A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, p.15, 1967.
DOI : 10.1016/0022-5193(67)90051-3

. Winfree, The Geometry of Biological Time, Kuramoto, Chemical Oscillations, Waves, and Turbulence, 1980.
DOI : 10.1007/978-3-662-22492-2

Y. Kuramoto and I. Nishikawa, Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities, Journal of Statistical Physics, vol.39, issue.Suppl., p.569, 1987.
DOI : 10.1007/BF01009349

S. H. Strogatz, A. S. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Physica D, vol.143, issue.1, 2000.

E. J. Hildebrand, M. A. Buice, and C. C. Chow, Kinetic Theory of Coupled Oscillators, Physical Review Letters, vol.98, issue.5, pp.54101-031118, 2007.
DOI : 10.1103/PhysRevLett.98.054101

H. Hong, H. Park, and M. Y. Choi, Collective synchronization in spatially extended systems of coupled oscillators with random frequencies, Physical Review E, vol.72, issue.3, p.36217, 2005.
DOI : 10.1103/PhysRevE.72.036217

H. Hong, H. Chaté, H. Park, and L. Tang, Entrainment Transition in Populations of Random Frequency Oscillators, Physical Review Letters, vol.99, issue.18, p.184101, 2007.
DOI : 10.1103/PhysRevLett.99.184101

H. Hong, H. Park, and L. Tang, Finite-size scaling of synchronized oscillation on complex networks, Physical Review E, vol.76, issue.6, p.66104, 2007.
DOI : 10.1103/PhysRevE.76.066104

]. H. Hong, J. Um, and H. Park, Link-disorder fluctuation effects on synchronization in random networks, Physical Review E, vol.87, issue.4, p.42105, 2013.
DOI : 10.1103/PhysRevE.87.042105

S. H. Strogatz, R. E. Mirollo, and J. Phys, Collective synchronisation in lattices of nonlinear oscillators with randomness, Journal of Physics A: Mathematical and General, vol.21, issue.13, pp.699-143, 1988.
DOI : 10.1088/0305-4470/21/13/005

J. Um, H. Hong, and H. Park, Nature of synchronization transitions in random networks of coupled oscillators, Physical Review E, vol.89, issue.1, p.12810, 2014.
DOI : 10.1103/PhysRevE.89.012810

H. Daido, Susceptibility of large populations of coupled oscillators, Physical Review E, vol.91, issue.1, p.12925, 2015.
DOI : 10.1103/PhysRevE.91.012925

H. Hong, M. Ha, and H. Park, Finite-Size Scaling in Complex Networks, Physical Review Letters, vol.98, issue.25, pp.258701-258716, 1982.
DOI : 10.1103/PhysRevLett.98.258701

K. Binder, M. Nauenberg, V. Privman, and A. P. Young, Finite-size tests of hyperscaling, Physical Review B, vol.31, issue.3, p.1498, 1985.
DOI : 10.1103/PhysRevB.31.1498

D. S. Fisher, Scaling and critical slowing down in random-field Ising systems, Physical Review Letters, vol.56, issue.5, p.416, 1986.
DOI : 10.1103/PhysRevLett.56.416

A. A. Middleton and D. S. Fisher, Three-dimensional random-field Ising magnet: Interfaces, scaling, and the nature of states, Physical Review B, vol.65, issue.13, p.134411, 2002.
DOI : 10.1103/PhysRevB.65.134411

R. L. Vink, T. Fischer, and K. Binder, Finite-size scaling in Ising-like systems with quenched random fields: Evidence of hyperscaling violation, Physical Review E, vol.82, issue.5, p.51134, 2010.
DOI : 10.1103/PhysRevE.82.051134