence of heterogenous ordered excitations propagating
through stable disordered (gaseous) backgrounds. This anal-
ysis will make it possible both to identify all the possible
�ocking patterns and to further understand the �rst-order
nature of the �ocking transition.

IV. PROPAGATIVE SOLUTIONS

Let us now establish and classify all the inhomogeneous
propagating solutions of Eqs. (7) and (8). In order to do so, we
�rst recast this problem into a dynamical system framework
in Sec. IV A . We then show in Sec.IV B that three types
of propagating solutions exist with different celeritiesc and
densities of the gaseous background� g. SectionsIV C, IV D,
and IV E are dedicated to a detailed study of how these
solutions depend onc and� g. SectionIV F shows how, once
the average density is �xed, we are left with a one-parameter
family of solutions. Last, Sec.IV G is devoted to cases where
the inhomogeneous pro�les can be studied analytically.

A. Newton mapping

Following Ref. [15], we look for inhomogeneous polar
excitations invariant along, say, they direction and which
propagate and/or relax solely along thex direction. We thus
assumemy = 0 and reduce Eqs. (7) and (8) to:


 t � = Š v0
 xm, (9)


 tm + �m
 xm = D
 2
x m Š �
 x � + (� Š � g)m Š a4m3, (10)

where we wrotem = mx to ease the notation. We look for
solutions propagating steadily at a speedc. Introducing the
positionz = x Š ct in the frame moving atc: � (x,t ) = � (z),
m(x,t ) = m(z), we obtain

c �� Š v0 �m = 0, (11)

Dm̈ + (c Š �m) �m Š � �� + (� Š � g)m Š a4m3 = 0, (12)

where the dots denote derivation with respect toz. Solving
Eq. (11) gives � (z) = � g + v0

c m(z). If � (z) is localized in
space, then� g has a simple meaning. Since� (z) = � g when

0 50 100 150
0.0

0.5

1.0

x

c

c

�
m

0 50 100 150

0.0

0.2

0.4

0.6

z

m

0.0 0.2 0.4 0.6

� 0.08

� 0.04

0.00

0.04

m

úm

FIG. 3. (Color online) Left: Density and magnetization pro�les
of a propagative solution of the hydrodynamic Eqs. (7) and (8).
Center: Magnetization pro�le in the comoving framez = x Š ct
or, equivalently, trajectorym(z) of a point particle in the spurious
time z. Right: Phase portrait corresponding to the trajectorym(z).
Parameters:D = v0 = � = � = a4 = � g = 1.

m(z) = 0, the integration constant� g is the density in the
gaseous phase surrounding the localized polar excitation. We
can then insert the expression of� in Eq. (12) and obtain the
second-order ordinary differential equation

Dm̈ +
�

c Š
�v 0

c
Š �m

�
�m Š (� g Š � g)m

+
v0

c
m2 Š a4m3 = 0. (13)

Following Refs. [15,16], we now provide a mechanical
interpretation of Eq. (13) through the well-known Newton
mapping. Rewriting Eq. (13) as:

Dm̈ = Š f (m) �m Š
dH
dm

, (14)

H (m) = Š (� g Š � g)
m2

2
+

v0

3c
m3 Š

a4

4
m4, (15)

f (m) = c Š
�v 0

c
Š �m, (16)

it is clear that this equation corresponds to the mechanical
equation of motion of a point particle. The position of the
particle ism,z is the time variable,D is the mass of the particle,
H (m) is an energy potential, andf (m) is a position-dependent
friction. The trajectorym(z) of this �ctive particle exactly
corresponds to the shape of the propagative excitations of our
hydrodynamic model in the frame moving at a speedc (see
Fig. 3).

We shall stress that for a given hydrodynamic model,
Eq. (14) is parametrized by the two unknown parametersc
and� g which a priori can take any value. Each pair (c, � g)
gives different potentialH and frictionf and hence different
trajectoriesm(z). We now turn to the study of these trajectories
and of the corresponding admissible values for the celerityc
and the gas density� g.

