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We study in detail the hydrodynamic theories describing the transition to collective motion in polar active
matter, exempli ed by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the
existence of an in nity of propagative solutions, describing both phase and microphase separation, that we fully
characterize. We also show that the same results hold speci cally in the hydrodynamic equations derived in the
literature for the active Ising model and for a simpli ed version of the Vicsek model. We then study numerically
the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which,
however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards
phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to
qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the
corresponding microscopic models.

DOI: 10.1103/PhysRevE.92.062111 PACS number(s): Q80.Sa, 87.23.Cc, 05.65.+ b, 47.27.ed

I. INTRODUCTION as well. In periodic simulation boxes, high-density ordered
. L . . bands of particles move coherently through a low-density
Collective motion is the ability of large groups of motile disordered background. The transition between these bands

agents to move coherently on scales much larger than theijr . S . .
agen . . y get and the homogeneous disordered pro le is discontinuous, with
individual sizes. It is encountered at all scales in nature

from macroscopic animal groups, such as bird ocks, sh metastability and hysteresis loops. These spatial patterns and

schools. or sheep herds. down to the cellular scale. where tﬁge rst-order nature of the transition can be encompassed in a
N P ' : . ' wider framework, which describes the emergence to collective
collective migration of cells]] or bacteria B] is commonly

observed. At the subcellular leveh vitro motility assays motion as a liquid-gas phase sepgraﬂb&ﬂ]. Thetrave!mg
) . bands result from the phase coexistence between a disordered
of actin laments B] or microtubules 4] have shown the

spontaneous emergence of large vortices. Collective motiofl- and an ordered polarized liquid. This framework captures
P 9 9 ‘ many of the characteristics of the transition, from the scaling

is also observed in ensembles of human-made motile par- ; :
ticles such as shaken polar grairs, [colloidal rollers ], of the order parameter to the shape of the phase diagram. This

self-propelled droplets7], or assemblies of polymers and phase-separation picture is robust to the very details of the
molcar motors 48] ’Despite the differences in their propulsion and interaction mechanisms. More speci _cally, it

. e . . has also been quantitatively demonstrated in the active Ising
propulsion and interaction mechanisms, these seemingly ve

r . : . ) .
different systems share common macroscopic behaviors th fhodel [L3] in which particles can diffuse in a 2D space but

{ . .
can be captured by minimal physical models. Of particular:%’lelf'pmpel’ and align, only along one axis. However, the

) ) ) : . . speci cs of the emergent spatial patterns and the type of phase
interest is the emergence @fectedcollgctwe motion, which separation depend on the symmetry of the orientational degrees
was rst addressed in this context in a seminal work by

Vicsek and coworkers9]. The Vicsek model consists of point of freedom. Wh"e the active Ising moc_jel m_odel shows a bulk
phase separation, the Vicsek model is akin to an active
with the direction of motion of their neighbors. When the¥nOdeI and is assopiated with a microphase sgpa.ration Whgre
. , S -the coherently moving polar patterns self-organize into smectic
error on the alignment interaction is decreased, or the dens'tgtructures 14] (see Fig.1)
of particles is increased, a genuine phasg transition from In this paper, buildiﬁg.on the two prototypical models that
a d|§ordered_§o a _symm_etry—broken state is observed. Th'gre the Vicsek model and the active Ising model, we provide
o_ckmg transition gives rise to an emerg_ent orde_red ph_asea comprehensive description of the emergent patterns found
with true long-range polar order even in two dimensionsy; the onset of the ocking transition from a hydrodynamic
(2D), where all the particles propel on average along thgerspective. We rst recall the de nitions and phenomenolo-
same direction. Toner and Tu showed analytically, usinGyies of these two models in Sdt. In Sec.lll, we provide a
a phenomenological uctuating hydrodynamic description, simpli ed hydrodynamic description of the ocking models.
how this ordered state, which would be forbidden by thejn jine with Refs. [L5,16], we show that these models support
Mermin-Wagner theorem at equilibriura(], is stabilized by  nonlinear propagative solutions whose shape is described
self-propulsion 11]. The transition to collective motion in using a mapping onto the trajectories of pointlike particles
the Vicsek model has a richer phenomenology than originallyn one-dimensional potentials. Finding such solutions thus
thought. As rst pointed out numerically in Refl®], at the  reduces to a classical mechanics problem with one degree of
onset of collective motion, translational symmetry is brokenfreedom. For given values of all the hydrodynamic coef cients,

1539-3755/2015/92(6)/062111(18) 062111-1 ©2015 American Physical Society
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FIG. 1. (Color online) Top: Micro-phase separationinthe Vicsek model 0.4,vo = 0.5, o= 0.83, 1.05, 1.93. Bottom: Phase separation
in the active Ising modeD = 1, = 0.9, =19, (= 1.5, 2.35 4.7. System sizes 800 100. High-density bands propagate as indicated
by the red arrows on the left snapshots.

