C. Breder, Studies on the structure of fish schools, Bull. Am. Mus. Nat. Hist, vol.98, pp.3-27, 1951.

D. Radakov, Schooling in the ecology of fish, 1973.

B. Partridge, The Structure and Function of Fish Schools, Scientific American, vol.246, issue.6, pp.114-123, 1982.
DOI : 10.1038/scientificamerican0682-114

J. Treherne and W. Foster, Group transmission of predator avoidance behaviour in a marine insect: The trafalgar effect, Animal Behaviour, vol.29, issue.3, pp.911-917
DOI : 10.1016/S0003-3472(81)80028-0

P. Domenici, E. Standen, and R. Levine, Escape manoeuvres in the spiny dogfish (Squalus acanthias), Journal of Experimental Biology, vol.207, issue.13, pp.2339-2349, 2004.
DOI : 10.1242/jeb.01015

J. Krause and G. Ruxton, Living in groups, Oxford Series in Ecology and Evolution, 2002.

J. Treherne and W. Foster, The effects of group size on predator avoidance in a marine insect, Animal Behaviour, vol.28, issue.4, pp.1119-1122, 1980.
DOI : 10.1016/S0003-3472(80)80100-X

W. Foster and J. Treherne, 1981 Evidence for the dilution effect in the selfish herd from fish rsif.royalsocietypublishing, J. R. Soc. Interface, vol.12, p.20141362

A. Magurran, The adaptive significance of schooling as an anti-predator defence in fish, Ann. Zool. Fenn, vol.27, pp.51-66, 1990.

P. Domenici and R. Batty, Escape behaviour of solitary herring ( Clupea harengus ???) and comparisons with schooling individuals, Marine Biology, vol.128, issue.1, pp.29-38, 1997.
DOI : 10.1007/s002270050065

J. Herbert-read, A. Perna, R. Mann, T. Schaerf, D. Sumpter et al., Inferring the rules of interaction of shoaling fish, Proc. Natl Acad. Sci. USA, pp.726-744, 2011.
DOI : 10.1073/pnas.1109355108

Y. Katz, K. Tunstrøm, C. Ioannou, C. Huepe, and I. Couzin, Inferring the structure and dynamics of interactions in schooling fish, Proc. Natl Acad. Sci. USA, pp.720-738, 2011.
DOI : 10.1073/pnas.1107583108

W. Romey, Individual differences make a difference in the trajectories of simulated schools of fish, Ecological Modelling, vol.92, issue.1, pp.65-77, 1996.
DOI : 10.1016/0304-3800(95)00202-2

G. Huse, S. Railsback, and A. Feronö, Modelling changes in migration pattern of herring: collective behaviour and numerical domination, Journal of Fish Biology, vol.1, issue.06, pp.571-582
DOI : 10.1111/j.1095-8649.2002.tb01685.x

I. Couzin, J. Krause, N. Franks, and S. Levin, Effective leadership and decision-making in animal groups on the move, Nature, vol.181, issue.7025, pp.513-516, 2005.
DOI : 10.1016/j.tree.2004.07.001

I. Aoki, A simulation study on the schooling mechanism in fish., NIPPON SUISAN GAKKAISHI, vol.48, issue.8, pp.1081-1088, 1982.
DOI : 10.2331/suisan.48.1081

A. Huth and C. Wissel, The simulation of the movement of fish schools, Journal of Theoretical Biology, vol.156, issue.3, pp.365-385, 1992.
DOI : 10.1016/S0022-5193(05)80681-2

I. Couzin, J. Krause, R. James, G. Ruxton, and N. Franks, Collective Memory and Spatial Sorting in Animal Groups, Journal of Theoretical Biology, vol.218, issue.1, 2002.
DOI : 10.1006/jtbi.2002.3065

S. Viscido, J. Parrish, and D. Grünbaum, The effect of population size and number of influential neighbors on the emergent properties of fish schools, Ecological Modelling, vol.183, issue.2-3, pp.347-363, 2005.
DOI : 10.1016/j.ecolmodel.2004.08.019

J. Gautrais, F. Ginelli, R. Fournier, S. Blanco, M. Soria et al., 2012 Deciphering interactions in moving animal groups, PLoS Comp. Biol

D. Calovi, U. Lopez, S. Ngo, C. Sire, H. Chaté et al., 2014 Swarming, schooling, milling: phase diagram of a data-driven fish school model, New J. Phys, vol.161, issue.16, pp.15026-15036, 15026.

K. Tunstrøm, Y. Katz, C. Ioannou, C. Huepe, M. Lutz et al., 2013 Collective states, multistability and transitional behavior in schooling fish

C. Hemelrijk and H. Hildenbrandt, Self-Organized Shape and Frontal Density of Fish Schools, Ethology, vol.30, issue.3, pp.245-254, 2008.
DOI : 10.1046/j.0021-8790.2001.00571.x

C. Hemelrijk, H. Hildenbrandt, J. Reinders, and E. Stamhuis, Emergence of Oblong School Shape: Models and Empirical Data of Fish, Ethology, vol.106, issue.76, pp.1099-1112
DOI : 10.1111/j.1439-0310.2010.01818.x

A. Kolpas, M. Busch, H. Li, I. Couzin, L. Petzold et al., How the Spatial Position of Individuals Affects Their Influence on Swarms: A Numerical Comparison of Two Popular Swarm Dynamics Models, PLoS ONE, vol.108, issue.3, p.58525
DOI : 10.1371/journal.pone.0058525.s001

M. Aureli and M. Porfiri, 2010 Coordination of selfpropelled particles through external leadership, pp.295-5075

U. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani, Fluctuation???dissipation: Response theory in statistical physics, Physics Reports, vol.461, issue.4-6, pp.111-195, 2008.
DOI : 10.1016/j.physrep.2008.02.002

A. Attanasi, Finite-Size Scaling as a Way to Probe Near-Criticality in Natural Swarms, Physical Review Letters, vol.113, issue.23, pp.238102-238112
DOI : 10.1103/PhysRevLett.113.238102

H. Chaté and M. Muñoz, 2014 Insect swarms go critical

A. Attanasi, Collective Behaviour without Collective Order in Wild Swarms of Midges, PLoS Computational Biology, vol.8, issue.7, 2014.
DOI : 10.1371/journal.pcbi.1003697.s009

W. Bialek, A. Cavagna, I. Giardina, T. Mora, O. Pohl et al., 2014 Social interactions dominate speed control in poising natural flocks near criticality, Proc. Natl Acad. Sci. USA, pp.7212-7217

T. Mora and W. Bialek, Are Biological Systems Poised at Criticality?, Journal of Statistical Physics, vol.69, issue.22, pp.268-302
DOI : 10.1007/s10955-011-0229-4

J. Boedecker, O. Obst, J. Lizier, N. Mayer, and M. Asada, Information processing in echo state networks at the edge of chaos, Theory in Biosciences, vol.28, issue.2, pp.205-213
DOI : 10.1007/s12064-011-0146-8

C. Ioannou, V. Guttal, and I. Couzin, Predatory Fish Select for Coordinated Collective Motion in Virtual Prey, Science, vol.337, issue.6099, pp.1212-1215
DOI : 10.1126/science.1218919

M. Aureli, F. Fiorilli, and M. Porfiri, 2012 Portraits of selforganization in fish schools interacting with robots. Phys, J. R. Soc. Interface, vol.241, issue.12, pp.908-920