B. Three possible propagating patterns

The original problem of �nding all the inhomogeneous
propagative solutionsm(x,t ), � (x,t ) of the hydrodynamic
equations is now reduced to �nding all the pairs (c, � g)
for which the corresponding trajectoriesm(z) exist. Mass
conservation, Eq. (9), imposes the boundary conditionm(z =
Š
 ) = m(z = +
 ) so we are looking for solutions of (14)
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FIG. 4. (Color online) The green potential can give rise to phys-
ical (positive, nonexploding) solutions while the red ones are ruled
out by our conditions (S1) (left) and (S2) (center).

which are closed in the (m, �m) plane. An example of propaga-
tive solutionsm(x,t ), � (x,t ) together with the corresponding
trajectorym(z) and its phase portraits is shown in Fig.3.

To put a �rst constraint on� g and c, let us rule out the
potentials which cannot give such physical solutions. The
extrema ofH , solutions ofH �(m) = 0, are located atm = 0
andm = m± with

m± =
v0

2a4c

�
1 ±

�

1 Š
4a4(� g Š � g)c2

v2
0

�
. (17)

We can already discard the case whereH �(m) has two complex
roots sinceH then has a single maximum atm = 0, and all

trajectories wander tom = ±
 (see Fig.4, left). This leads
to a �rst condition onc, � g:

(� g Š � g)c2 < a 4v2
0. (S1)

Without loss of generality we can assume thatc > 0 and
look only for solutions withm � 0. This rules out the (c, � g)
values for whichmŠ < 0 andm+ > 0 which give oscillations
between negative and positive values ofm (see Fig.4, central
panel). At the hydrodynamic equation level, such solutions
would indeed correspond to different parts of the pro�les
moving in opposite direction. The corresponding condition

� g < � g (S2)

imposes 0< m Š < m + . The potentialH then has two max-
ima, atm = 0 andm = m+ , and one minimum, atm = mŠ .
The typical shape of potential which gives admissible solutions
is shown in Fig.4 along with examples of potentials ruled out
by conditions (S1) and (S2).

From the admissible shape of the potentialH , we can now
list all possible trajectoriesm(z) and the corresponding �elds
m(x,t ), � (x,t ):

(i) Limit cycles, whose corresponding magnetization pro-
�les are periodic bands, as shown in the �rst row of Fig.5.

(ii) Homoclinic orbits, that start in�nitely close to a
maximum ofH , hence spending an arbitrary large time there,
before crossing twice the potential well in a �nite time to
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FIG. 5. (Color online) Example of the three types of trajectories. From left to right: Magnetization and density pro�les, phase portrait, and
potentialH . Top row: Periodic trajectory,� g = 0.835, c = 1.14. Center row: Homoclinic trajectory,� g = 0.83412,c = 1.14. Bottom row:
Heteroclinic trajectory,� g = 0.83333,c = 1.1547. Phase portrait: Crosses indicate saddle points atm = 0 andm = m+ . Squares indicate
stable �xed points atm = mŠ . Potentials: The blue dashed line indicates where the friction changes sign. The red portion of the potential is the
one visited by the trajectory. Parameters:D = v0 = � = � = a4 = � g = 1.
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�nally return to the same maximum ofH at z = 
 . These
trajectories correspond to isolated solitonic band pro�les, as
shown in the second row of Fig.5.

(iii) Heteroclinic orbits that spend an arbitrary large time
close to a �rst maximum ofH , cross the potential well in
a �nite time, and spend an arbitrary large time close to the
second maximum ofH before returning to the �rst maximum.
These trajectories correspond to phase-separated pro�les. The
arbitrary waiting times at the two maxima ofH then re�ect the
arbitrary sizes of two phase-separated domains (see the third
row of Fig.5).