and hence of all underlying microscopic parameters, we nd B. Active Ising model
an in nity of solutions, describing both phase and microphase |, the active Ising model[3], particles carry a spin 1 and

separations, that we fuI_Iy characterize. We then ?hOW tha_1t thﬁ'nove on a 2D lattice with periodic boundary conditions. Their
same results hold speci cally for the hydrodynamic equatlonsdynamics depend on the sign of their spin: A particle with spin

explicitly derived for the active Ising modelly] and for siumbs to the site on its riaht at raf(1 + s ) and to the site
a simplied version of the Vicsek modellp]. Next, we ?:‘ itspleft at rateD(13 s )g wher:%( )1 measures the
O . 1

investigate the linear stability of these solutions as solutions Dias on the diffusion. On average particles thus self-propel
the hydrodynamic equations in Séd. and their coarsening to the right andS1 particles to the left at a mean velocity

dynamics in SecVIl . Finally, we provide full phase diagrams . i i
cgnstructed from the hyd?lodyngmic modelpin Setl .gVVe Vo 2D . Both types of particles diffuse symetrically at rate

close by discussing the similarities and differences with the® '_?r:he \l{ertlcal dlr.ectlon.. : v local. O ],
phenomenology of the agent-based models and conjecture on '€ & ignment interaction is purely local. On a sitea
the role of the hydrodynamic noise in the selection of the ban®&ticlé ips its spins at rate
patterns.

W(s S s)=exp S m
i

: )

Il. PHENOMENOLOGY OF MICROSCOPIC MODELS whereT is a temperature am; and ; are the magnetization

Let us rst brie y recall the phenomenology of the Vicsek @nd number of particles on site (An arbitrary number of
and active Ising models. They are both based on the sanRarticles is allowed on each site since there is no excluded
two ingredients: Self-propulsion and a local alignment rule.volume interaction.)

The major differences between the two models are thus the
symmetries of the alignment interaction and of the direction C. Aliquid-gas phase transition
of motion.

=l »n

The phase diagrams in the temperature-density (or
noise-density) ensemble are shown for both models inZig.
highlighting their similarity. At high temperature (or noise) or
. o ) low density both systems are in a homogeneous disordered gas

In the Vicsek modelq], N pointlike particles, labeled by  state. At low temperature (or noise) and high density they are
an indexi, move at constant speeg on a rectangular plane homogeneous and ordered; in these liquid phases, all particles
with periodic boundary conditions. At each discrete time Stenove in average in the same direction. In the central region of
t = 1,the headings; of all particles are updated in parallel {he phase diagram, inhomogeneous pro les are observed, with
according to liquid domains moving in a disordered gaseous background.

The phase transitions of both models have all the features of
it+ )= ;O N+ (1)  aliquid-gas transition, exhibiting metastability and hysteresis
close to the transition lineslP-14]. The main difference
whereN; is the disk of unit radius around particle ' a  between the two models lies in the coexistence region: In the
random angle drawn uniformly ir§[, ],and setsthe level active Ising model, the particles phase separate in a gaseous
of noise, playing a role akin to that of a temperature in abackground and an ordered liquid band, both of macroscopic
ferromagneticXY model. Then particles hop along their new sizes [L3]. The coexisting densities depend only on tempera-
headings:ri(t + 1) = ri(t) + voe}"l, where e}*l is the unit  ture and bias but not on the average density; in the coexistence
vector pointing in direction given by; (t + 1). region, increasing the density at xdd, thus results in larger

A. Vicsek model

062111-2
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hydrodynamic equations for the density eld and a vectorial

Vicsek . Active Isin Al
0-6 7 LT ‘ magnetization eld P2,
056G
04 _/ _:évo. m, (3)
0.3 G+L t
— g m _ 2. &V 2

i L —+ (M- )m= mS — + — (Im
02 - o) 5t (mP)
0.1 - . 2

S S A S (- mm+ @S m)Hm. @)

The mass-conservation equatioB) (simply describes the

FIG. 2. (Color online) Phase diagrams of the microscopic mOd'advection of the density by the magnetization eld. Equa-

els. The red (upper) and blue (lower) lines delimit the domain ofii,, (4y can be seen as a Navier-Stokes equation complemented
existence of (micro-) phase-separated pro les. The black horizont

; = > :

lines and squares indicate the position of the snapshots shown |r1y a Glnzburg-Land_au termu(S [m| _)m, stemmlng from

Fig. 1. vo = 0.5 for the Vicsek modelD = 1, and = 0.9 for the some underlying alignment mechanl_sm_ and leading to t_he

active Ising model. emergence of a spontaneous magnetization. Because particles

are self-propelled in a given frame of reference, these equations

break Galilean invariance so one can have 1 and = 0

and larger liquid domains whose density remains constant, agilike, e.g., in the Navier-Stokes equation.

