M. S. Amara, S. Rouziè-re, E. Paineau, M. Bacia-verloop, A. Thill et al., Hexagonalization of Aluminogermanate Imogolite Nanotubes Organized into Closed-Packed Bundles, The Journal of Physical Chemistry C, vol.118, issue.17, pp.9299-9306, 2014.
DOI : 10.1021/jp5029678

URL : https://hal.archives-ouvertes.fr/hal-01157204

A. S. Barnard, N. P. Young, A. I. Kirkland, M. A. Van-huis, and H. Xu, Nanogold: A Quantitative Phase Map, ACS Nano, vol.3, issue.6, pp.1431-1436, 2009.
DOI : 10.1021/nn900220k

G. Brindley, Long-Spacing Organics for Calibrating Long Spacings of Interstratified Clay Minerals, Clays and Clay Minerals, vol.29, issue.1, pp.67-68, 1981.
DOI : 10.1346/CCMN.1981.0290110

V. Carpet, All scattering rings are indexed according to MWCNT and iron-based phases, as is illustrated for several of them in the figure, where their scattering wavevectors are also indicated. The four localized Bragg peaks originate from the Si wafer. The exposure time is 4 h and the sample-to-detector distance is 150 mm. (b) Measured intensity along the circle at q ' 3.5 A ? À1 (reflection 200 of -Fe) as a function of the azimuthal angle '. The black solid line represents experimental data, solid blue and green lines represent calculations for the [110] and [100] axes of -Fe along the tubes, and the dashed black line corresponds to random orientation, The red line represents the best agreement for the sum of the different contributions, which fits the experimental curve

O. Hemberg, M. Otendal, and H. Hertz, Liquid-metal-jet anode electron-impact x-ray source, Applied Physics Letters, vol.83, issue.7, pp.1483-1485, 2003.
DOI : 10.1063/1.1602157

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. Eikenberry et al., PILATUS: A single photon counting pixel detector for X-ray applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.607, issue.1, pp.247-249, 2009.
DOI : 10.1016/j.nima.2009.03.200

V. Heresanu, C. Castro, J. Cambedouzou, M. Pinault, O. Stephan et al., Nature of the Catalyst Particles in CCVD Synthesis of Multiwalled Carbon Nanotubes Revealed by the Cooling Step Study, The Journal of Physical Chemistry C, vol.112, issue.19, pp.7371-7378, 2008.
DOI : 10.1021/jp709825y

URL : https://hal.archives-ouvertes.fr/hal-00316031

L. Jiang, B. Verman, and K. D. Joensen, A general approach in multilayer optical system design for SAXS, Journal of Applied Crystallography, vol.33, issue.3, pp.801-803, 2000.
DOI : 10.1107/S0021889800099787

P. Landois, M. Pinault, S. Rouziè-re, D. Porterat, C. Mocuta et al., In situ time resolved wide angle X-ray diffraction study of nanotube carpet growth: Nature of catalyst particles and progressive nanotube alignment, Carbon, vol.87, pp.246-256, 2015.
DOI : 10.1016/j.carbon.2015.01.046

URL : https://hal.archives-ouvertes.fr/hal-01157524

P. Landois, S. Rouziè-re, M. Pinault, D. Porterat, C. Mocuta et al., Growth of aligned multi-walled carbon nanotubes: First in situ and time-resolved X-ray diffraction analysis, physica status solidi (b), vol.7, issue.11, pp.2449-2453, 2011.
DOI : 10.1002/pssb.201100201

URL : https://hal.archives-ouvertes.fr/hal-01339461

P. Maillet, C. Levard, E. Larquet, C. Mariet, O. Spalla et al., Evidence of Double-Walled Al???Ge Imogolite-Like Nanotubes. A Cryo-TEM and SAXS Investigation, Journal of the American Chemical Society, vol.132, issue.4, pp.1208-1209, 2010.
DOI : 10.1021/ja908707a

URL : https://hal.archives-ouvertes.fr/hal-00646091

D. Orthaber, A. Bergmann, and O. Glatter, SAXS experiments on absolute scale with Kratky systems using water as a secondary standard, Journal of Applied Crystallography, vol.33, issue.2, pp.218-225, 2000.
DOI : 10.1107/S0021889899015216

V. Pichot, S. Badaire, P. Albouy, C. Zakri, P. Poulin et al., Structural and mechanical properties of single-wall carbon nanotube fibers, Physical Review B, vol.74, issue.24, p.245416, 2006.
DOI : 10.1103/PhysRevB.74.245416

URL : https://hal.archives-ouvertes.fr/hal-00131243

S. Rouziè-re, M. S. Amara, E. Paineau, and P. Launois, Nanosized Tubular Clay Minerals, Halloysite and Imogolite, Developments in Clay Science, vol.7, issue.11, 2016.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.1038/nmeth.2089

L. B. Shaffer and R. W. Hendricks, Calibration of polyethylene (lupolen) as a wavelength-independent absolute intensity standard, Journal of Applied Crystallography, vol.7, issue.2, pp.159-163, 1974.
DOI : 10.1107/S0021889874009009

B. Vainshtein, Diffraction of X-rays by Chain Molecules, 1966.

S. Wada and K. Wada, Clays Clay Miner, pp.123-128, 1982.

T. Zemb and P. Lindner, Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter, 2002.

T. Zemb, O. Tache, F. Ne, and O. Spalla, Improving sensitivity of a small angle x-ray scattering camera with pinhole collimation using separated optical elements, Review of Scientific Instruments, vol.74, issue.4, pp.2456-2462, 2003.
DOI : 10.1063/1.1556954

URL : https://hal.archives-ouvertes.fr/cea-00268837

F. Zhang, J. Ilavsky, G. G. Long, J. P. Quintana, A. J. Allen et al., Glassy Carbon as an Absolute Intensity Calibration Standard for Small-Angle Scattering, Metallurgical and Materials Transactions A, vol.3, issue.5, pp.1151-1158, 2010.
DOI : 10.1007/s11661-009-9950-x

N. Zheng, J. Fan, and G. D. Stucky, One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals, Journal of the American Chemical Society, vol.128, issue.20, pp.6550-6551, 2006.
DOI : 10.1021/ja0604717