V. K. Dhir, BOILING HEAT TRANSFER, Annual Review of Fluid Mechanics, vol.30, issue.1, p.365, 1998.
DOI : 10.1146/annurev.fluid.30.1.365

H. J. Van-ouwerkerk, Burnout in pool boiling the stability of boiling mechanisms, International Journal of Heat and Mass Transfer, vol.15, issue.1, p.25, 1972.
DOI : 10.1016/0017-9310(72)90163-9

V. S. Nikolayev and D. A. Beysens, Boiling crisis and non-equilibrium drying transition, Europhysics Letters (EPL), vol.47, issue.3, p.345, 1999.
DOI : 10.1209/epl/i1999-00395-x

URL : https://hal.archives-ouvertes.fr/hal-01261249

S. G. Kandlikar, A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation, Journal of Heat Transfer, vol.123, issue.6, p.1071, 2001.
DOI : 10.1115/1.1409265

T. G. Theofanous, T. N. Dinh, J. P. Tu, and A. T. Dinh, The boiling crisis phenomenon, Experimental Thermal and Fluid Science, vol.26, issue.6-7, p.793, 2002.
DOI : 10.1016/S0894-1777(02)00193-0

V. S. Nikolayev, D. Chatain, Y. Garrabos, and D. Beysens, Experimental Evidence of the Vapor Recoil Mechanism in the Boiling Crisis, Physical Review Letters, vol.97, issue.18, p.184503, 2006.
DOI : 10.1103/PhysRevLett.97.184503

URL : https://hal.archives-ouvertes.fr/hal-00163398

H. J. Chung and H. C. No, A nucleate boiling limitation model for the prediction of pool boiling CHF, International Journal of Heat and Mass Transfer, vol.50, issue.15-16, p.2944, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2006.12.023

I. Chu, H. C. No, and C. Song, Visualization of boiling structure and critical heat flux phenomenon for a narrow heating surface in a horizontal pool of saturated water, International Journal of Heat and Mass Transfer, vol.62, p.142, 2013.
DOI : 10.1016/j.ijheatmasstransfer.2013.02.067

S. Gong, W. Ma, and H. Gu, An experimental investigation on bubble dynamics and boiling crisis in liquid films, International Journal of Heat and Mass Transfer, vol.79, p.694, 2014.
DOI : 10.1016/j.ijheatmasstransfer.2014.08.065

J. Jung, S. J. Kim, and J. Kim, Observations of the Critical Heat Flux Process During Pool Boiling of FC-72, Journal of Heat Transfer, vol.136, issue.4, p.41501, 2014.
DOI : 10.1115/1.4025697

V. S. Nikolayev, D. A. Beysens, G. Lagier, and J. Hegseth, Growth of a dry spot under a vapor bubble at high heat flux and high pressure, International Journal of Heat and Mass Transfer, vol.44, issue.18, p.3499, 2001.
DOI : 10.1016/S0017-9310(01)00024-2

URL : https://hal.archives-ouvertes.fr/hal-01261281

P. Lloveras, F. Salvat-pujol, L. Truskinovsky, and E. Vives, Boiling Crisis as a Critical Phenomenon, Physical Review Letters, vol.108, issue.21, p.215701, 2012.
DOI : 10.1103/PhysRevLett.108.215701

URL : https://hal.archives-ouvertes.fr/hal-00784838

S. G. Kandlikar and M. E. Steinke, Contact angles and interface behavior during rapid evaporation of liquid on a heated surface, International Journal of Heat and Mass Transfer, vol.45, issue.18, p.3771, 2002.
DOI : 10.1016/S0017-9310(02)00090-X

Y. Garrabos, C. Lecoutre-chabot, J. Hegseth, V. S. Nikolayev, D. Beysens et al., Gas spreading on a heated wall wetted by liquid, Physical Review E, vol.64, issue.5, p.51602, 2001.
DOI : 10.1103/PhysRevE.64.051602

URL : https://hal.archives-ouvertes.fr/hal-01261321

V. S. Nikolayev, Dynamics of the triple contact line on a nonisothermal heater at partial wetting, Physics of Fluids, vol.22, issue.8, p.82105, 2010.
DOI : 10.1063/1.3483558

V. Jane?ek and V. S. Nikolayev, Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces, Physical Review E, vol.87, issue.1, p.12404, 2013.
DOI : 10.1103/PhysRevE.87.012404

J. P. Sethna, K. Dahmen, S. Kartha, J. A. Krumhansl, B. W. Roberts et al., Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations, Physical Review Letters, vol.70, issue.21, p.3347, 1993.
DOI : 10.1103/PhysRevLett.70.3347

J. P. Sethna, K. A. Dahmen, and C. R. Myers, Crackling noise, Nature, vol.81, issue.6825, p.242, 2001.
DOI : 10.1038/35065675