shown in Fig.1. Conversely, in the Vicsek model, the system In Egs. @) and @), to which we refer to as "Vicsek

forms arrays of ordered bands arranged periodically in spadeydrodynamic equations” hereafter, all the coef cients ,

which have a nite width along their direction of motion: ,p,and depend on the local density; see Rég][for their

A micro-phase separation occurs4]. As shown in Fig.1,  exact expression.

increasing the density at constant noise, the number of bands The second set of equations, which we refer to as “Ising

increases but their shape does not chadgg [ hydrodynamic equations” in the following, has been derived
Three types of propagating patterns can thus be observedtat describe the large-scale phenomenology of the active Ising

phase coexistence, all shown in Fig.(i) localized compact model [L3]. In this case, the dynamics of the density eld

excitations, (ii) Smectic microphases, and (iii) phase-separateahd the scalar magnetization—corresponding to the Ising

polar liquid domains. In the vicinity of the left coexistence line, symmetry—are given by

collective motion emerges in the form of localized compact

excitations in both modelsl[]. At higher density, phase- — =D Svyum, (5)

separated domains are found in the active Ising model and t

periodic “smectic” bands in the Vicsek model. Understanding m . . -

the emergence of these three types of solutions will be the 7 =Dm Svox +2 S18 mS —, (6)

focus of the rest of the paper. » ) ]
where = 1T, andr are positive coef cients depending

on only, andvp= 2D . The advection ternvg - m of
IIl. HYDRODYNAMIC EQUATIONS Eq. @) is here replaced by a partial derivatiwg ,m because,

A lot of attention has been given in the literature to!n the active Ising model, the density is advected by the
hydrodynamic equations of ocking models. Two different Magnetization only in the direction.
approaches have been followed, starting from phenomenolog-
ical equations11,16,18] or deriving explicitly coarse-grained B. Phenomenological hydrodynamic equations
equations from a microscopic modét3d15,19-21]. All these with constant coefbcients
equations describe the dynamics of a conserved density eld Coarse-grained hydrodynamic equations derived from mi-

(r,t) coupled to anonconserved magnetization eld, the latter; oscopic models have the advantage of expressing the macro-

being a vectom(r,t) for continuous rotational symmetries, as scopic transport coef cients in terms of microscopic quantities
inthe Vicsek model, or a scalen(r,t ), for discrete symmetries, (njse, self-propulsion speed, etc.). However, these possibly
as in the active Ising model. ~ complicated relations may not be relevant to understand the

We rst introduce in Seclll A two sets of hydrodynamic = qyalitative behavior of the models. Thus, before discussing the

equations derived by coarse-graining microscopic modelgjcsek and Ising hydrodynamic equations in Seécwe rst
whichwill be discussed in this paper. Thenwe turnin $€8.  gyydy in detail, in SedV, a simpler model,

to a simpler set of phenomenological hydrodynamic equations

on which we will establish our general results in S&t. . =Sv - m, @)
A. Coarse-grained hydrodynamic descriptions im+ (m- )m=D ’m$ + a;mS ay|m’m, (8)
We rst consider the equations proposed by Besginal.  where the transport coefcientsy, , D, , and a4 are

to describe a simpli ed version of the Vicsek moddly], constant. In the following, we refer to these equations as the
in which one solely considers binary collisions between thé'phenomenological hydrodynamic equations”. This simpli ed
particles. One can then use, assuming molecular chaos, model is very similar to that rst introduced by Toner and
Boltzmann equation formalism to arrive at the following Tu from symmetry consideration4f]. However, unlike the
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original Toner and Tu model, we keep an explicit density A m ]

dependence irm: ax( )= S g, which is essential to /k) 069 0.04 /\
. 1.0

account for inhomogeneous pro le$3,15,18]. 0.4 0.00

The stability criteria of the homogeneous solutions o

[ (rt)= o m(r,t)= mo] of Egs. ) and @) are readily *°] ¢ |oz2- 0.04 1 \/
computed: X m

z| o0.08
. . 0.0 0.0
(@) For o< ¢ (ax( o) < 0) only the disordered solution 0 50 100 150 0 50 100 150 00 02 04 0.6

(0, |mg| = 0) exists and is stable.
(b) For o> ¢ (a( 0)> 0) the disordered solution FIG. 3. (Color online) Left: Density and magnetization pro les
becomes unstable and ordered solutions, [|mo] = of a propagative solution of the hydrodynamic Eqg) &nd @).
(oS g)as]appear. Center: Magnetization pro le in the comoving frame= x S ct
(c) The ordered solutions are linearly stable only whenor, equivalently, trajectoryn(z) of a point particle in the spurious
0> = yrymes 2 time z. Right: Phase portralt correspondlng to the trajectoly).
Thus, mtherangeo [ ¢ ], homogeneoussolutions are Parameterd = vo= = =a= ¢= 1
linearly unstable. In the language of the liquid-gas transition,
g and are the gas and liquid spinodals, between which
the homogeneous phases are linearly unstable and spinoda{z) = 0, the integration constanty is the density in the
decomposition takes place. In the next section we addresgaseous phase surrounding the localized polar excitation. We
the existence of heterogenous ordered excitations propagatingn then insert the expression ofn Eq. (12) and obtain the
through stable disordered (gaseous) backgrounds. This an&econd-order ordinary differential equation
ysis will make it possible both to identify all the possible
ocking patterns and to further understand the rst-order D+ ¢8 V%8 m mS (48 gm
nature of the ocking transition. c