A third condition on� g,c arises from the nonlinear friction
term. Following the classical mechanics analogy, we de�ne an
energy function

E = 1
2D �m2 + H. (18)

Multiplying the equation of motion (13) by �m, we get

dE
dz

= Š f (m) �m2. (19)

Energy is injected whenf (m) < 0 and dissipated when
f (m) > 0. On a closed trajectory, the frictionf must thus
change sign. Sincef is a decreasing function ofm, this im-
posesf (0) > 0 for trajectories withm(z) > 0 or, equivalently,

c >
�

�v 0. (S3)

The conditions (S1), (S2), and (S3) thus provide loose
bounds on the subspace of the (c,� g) plane which contains
the three types of trajectoriesm(z) described above. These
trajectories correspond to the three types of inhomogeneous
pro�les seen in the microscopic models [23]. Before studying
the stability and coarsening of these propagative solutions, we
�rst need to understand precisely how they are organised in
the (c, � g) plane. In order to do so, we �rst analyze the phase
portrait of the dynamics (14). We then study how the phase
portrait evolves when� g andc are varied.

C. Stability of the Þxed points

The structure of the phase portrait is most easily captured
by locating the �xed points of (14) and studying their stability.
We �rst rewrite (14) as a system of two �rst-order differential
equations:

d
dz

�
m
�m

�
=

�
�m

Š f (m)
D �m Š H �(m)

D

�
. (20)

The �xed points are the solutions satisfying�m = 0 and
H �(m) = 0, i.e., the constant solutions extremizingH . As
explained before, because of the condition (S2), the extrema
of H at m = 0,mŠ ,m+ are such that 0< m Š < m + , so 0 and
m+ are two maxima andmŠ is a minimum ofH .

Linearizing the dynamics around one of the �xed points, we
de�ne m = m0 + �m with m0 = 0, mŠ ,m+ , so �m = ��m and

d
dz

�
�m
��m

�
=

�
0 1

ŠH ��(m0)/D Šf (m0)/D

��
�m
��m

�
. (21)

The stability of the �xed points is given by the eigenvalues
� 1,2 of the 2× 2 matrix which read

� 1,2(m0) =
Šf (m0)

2D
±

� �
f (m0)

2D

� 2

Š
H ��(m0)

D
. (22)

(i) At the maximam0 = 0 andm0 = m+ of H , H ��(m0) is
negative and the two eigenvalues are thus real with opposite
signs. These �xed points are saddle points with one unstable
direction (� 1 > 0) and one stable direction (� 2 < 0).

(ii) At the minimum m0 = mŠ of H , H ��(m0) is positive
and the real part of the two eigenvalues have the same sign,
given byŠf (mŠ ). The �xed point is stable whenf (mŠ ) > 0
and unstable whenf (mŠ ) < 0. Physically, when the friction
of the �ctive particle is negative aroundm = mŠ , small
perturbations are ampli�ed, driving the trajectory away from
the �xed point. Conversely, a positive friction damps any initial
perturbation, leading to trajectories converging towardsmŠ .
When c and � g are such thatf (mŠ ) = 0, � 1,2 are complex
conjugate imaginary numbers. A Hopf bifurcation takes place,
leading to the apparition of a limit cycle.

At the onset of a Hopf bifurcation, a limit cycle appears
around the �xed point whose stability changes. In the following
sections we elucidate how the interplay between the saddle-
point and the Hopf dynamics rules the nonlinear dynamics of
the �ctive particle and hence the polar-band shape.

D. Hopf bifurcation

Let us �rst provide a comprehensive characterization of
the Hopf bifurcation. It happens when the real part of� 1,2
vanishes, i.e., when

f (mŠ ) = c Š
�v 0

c
Š �m Š (c,� g) = 0, (23)

where mŠ , which depends on bothc and � g, is given by
Eq. (17). Equation (23) is satis�ed on the line

� H
g (c) = � g +

(Šc2 + v0� )(Ša4c2 + a4v0� + v0� )
c2� 2

, (24)

which we call the Hopf transition line.
Following standard text books in bifurcation theory [24],

the type of Hopf bifurcation (super- or subcritical) is given by
the sign of

� =
� 2

16�D 3
H ��� � mŠ ,� H

g

	 
m Š


� g

�
� H

g

	
, (25)

where� =



H ��(mŠ ,� H
g )/D > 0 is the imaginary part of the

eigenvalues at the bifurcation point. Moreover,


m Š


� g
=

Š1



v2
0

c2 Š 4a4(� g Š � g)
(26)

is always negative because of condition (S1). The sign of�
is thus given by the sign ofH ��� (mŠ ,� H

g ), which changes at
c = c� with

c� =



v0(3a4� + � )