O. Kinouchi and M. Copelli, Optimal dynamical range of excitable networks at criticality, Nature Physics, vol.6, issue.4, p.348, 2006.
DOI : 10.1038/nphys289

A. Corral, C. J. Pérez, and A. Díaz-guilera, Self-Organized Criticality Induced by Diversity, Physical Review Letters, vol.78, issue.8, p.1492, 1997.
DOI : 10.1103/PhysRevLett.78.1492

L. Gil and D. Sornette, Landau-Ginzburg Theory of Self-Organized Criticality, Physical Review Letters, vol.76, issue.21, p.3991, 1996.
DOI : 10.1103/PhysRevLett.76.3991

E. Vives and A. Planes, Hysteresis and avalanches in the random anisotropy Ising model, Physical Review B, vol.63, issue.13, p.134431, 2001.
DOI : 10.1103/PhysRevB.63.134431

D. L. Turcotte, Self-organized criticality, Reports on Progress in Physics, vol.62, issue.10, p.1377, 1999.
DOI : 10.1088/0034-4885/62/10/201

URL : https://hal.archives-ouvertes.fr/hal-00302024

V. Skokov, V. Koverda, A. Reshetnikov, V. Skripov, N. Mazheiko et al., 1/f noise and self-organized criticality in crisis regimes of heat and mass transfer, International Journal of Heat and Mass Transfer, vol.46, issue.10, p.1879, 2003.
DOI : 10.1016/S0017-9310(02)00475-1

M. Shoji, Studies of boiling chaos: a review, International Journal of Heat and Mass Transfer, vol.47, issue.6-7, p.1105, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.09.024

V. Sathyamurthi, D. Banerjee, H. Sakamoto, and J. Kim, Measurement of the fractal order of wall void fraction during nucleate boiling, International Journal of Heat and Fluid Flow, vol.29, issue.1, p.207, 2008.
DOI : 10.1016/j.ijheatfluidflow.2007.03.009

R. Schäfer, C. Merten, and G. Eigenberger, Bubble size distributions in a bubble column reactor under industrial conditions, Experimental Thermal and Fluid Science, vol.26, issue.6-7, p.595, 2002.
DOI : 10.1016/S0894-1777(02)00189-9

J. H. Kim, K. N. Rainey, S. M. You, and J. Y. Pak, Mechanism of Nucleate Boiling Heat Transfer Enhancement From Microporous Surfaces in Saturated FC-72, Journal of Heat Transfer, vol.124, issue.3, p.500, 2002.
DOI : 10.1115/1.1469548

J. Kim and J. F. Benton, Highly subcooled pool boiling heat transfer at various gravity levels, International Journal of Heat and Fluid Flow, vol.23, issue.4, p.497, 2002.
DOI : 10.1016/S0142-727X(02)00139-X

S. Nishio, T. Gotoh, and N. Nagai, Observation of boiling structures in high heat-flux boiling, International Journal of Heat and Mass Transfer, vol.41, issue.21, p.3191, 1998.
DOI : 10.1016/S0017-9310(98)00062-3

R. Wunenburger, D. Chatain, Y. Garrabos, and D. Beysens, Magnetic compensation of gravity forces in (p-) hydrogen near its critical point: Application to weightless conditions, Physical Review E, vol.62, issue.1, p.469, 2000.
DOI : 10.1103/PhysRevE.62.469

V. Nikolayev, D. Chatain, D. Beysens, and G. Pichavant, Magnetic Gravity Compensation, Microgravity Science and Technology, vol.62, issue.1, p.113, 2011.
DOI : 10.1007/s12217-010-9217-6

L. Quettier, H. Félice, A. Mailfert, D. Chatain, D. Beysens et al., Magnetic compensation of gravity forces in liquid/gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts, The European Physical Journal Applied Physics, vol.32, issue.3, p.167, 2005.
DOI : 10.1051/epjap:2005074

G. Pichavant, B. Cariteau, D. Chatain, V. Nikolayev, and D. , Magnetic Compensation of Gravity: Experiments with Oxygen, Microgravity Science and Technology, vol.62, issue.3, p.129, 2009.
DOI : 10.1007/s12217-008-9089-1

Y. Garrabos, C. Lecoutre, D. Beysens, V. Nikolayev, S. Barde et al., Transparent heater for study of the boiling crisis near the vapor???liquid critical point, Acta Astronautica, vol.66, issue.5-6, p.760, 2010.
DOI : 10.1016/j.actaastro.2009.08.018

URL : https://hal.archives-ouvertes.fr/hal-00459844

D. Chatain, C. Mariette, V. S. Nikolayev, and D. Beysens, Quench cooling under reduced gravity, Physical Review E, vol.88, issue.1, p.13004, 2013.
DOI : 10.1103/PhysRevE.88.013004

URL : https://hal.archives-ouvertes.fr/cea-01481067