o2 § a;m? = 0. (13)
IV. PROPAGATIVE SOLUTIONS
Let us now establish and classify all the inhomogeneous Following Refs. [1516], we now provide a mechanical
propagating solutions of EqsZ)(and @). In order to do so, we interpretation of Eq. 3) through the well-known Newton
rst recast this problem into a dynamical system frameworkMapPping. Rewriting Eq.13) as:
in Sec.IVA. We then show in SedVB that three types

. . dH
of propagating solutions exist with different celeritiesnd Dm=Sf(mmsS am (14)
densities of the gaseous backgrougdSectiondV C, IVD, 2
and IVE are dedicated to a detailed study of how these Hm =S 3 Yy Emss 15
solutions depend oaand 4. SectionlV F shows how, once (m) (o ) 3c (15)
the average density is xed, we are left with a one-parameter <« Vo
family of solutions. Last, SedV G is devoted to cases where f(m=cS e S m, (16)

the inhomogen rol n tudi nalytically. L . . .
e inhomogeneous pro les can be studied analytically it is clear that this equation corresponds to the mechanical

equation of motion of a point particle. The position of the
A. Newton mapping particle ism, zis the time variabld) is the mass of the particle,
Following Ref. [L5], we look for inhomogeneous polar H (m)is an energy potential, afidm) is a position-dependent
excitations invariant along, say, the direction and which friction. The trajectorym(z) of this ctive particle exactly
propagate and/or relax solely along thelirection. We thus ~ corresponds to the shape of the propagative excitations of our

assumen, = 0 and reduce Eqs7)and @) to: hydrodynamic model in the frame moving at a spegdee
Fig. 3).
¢ =S v .m, 9) We shall stress that for a given hydrodynamic model,

Eq. (14) is parametrized by the two unknown parameters
im+ m ,m=D ?m§ , +( § dmSam’, (10) a_nd g yvhicha priori_can take any value. Each pa'c_r, (g)
gives different potentiaH and frictionf and hence different
where we wrotem = my to ease the notation. We look for trajectoriesn(z). We now turn to the study of these trajectories
solutions propagating steadily at a speedntroducing the  and of the corresponding admissible values for the celerity
positionz = x S ct in the frame moving at: (x,t) = (2), and the gas density.
m(x,t) = m(z), we obtain

B. Three possible propagating patterns

The original problem of nding all the inhomogeneous
0, (12) propagative solutionsn(x,t), (x,t) of the hydrodynamic
equations is now reduced to nding all the pairs, ( 4)
where the dots denote derivation with respeckzt®&olving  for which the corresponding trajectories(z) exist. Mass
Eq. (11) gives ()= g4+ V—gm(z). If (2) is localized in  conservation, Eq9), imposes the boundary condition(z =
space, theng has a simple meaning. Sincz) = gwhen S )= m(z=+ ) so we are looking for solutions of.{)

¢ Svom=0, (11)

D+ cS mmS  +( S gmSam’=
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trajectories wander ton = £
to a rst condition onc, g:

H(m) | H (m) (see Fig4, left). This leads

—

0

H(m)

0 m

(¢S g)?<anv (S1)

Without loss of generality we can assume that 0 and
look only for solutions withm 0. This rules out theg{ )
values for whichmg < 0 andm, > 0 which give oscillations
between negative and positive valuesrf{see Fig4, central
panel). At the hydrodynamic equation level, such solutions
FIG. 4. (Color online) The green potential can give rise to phys-would indeed correspond to different parts of the pro les

ical (positive, nonexploding) solutions while the red ones are rUIedmoving in opposite direction. The corresponding condition
out by our conditions$1) (left) and §2) (center).
9< g (S2)

imposes 6k mg <m. . The potentiaH then has two max-
ima, atm = 0 andm = m,, and one minimum, an = ms.

H
m+

m m m

which are closed in thenf,m) plane. An example of propaga-
tive solutionsm(x,t), (x,t) together with the corresponding
trajectorym(z) and its phase portraits is shown in Fay. The typical shape of potential which gives admissible solutions

To put a rst constraint on ¢ andc, let us rule out the is shown in Fig4 along with examples of potentials ruled out
potentials which cannot give such physical solutions. Thedy conditions §1) and 2.
extrema ofH, solutions ofH (m) = 0, are located ain= 0 From the admissible shape of the potenitiglwe can now
andm = m; with list all possible trajectories(z) and the corresponding elds
m(x,t), (x,t):

(i) Limit cycles, whose corresponding magnetization pro-
les are periodic bands, as shown in the rst row of Fig.