3a4

. (27)
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� g = � H
g

c
=

c�

c

� gSupercritical Subcritical

I

II

III

IV

FIG. 6. (Color online) The four types of phase portrait (m, �m)
obtained in our system when changing� g andc. The line� g = � H

g
is where the Hopf bifurcation takes place. The bifurcation is super-
critical for c < c � and subcritical forc > c � . The plain (respectively,
open) black squares denote stable (respectively, unstable) �xed points
atm = mŠ . The plain (respectively, dashed) black lines denote stable
(respectively, unstable) limit cycles. The crosses denote the saddle
points atm = 0 andm = m+ . The initial condition of each trajectory
is marked by a magenta disk and the direction of “time”z indicated
by a magenta arrow.

Two different scenarios occur depending on whetherc is larger
or smaller thanc� .

(a) When c < c� , the Hopf bifurcation is supercritical
(� > 0). The system branches from a stable �xed point for
� g > � H

g (case I, Fig.6) to a stable limit cycle surrounding an
unstable �xed point for� g < � H

g (case II, Fig.6).
(b) When c > c� , the Hopf bifurcation is subcritical

(� < 0). The system branches from an unstable �xed point
when � g < � H

g (case IV, Fig.6) to an unstable limit cycle
surrounding a stable �xed point when� g > � H

g (case III,
Fig. 6).

The organization of these four typical cases in the (c,� g)
plane is illustrated in Fig.6. We thus see that, whenc < c� ,
limit cycles exist for� g smallerthan� H

g , whereas whenc > c� ,
they exist for� glarger than � H

g . The Hopf bifurcation line
is thus a boundary of the domain of existence of periodic
propagative solutions of the hydrodynamic equations. Let us
now consider what happens when we explore thec,� g plane
further away from the Hopf bifurcation line.

E. Structure of the (c, � g) solution space

So far, we have shown that three different types of
trajectoriesm(z) (periodic, homoclinic, and heteroclinic) can
be found by varying the values ofc, � g. The subspace where
these physical solutions can be found was �rst bounded by
the conditions (S1), (S2), and (S3). In the previous section,
we further found that the Hopf transition line� H

g (c) given by
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FIG. 7. (Color online) Line at �xedc = 1.12 in the (c, � g) space
for c < c � . Top: Three phase portraits along the line, from the vicinity
of the Hopf bifurcation line (A) until the homoclinic is found (C).
Bottom-left: Size of the limit cycle�m de�ned in Eq. (28). The limit
cycle disappears when�m is large enough that the orbit reachesm =
0, where the trajectory is homoclinic. Bottom-right: Average density
� 0 of the solutions. Parameters:D = v0 = � = � = a4 = � g = 1.

Eq. (24) is the upper boundary for the admissible values of� g
whenc < c� and the lower boundary whenc > c� .

To explore the remaining (c, � g) space, we numerically
integrated the dynamical system (20) using a Runge-Kutta
scheme of order 4. Starting from different initial conditions,
one easily �nds the basins of attraction of the different
solutions. To locate unstable �xed points and limit cycles,
we integrated the dynamics backward in time since they are
attractors whenz � Š
 . As c and� g vary, so do the shapes
and sizes of the limit cycles. To quantify these variations, we
measured the “amplitude” of a cycle, de�ned as the difference
between the two extrema ofm(z),

�m � max
z

[m(z)] Š min
z

[m(z)]. (28)

We systematically vary� g at �xed c, �rst focusing on
the casec < c� where the Hopf bifurcation is supercritical.
Decreasing� g, a stable limit cycle of vanishing amplitude
appears at� g = � H

g [Fig. 7, panel A]. The amplitude of
the cycle then increases as� g decreases [Fig.7, panel B]
until it hits the �xed point atm = 0 where the limit cycle
becomes an homoclinic trajectory [Fig.7, panel C]. For
even lower� g the particle escapes tom = Š
 . The vari-
ation of the cycle amplitude with� g shown in Fig.7 can
be qualitatively explained. When� g decreases, the distance
mŠ Š mf increases, wheremf = 1

� (c Š �v 0/c ) is the value
of m where the friction changes sign, i.e.,f (mf ) = 0. More
energy is thus injected in the system and, to dissipate this
energy, the trajectory need to go closer tom = 0.