(i) Homoclinic orbits, that start in nitely close to a
maximum ofH , hence spending an arbitrary large time there,
before crossing twice the potential well in a nite time to

S 2
mizﬁli 1éw

17
2a4C V3 7

We can already discard the case wherém) has two complex
roots sinceH then has a single maximum at= 0, and all

0.6 m 14 2 x 10 3 H H
.6 m m 1
0.04 | 2 JH(m) :
m f> 0if< 0
| 1.2
0.4 0.00 - 0 /
0.2 1.0 H 0.04 \—/ 2 4
4
0.0 - 08 - . 0.08 | m m
I I I I I I I I I I I I I I
0 50 100 150 0 50 100 150 0.0 0.2 0.4 0.6 02 00 02 04 06
1.4
0.6 {m m ©-[H (m) :
0.04 |
/‘\ f> 0if< O/\
| 1.2 4
0.4 0.00 . 0 /
0.2 1.0 0.04 - 2
4
0.0 08 - v 0.08 | m m
I I I I I I I I I I I I I I
0 50 100 150 0 50 100 150 0.0 0.2 0.4 0.6 02 00 02 04 06
1.4
0.6 {m m “©7IH (m H
0.04 | 2 JH(m)
\//\ f>0:if< 0
| 1.2 4
0.4 0.00 = 0 /\
0.2 - 1.0 0.04 2
4
0.0 08 - > 0.08 - m m
I I I I I I I I I I I I I I
0 50 100 150 0 50 100 150 0.0 0.2 0.4 0.6 02 00 02 04 06

FIG. 5. (Color online) Example of the three types of trajectories. From left to right: Magnetization and density pro les, phase portrait, and
potentialH . Top row: Periodic trajectory,q = 0.835,c = 1.14. Center row: Homoclinic trajectoryg = 0.83412,c = 1.14. Bottom row:
Heteroclinic trajectory, 4 = 0.83333,c = 1.1547. Phase portrait: Crosses indicate saddle poimts=at0 andm = m, . Squares indicate
stable xed points am = ms. Potentials: The blue dashed line indicates where the friction changes sign. The red portion of the potential is the
one visited by the trajectory. Parametdds= vo= = =a= 4= 1.
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nally return to the same maximum dfi atz= . These The stability of the xed points is given by the eigenvalues

trajectories correspond to isolated solitonic band pro les, as 1, of the 2x 2 matrix which read

shown in the second row of Fi§.
(iii) Heteroclinic orbits that spend an arbitrary large time St (mg) f(mo) 24 H (Mo)

close to a rst maximum ofH, cross the potential well in 1,2(Mo) = 2D * 2D D (22)

a nite time, and spend an arbitrary large time close to the

second maximum dfl before returning to the rst maximum. (i) Atthe maximamo= 0andmo= m, of H,H (mo)is

These trajectories correspond to phase-separated pro les. The,jagive and the two eigenvalues are thus real with opposite
arbitrary waiting times at the two maximaldfthenre ectthe  gjgns. These xed points are saddle points with one unstable
arbitrary sizes of two phase-separated domains (see the thigfoction (1> 0) and one stable direction{< 0).

row of Fig.5). _ _ o (i) At the minimummg = mg of H, H (my) is positive

A third co_nd|t|0n on g,c arises from the nonlinear friction 54 the real part of the two eigenvalues have the same sign,
term. FoIIOW|_ng the classical mechanics analogy, we de ne aiven bySf (ms). The xed point is stable wheh (mg) > 0
energy function and unstable wheh (mg) < 0. Physically, when the friction
of the ctive particle is negative aroundn = mg, small
perturbations are ampli ed, driving the trajectory away from
the xed point. Conversely, a positive friction damps any initial
perturbation, leading to trajectories converging towands
dE Whenc and 4 are such that (mg) = 0, 1, are complex
— =S f (mm? (19)  conjugate imaginary numbers. A Hopf bifurcation takes place,
dz leading to the apparition of a limit cycle.

At the onset of a Hopf bifurcation, a limit cycle appears
aroundthe xed pointwhose stability changes. In the following
sections we elucidate how the interplay between the saddle-
point and the Hopf dynamics rules the nonlinear dynamics of
the ctive particle and hence the polar-band shape.