A symmetric behavior is observed whenc > c� for the
subcritical Hopf bifurcation. Increasing� g, an unstable limit
cycle of vanishing amplitude appears at� g = � H

g . The
amplitude of the cycle then increases with� g until the
trajectory hits the pointm = m+ where we have an (unstable)
homoclinic solution that starts fromm = m+ as shown in
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FIG. 8. (Color online) Unstable homoclinic trajectory starting
from m = m+ for c = 1.16. Parameters:D = v0 = � = � = a4 =
� g = 1.

Fig. 8. Physically, when increasing� g, mf Š mŠ increases so
the friction around the stable �xed point atm = mŠ becomes
larger and thus its basin of attraction (whose boundary is the
unstable limit cycle, see Fig.6) becomes larger.

All in all, the central results of this section is that all the
admissible solutions lie in a band delimited by the Hopf bifur-
cation line� H

g (c) and a line where the homoclinic trajectories
are found, as shown in Fig.9. Inside this band there exists
stable nondegenerate limit cycles, corresponding to periodic
propagating pro�les. The unique heteroclinic trajectory is
located exactly atc = c� where the Hopf bifurcation changes
from supercritical to subcritical. We thus observe a two-
parameter family of periodic solutions, a line of homoclinic
trajectories, and a unique heteroclinic trajectory. Going back
to the original pattern formation problem, they correspond to
a two-parameter family of micro-phase-separated pro�les, a
line of isolated solitonic bands, and a unique phase-separated
state where a macroscopic polar liquid domain cruises through
a disordered gas.

F. Working at Þxed average density

In the microscopic models and the original hydrodynamic
equations the average density� 0 is a conserved quantity �xed
by the initial condition. On the contrary, when considering the
trajectories of the �ctive particlem(z), � 0 is nota priori �xed
and varies between the different solutions. To compute the
mean density on a trajectorym(z) we simply average� (z) =
� g + v0m(z)/c over time.

As shown in Fig.7 (bottom-right), we �nd that at �xedc <
c� , � 0 decreases when� g decreases. It ranges from� 0 = � g +
v0
c mŠ when� g = � H

g to � 0 = � g at the homoclinic trajectory
where the portion of the trajectory withm(z) 	= 0 becomes
negligibly small. Note that, at the heteroclinic trajectory,� 0
can take a large range of values. Since the size of the gas and
liquid domains are arbitrary, the average density can take any
value in [� h

g ,� h
� ], where� h

g and� h
� are the densities in the gas

and liquid domains, respectively.
Fixing � 0 adds a constraint that selects a line of solutions in

the (c, � g) space, as shown in Fig.10(left). For all� 0 � [� h
g ,� h

� ]
these lines end at the heteroclinic trajectory. We also observe
that, at �xed� 0, the closer the trajectories are to the heteroclinic
solution, the larger their amplitude (see Fig.10, right). This
means that along a line� 0 = cst, the higher the amplitude the
faster the band excitations propagate. This point will turn out
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c

stable homoc.
unstable homoc.

Hopf bifurcation

FIG. 9. (Color online) Space of all solutions. A two-parameter
family of periodic orbits is found inside the band delimited by the
Hopf bifurcation and the homoclinic trajectories. The constraints (S2)
and (S3) are indicated by the black dashed lines. The constraint (S1)
lies out of the range of this plot. Bottom: Zoom of the plot above
around the pointc = c� where the Hopf bifurcation changes from
supercritical to subcritical. This is also where the unique heteroclinic
trajectory is found. The roman numbers refer to Fig.6, indicating the
type of phase portrait found in each region. Parameters:D = v0 =
� = � = a4 = � g = 1.

to be crucial when discussing the coarsening dynamics at the
hydrodynamic level in Sec.VII .

Until now, we have shown that three different types of
possible trajectoriesm(z) exist, which correspond to all the
propagative solutions observed in the microscopic models of
�ying spins. We have further identi�ed the subset of values of
the propagation speedc and the gas density� g for which these
solutions exist. We can now turn to the study of their dynamical
stability at the hydrodynamic equation level. However, we
�rst discuss analytically in the next section the shape of
inhomogeneous solutions.