E=1Dm*+ H. (18)

Multiplying the equation of motion1(3) by m, we get

Energy is injected wherf (m)< 0 and dissipated when
f (m) > 0. On a closed trajectory, the frictioh must thus
change sign. Sinck is a decreasing function ah, this im-
posed (0) > O for trajectories witim(z) > 0 or, equivalently,

c> Vo (S3)
D. Hopf bifurcation
The conditions 1), (S2, and &3 thus provide loose Let us rst provide a comprehensive characterization of

bounds on the subspace of thg () plane which contains the Hopf bifurcation. It happens when the real part @b
the three types of trajectorign(z) described above. These vanishes, i.e., when

trajectories correspond to the three types of inhomogeneous

pro les seen in the microscopic model&3. Before studying f(mg)=c$S Vo S ms(c, 9) =0, (23)
the stability and coarsening of these propagative solutions, we c

rst need to understand precisely how they are organised iwhere mg, which depends on both and g, is given by

the €, ) plane. In order to do so, we rst analyze the phaseEq. (17). Equation 23) is satis ed on the line
portrait of the dynamicsl@). We then study how the phase

portrait evolves wheng andc are varied. o= o+ (Sc?+ vo )(3842022*' Vo + Vo ), (24)
c
C. Stability of the Pxed points which we call the Hopf transition line.

. . Following standard text books in bifurcation theo4],
The structure of the phase portrait is most easily capturegn g %A

by locating the xed points of14) and studying their stability.

We rst rewrite (14) as a system of two rst-order differential the sign of
equations: 5 e
= H mg, — , 25
16D 3 > g ¢ (25)
d m m
97 = &fMp& H@m - (20) - _ _ _
dz m S5 mMS o where = H (ms, §')/D > 0isthe imaginary part of the

The xed points are the solutions satisfying = 0 and eigenvalues at the bifurcation point. Moreover,

H (m) = 0, i.e., the constant solutions extremizikty As ms _ S1
explained before, because of the conditi&2)( the extrema o T2 - - (26)
of H atm = 0,mg,m. are suchthat& mg <m,, so 0 and zS4a( gS o)
m, are two maxima anchg is a minimum ofH .

Linearizing the dynamics around one of the xed points, we
denem= mg+ m withmg= 0,mg,m,,som= m and

is always negative because of conditi@1i), The sign of
is thus given by the sign dfl (ms, g'), which changes at

c= c with
d m _ 0 1 m WG )
4z m - SH (myD Sfmyo m - D c=— = @7)
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: oa{ ™ :C 0
: i Bl 1.0
“. i 4
: a a
: %21 & Pl oo £
' o ! 3}
' g H g
X & AY o
. 0.0 - , —9 o8 - , 9
. X X 0.840 0.844 0.848 0.840 0.844 0.848
| |
: v FIG. 7. (Color online) Line at xect = 1.12inthe ¢, ) space
. forc < c . Top: Three phase portraits along the line, from the vicinity

) ) of the Hopf bifurcation line (A) until the homoclinic is found (C).
FIG. 6. (Color online) The four types of phase portrait, (M)  Bottom-left: Size of the limit cyclem de ned in Eq. @8). The limit

obtained in our system when changingandc. The line g = ¢ ¢ycle disappears whem is large enough that the orbit reaches:
is where the Hopf bifurcation takes place. The bifurcation is supery, where the trajectory is homoclinic. Bottom-right: Average density
critical forc < ¢ and subcritical foc > ¢ . The plain (respectively, | of the solutions. Parametel®:= vo= = = a;= o= 1.

open) black squares denote stable (respectively, unstable) xed points
atm = ms. The plain (respectively, dashed) black lines denote stable
(respectively, unstable) limit cycles. The crosses denote the saddfed. (24) is the upper boundary for the admissible valuespf
points atm = 0 andm = m, . The initial condition of each trajectory whenc < ¢ and the lower boundary when> ¢ .
is marked by a magenta disk and the direction of “timeéfidicated To explore the remainingc( ¢) space, we numerically
by a magenta arrow. integrated the dynamical syster80f using a Runge-Kutta
scheme of order 4. Starting from different initial conditions,
one easily nds the basins of attraction of the different
Two different scenarios occur depending on whethistarger ~ solutions. To locate unstable xed points and limit cycles,
or smaller thart . we integrated the dynamics backward in time since they are
(@) Whenc <c , the Hopf bifurcation is supercritical attractors whez S .Ascand ¢ vary, so do the shapes
( > 0). The system branches from a stable xed point forand sizes of the limit cycles. To quantify these variations, we
g> g (case I, Figb) to a stable limit cycle surrounding an measured the “amplitude” of a cycle, de ned as the difference

unstable xed pointfor g < { (case Il, Fig6). between the two extrema of(2),
(b) When ¢ >c , the Hopf bifurcation is subcritical & oo
( < 0). The system branches from an unstable xed point m mzax[m(z)] S mzm[m(z)]. (28)

H ) -
when g < g (case IV, Fig.6) to an unstable limit cycle We systematically vary 4 at xed c, rst focusing on

surrounding a stable xed point wheng > (case Ill,  the casec <c where the Hopf bifurcation is supercritical.
Fig. 6). o _ _ Decreasing 4, a stable limit cycle of vanishing amplitude
The organization of these four typical cases in tbe ) appears at ;= H [Fig. 7, panel A]l. The amplitude of
plane is |IIustfated in Fig6. We thus see that, when<c ,  ihe cycle then in?:reases ag decreases [Fig7, panel B]
limitcycles existfor g smallerthan ¢, whereaswhea>c , il it hits the xed point atm = 0 where the limit cycle

they exist for 4larger than H. The Hopf bifurcation line  pecomes an homoclinic trajectory [Fig, panel C]. For

is thus a boundary of the dqomain of existence of periodiceven lower 4 the particle escapes tm=S . The vari-
propagative solutions of the hydrodynamic equations. Let ugtion of the cycle amplitude withy shown in Fig.7 can
now consider what happens when we exploredhg plane  pe qualitatively explained. Wheny decreases, the distance
further away from the Hopf bifurcation line. ms S m; increases, wherex = 1(c$ v /c) is the value

of m where the friction changes sign, i.€.(m; ) = 0. More
energy is thus injected in the system and, to dissipate this
energy, the trajectory need to go closenia= 0.

So far, we have shown that three different types of A symmetric behavior is observed wher>c for the
trajectoriesm(z) (periodic, homoclinic, and heteroclinic) can subcritical Hopf bifurcation. Increasing;, an unstable limit
be found by varying the values of ¢. The subspace where cycle of vanishing amplitude appears a} = 5‘ The
these physical solutions can be found was rst bounded byamplitude of the cycle then increases witly until the
the conditions $1), (S2), and E3. In the previous section, trajectory hits the pointn = m, where we have an (unstable)
we further found that the Hopf transition Iin(g' (c) given by  homoclinic solution that starts froorm = m, as shown in

E. Structure of the (c, ) solution space
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©7IH (m) 0.6 4M g
7] f>0 -f <0 1.00 .-..-.-..-..-.-..-..-.-..-..-..-.-..-..-.-..(.S..%.).
; 0.4 - :
0 ' E — stable homoc.
H 0.95 i
/_\/\ 0.2 i — unstable homoc.
2 ' H — Hopf bifurcation
————— 00 . — 0904
00 02 04 06 0 25 50 75 :
FIG. 8. (Color online) Unstable homoclinic trajectory starting 0.85 1 -
fromm=m, for c= 1.16. ParameterdD = vp= = = g4= H i
o= 1 0.80 §(S?’) , : ¢
1.0 1.1 ¢ 1.2
Fig. 8. Physically, when increasing;, my S mg increases so g _
the friction around the stable xed point &t = mg becomes 086 W Heterocline
larger and thus its basin of attraction (whose boundary is the
unstable limit cycle, see Fig) becomes larger.
All in all, the central results of this section is that all the -85
admissible solutions lie in a band delimited by the Hopf bifur- [
cation line E';(c) and a line where the homoclinic trajectories
are found, as shown in Fi@. Inside this band there exists  0-84
stable nondegenerate limit cycles, corresponding to periodic
propagating proles. The unique heteroclinic trajectory is
0.83

located exactly at = ¢ where the Hopf bifurcation changes

from supercritical to subcritical. We thus observe a two-

parameter family of periodic solutions, a line of homoclinic
trajectories, and a unique heteroclinic trajectory. Going back
to the original pattern formation problem, they correspond to i 9. (Color online) Space of all solutions. A two-parameter

a two-parameter family of micro-phase-separated pro les, 8amily of periodic orbits is found inside the band delimited by the

line of isolated solitonic bands, and a unique phase-separat@gbhpf bifurcation and the homoclinic trajectories. The constra®g (

state where a macroscopic polar liquid domain cruises throughnd §3 are indicated by the black dashed lines. The constrsit (

a disordered gas. lies out of the range of this plot. Bottom: Zoom of the plot above
around the point = ¢ where the Hopf bifurcation changes from
supercritical to subcritical. This is also where the unique heteroclinic

F. Working at bPxed average density trajectory is found. The roman numbers refer to Bigndicating the

In the microscopic models and the original hydrodynamictyPe of phase portrait found in each region. Paramef@rs: vo =
equations the average densityis a conserved quantity xed =~ ~ &= o= 1.
by the initial condition. On the contrary, when considering the
trajectories of the ctive particlen(z), ois nota priori xed g be crucial when discussing the coarsening dynamics at the
and varies between the different solutions. To compute thﬁydrodynamic level in Sea/ll .
mean density on a trajectoryi(z) we simply average (z) = Until now, we have shown that three different types of
g * Vom(z)/c over time. . possible trajectoriem(z) exist, which correspond to all the
As shown in Fig7 (bottom-right), we nd thatat xedc < propagative solutions observed in the microscopic models of
¢, odecreases W}E‘en‘; decreases. Itrangesfrog= ¢+ ying spins. We have further identi ed the subset of values of
cMms when ¢= 4 10 o= gatthe homoclinic trajectory  the propagation speecand the gas density, for which these
where the portion of the trajectory witin(z) = 0 becomes  so|ytions exist. We can now turn to the study of their dynamical
negligibly small. Note that, at the heteroclinic trajectory,  stapility at the hydrodynamic equation level. However, we

can take a large range of values. Since the size of the gas andt discuss analytically in the next section the shape of
liquid domains are arbitrary, the average density can take anynhomogeneous solutions.