G. Exact solution for the heterocline

There are no general analytic solutions for the propagating
inhomogeneous pro�les. However, progress is possible for
some limiting cases. In the following we show that a complete
solution for the heterocline—its position in the (c, � g) plane
and its shape—can be determined exactly [13]. In AppendixA,
we then show that, although exact solutions are not available,
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FIG. 10. (Color online) Top: Lines of solutions having a �xed
average density� 0 in the space of all solutions. Bottom: The amplitude
�m of the cycles, de�ned in Eq. (28), along the lines� 0 = cst
increases whenc increases. Parameters:D = v0 = � = � = a4 =
� g = 1.

progress regarding the shape of the homoclinic solutions is
achievable in the smallD limit.

To compute the shape of the heterocline, let us start from
the ansatz

m1,2(z) =
m�

2
[1 + tanh(k1,2(z Š z1,2))]. (29)

Each of m1(z) and m2(z) describe an interface centered
aroundz = z1,2 between a disordered phase withm = 0 and
an ordered phase withm = m� . The complete heteroclinic
trajectory then consists of two fronts glued together: An
ascending frontm1(z) with k1 > 0 and a descending front
m2(z) with k2 < 0, with z2 � z1 (see Fig.11); being part of
the same pro�le, the two fronts share the same celerityc and
density� g.

Moreover, we know thatm� must be located at the second
maximum ofH so

m� = m+ =
v0

2a4c

�
1 +

�

1 Š
4a4(� g Š � g)c2

v2
0

�
. (30)

Plugging m1 and m2 in Eq. (13) and replacingm� by its
expression, one obtains for each of the fronts

g(c,� g,k1,2) + h(c,� g,k1,2) tanh(k1,2(z Š z1,2)) = 0, (31)
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0.4

0.6

z

m

m 1 (z) m 2 (z)

FIG. 11. (Color online) Comparison between the exact solution
for the heterocline (dashed lines) and the result from numerical
integration of Eq. (20) (blue line). Parameters:D = v0 = � = � =
a4 = � g = 1.

whereg and h are complicated functions that we omit for
conciseness. Equation (31) can be true only ifg andh vanish
independently for bothk1 andk2.

We can expressk1 and k2 as functions ofc and � g by
linearizing the ansatz (29) around m = 0. When k1,2(z Š
z1,2) � Š
 , one hasm1,2 � exp[2k1,2(z Š z1,2)] so we can
identify k1,2 with the two eigenvalues of the linear stability
analysis Eq. (22). The ascending front is associated with the
unstable directionk1 = � 1/ 2 and the descending front with the
stable directionk2 = � 2/ 2.

Replacingk1,2 by their values in Eq. (31), we have four
equations for the two unknownsc and� g. After some algebra,
one obtains a unique solution (ch, � h

g ) with

ch = c� =



v0(3a4� + � )



3a4

, (32)

� h
g = � g Š

2v0

9a4� + 3�
. (33)

This gives us the magnetizationm� and the the fronts
steepnessk1,2 as

m� =
2v0


3a4v0(3a4� + � )
, (34)

k1 =

�
v0(8a4D + � 2) Š



v0�

4D



3a4(3a4� + � )
, (35)

k2 =
Š

�
v0(8a4D + � 2) Š



v0�

4D



3a4(3a4� + � )
. (36)

In Fig. 11, we show that this solution matches exactly the
heteroclinic orbit found by numerical integration of Eq. (20).

V. BACK TO THE VICSEK-LIKE AND THE ACTIVE ISING
MODELS: NONLINEAR SOLUTIONS OF THE

HYDRODYNAMIC EQUATIONS

In Secs.III and IV we consider phenomenological hy-
drodynamic equations and assumed the simplest possible
dependencies of their coef�cients with density. Here we
extend our study to the more realistic hydrodynamic equations
presented in Sec.III A . We �rst consider in Sec.V A the Vicsek
hydrodynamic equations before turning to the Ising hydrody-
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