valuein[ J, "], where [ and " are the densities in the gas
and liquid domains, respectively. ) _

Fixing o adds a constraint that selects a line of solutions in G. Exact solution for the heterocline
the €, ¢)space,asshowninFigO(left). Forall o [ S " There are no general analytic solutions for the propagating
these lines end at the heteroclinic trajectory. We also obseni@homogeneous pro les. However, progress is possible for
that, at xed o, the closer the trajectories are to the heteroclinicsome limiting cases. In the following we show that a complete
solution, the larger their amplitude (see Fid), right). This  solution for the heterocline—its position in the, ( ¢) plane
means that along a ling, = cst, the higher the amplitude the and its shape—can be determined exadt8].[In AppendixA,
faster the band excitations propagate. This point will turn outve then show that, although exact solutions are not available,

T
1.12

I I
1.14 C116 1.18
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0.86
g — stable homoc.
— unstable homoc.
— Hopf bifurcation
0.85 | 0 =
: 0= 1.02
0=1.04
0.84 | | |
0 50 100 150
T FIG. 11. (Color online) Comparison between the exact solution
0.83 I : : for the heterocline (dashed lines) and the result from numerical
1.12 1.14 1.16 integration of Eq. 20) (blue line). Parameter® = vo= = =
0.6 = 4= 1

whereg and h are complicated functions that we omit for
conciseness. EquatioB]) can be true only iy andh vanish
0.4 H independently for botk; andk,.

We can expresg; and k, as functions ofc and by
linearizing the ansatz2@) aroundm= 0. Whenk; »(zS
7212 S ,one hasn;,  exp[Xy12(zS z;)] so we can
0.2 H identify k; » with the two eigenvalues of the linear stability
. analysis Eq.Z2). The ascending front is associated with the
m  heterocline unstable directiok; = 1/ 2 and the descending front with the

c stable directiork, = 5/ 2.
0.0 T T Replacingk; ; by their values in Eq.31), we have four
112 1.14 1.16 equations for the two unknowmsand 4. After some algebra,
one obtains a unique solutiod( {) with

FIG. 10. (Color online) Top: Lines of solutions having a xed
average density, in the space of all solutions. Bottom: The amplitude

m of the cycles, de ned in Eq.28), along the lines (= cst c"=c¢ = M, (32)
increases whem increases. Paramete®. = vo= = = a= 2334
= 1. h _ & Vo
g 97 %5, +3 (33)
progress regarding the shape of the homoclinic solutions is This gives us the magnetizatiom and the the fronts
achievable in the smalD limit. steepnesk; » as
To compute the shape of the heterocline, let us start from
the ansatz m = 2Vo ' (34)
m . 3ayvo(Bay + )
M12(2) = —-[1+ tanh(ky2(z S 2,.2))]- (29) -
= VoD + S Vo a5
Each of mi(z) and my(z) describe an interface centered ST 3a(3a, + ) (35)
aroundz = z; , between a disordered phase with= 0 and
an ordered phase witm= m . The complete heteroclinic _ S v@BaD+ 2SS Vg
trajectory then consists of two fronts glued together: An ke = 4D 3a,(Bas + ) (36)
ascending fronimy(z) with k; > 0 and a descending front _ i _
m(2) with k, < 0, withz,  z; (see Fig.11); being part of In F|g_. .11, we show that this sqluupn matqhes exactly the
the same pro |e, the two fronts share the same Ce|®"my]d heteroclinic orbit found by numerical |ntegrat|0n of anx
density .
Moreover, we know thatn must be located at the second v, BACK TO THE VICSEK-LIKE AND THE ACTIVE ISING
maximum ofH so MODELS: NONLINEAR SOLUTIONS OF THE
— HYDRODYNAMIC EQUATIONS
_ _ Vo « 4 gS g)c? . .
m=m, = TaC 1+ 1S ———— . (30) In Secs.lll and IV we consider phenomenological hy-
0 drodynamic equations and assumed the simplest possible
Pluggingm; and m, in Eq. (13) and replacingm by its ~ dependencies of their coefcients with density. Here we
expression, one obtains for each of the fronts extend our study to the more realistic hydrodynamic equations

5 presentedin Setl A . We rstconsider in SecV A the Vicsek
o(c, g.k1,2) + h(c, g.ki2)tanh(ky2(zS z12)) = 0, (31)  hydrodynamic equations before turning to the Ising hydrody-
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