M. Horowitz, 1.1 Computing's energy problem (and what we can do about it), 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.10-14, 2014.
DOI : 10.1109/ISSCC.2014.6757323

URL : https://hal.archives-ouvertes.fr/insu-01488608

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics 5, pp.115-133, 1943.

S. H. Jo, Nanoscale Memristor Device as Synapse in Neuromorphic Systems, Nano Letters, vol.10, issue.4, pp.1297-1301, 2010.
DOI : 10.1021/nl904092h

T. Chang, Y. Yang, and W. Lu, Building Neuromorphic Circuits with Memristive Devices, IEEE Circuits and Systems Magazine, vol.13, issue.2, pp.56-73, 2013.
DOI : 10.1109/MCAS.2013.2256260

G. Indiveri, B. Linares-barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures, Nanotechnology, vol.24, issue.38, p.384010, 2013.
DOI : 10.1088/0957-4484/24/38/384010

J. J. Yang, D. B. Strukov, and D. R. Stewart, Memristive devices for computing, Nature Nanotechnology, vol.7, issue.1, pp.13-24, 2013.
DOI : 10.1109/TCAD.2012.2185930

D. Sacchetto, Applications of Multi-Terminal Memristive Devices: A Review, IEEE Circuits and Systems Magazine, vol.13, issue.2, pp.23-41, 2013.
DOI : 10.1109/MCAS.2013.2256258

Y. V. Pershin and M. D. Ventra, Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements, Proceedings of the IEEE, pp.2071-2080, 2012.
DOI : 10.1109/JPROC.2011.2166369

D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, Immunity to Device Variations in a Spiking Neural Network With Memristive Nanodevices, IEEE Transactions on Nanotechnology, vol.12, issue.3, pp.288-295, 2013.
DOI : 10.1109/TNANO.2013.2250995

O. Kavehei, Memristor-based synaptic networks and logical operations using in-situ computing, 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp.137-142, 2011.
DOI : 10.1109/ISSNIP.2011.6146610

S. Adhikari, H. Kim, R. Budhathoki, C. Yang, and L. Chua, A Circuit-Based Learning Architecture for Multilayer Neural Networks With Memristor Bridge Synapses, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.62, issue.1, pp.215-223, 2015.
DOI : 10.1109/TCSI.2014.2359717

M. Suri, Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses, IEEE Transactions on Electron Devices, vol.60, issue.7, pp.2402-2409, 2013.
DOI : 10.1109/TED.2013.2263000

URL : https://hal.archives-ouvertes.fr/hal-00871918

D. Soudry, D. Castro, D. Gal, A. Kolodny, A. Kvatinsky et al., Memristor-Based Multilayer Neural Networks With Online Gradient Descent Training, IEEE transactions on neural networks and learning systems 26, pp.2408-2421, 2015.
DOI : 10.1109/TNNLS.2014.2383395

M. Prezioso, Training and operation of an integrated neuromorphic network based on metal-oxide memristors, Nature, vol.12, issue.2, pp.61-64, 2015.
DOI : 10.1038/nature14441

F. Alibart, E. Zamanidoost, and D. B. Strukov, Pattern classification by memristive crossbar circuits using ex situ and in situ training, Nature Communications, vol.2007, 2013.
DOI : 10.1063/1.3236506

URL : https://hal.archives-ouvertes.fr/hal-00871928

M. Chu, Neuromorphic Hardware System for Visual Pattern Recognition With Memristor Array and CMOS Neuron, IEEE Transactions on Industrial Electronics, vol.62, issue.4, pp.2410-2419, 2015.
DOI : 10.1109/TIE.2014.2356439

G. Burr, Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element, 2014 IEEE International Electron Devices Meeting, pp.29-34, 2014.
DOI : 10.1109/IEDM.2014.7047135

S. B. Eryilmaz, 31932 | DOI: 10.1038/srep31932 18 Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array, Scientific RepoRts | Neuromorphic Engineering, vol.6, issue.8, p.205, 2014.

S. H. Jo, K. Kim, and W. Lu, High-Density Crossbar Arrays Based on a Si Memristive System, Nano Letters, vol.9, issue.2, pp.870-874, 2009.
DOI : 10.1021/nl8037689

G. Indiveri, Neuromorphic Silicon Neuron Circuits, Frontiers in Neuroscience, vol.5, p.73, 2011.
DOI : 10.3389/fnins.2011.00073

URL : https://hal.archives-ouvertes.fr/hal-00597675

K. Gacem, Neuromorphic function learning with carbon nanotube based synapses, Nanotechnology, vol.24, issue.38, p.384013, 2013.
DOI : 10.1088/0957-4484/24/38/384013

S. Song, Three-Dimensional Integration of Organic Resistive Memory Devices, Advanced Materials, vol.22, issue.44, pp.5048-5052, 2010.
DOI : 10.1002/adma.201002575

V. Erokhin, Bio-inspired adaptive networks based on organic memristors, Nano Communication Networks, vol.1, issue.2, pp.108-117, 2010.
DOI : 10.1016/j.nancom.2010.05.002

N. Kooy, K. Mohamed, L. T. Pin, and O. S. Guan, A review of roll-to-roll nanoimprint lithography, Nanoscale Research Letters, vol.9, issue.1, pp.1-13, 2014.
DOI : 10.1088/0960-1317/19/9/095016

V. Zardetto, T. M. Brown, A. Reale, and A. Di-carlo, Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties, Journal of Polymer Science Part B: Polymer Physics, vol.86, issue.9, pp.638-648, 2011.
DOI : 10.1002/polb.22227

T. Lee and Y. Chen, Organic resistive nonvolatile memory materials, MRS Bulletin, vol.37, issue.02, pp.144-149, 2012.
DOI : 10.1038/nature02070

V. Demin, Hardware elementary perceptron based on polyaniline memristive devices, Organic Electronics, vol.25, pp.16-20, 2015.
DOI : 10.1016/j.orgel.2015.06.015

D. J. Wouters, R. Waser, and M. Wuttig, Phase-Change and Redox-Based Resistive Switching Memories, Proceedings of the IEEE 103, pp.1274-1288, 2015.
DOI : 10.1109/JPROC.2015.2433311

R. M. Shelby, G. W. Burr, I. Boybat, and C. D. Nolfo, Non-volatile memory as hardware synapse in neuromorphic computing: A first look at reliability issues, 2015 IEEE International Reliability Physics Symposium, pp.1-6, 2015.
DOI : 10.1109/IRPS.2015.7112755

J. Liang and H. P. Wong, Cross-Point Memory Array Without Cell Selectors—Device Characteristics and Data Storage Pattern Dependencies, IEEE Transactions on Electron Devices, vol.57, issue.10, pp.2531-2538, 2010.
DOI : 10.1109/TED.2010.2062187

D. Chabi, W. Zhao, D. Querlioz, and J. Klein, Robust neural logic block (NLB) based on memristor crossbar array, 2011 IEEE/ACM International Symposium on Nanoscale Architectures, pp.137-143, 2011.
DOI : 10.1109/NANOARCH.2011.5941495

D. Chabi, D. Querlioz, W. Zhao, and J. Klein, Robust learning approach for neuro-inspired nanoscale crossbar architecture, ACM Journal on Emerging Technologies in Computing Systems, vol.10, issue.1, pp.1-520, 2014.
DOI : 10.1145/2539123

D. Chabi, Z. Wang, W. Zhao, and J. Klein, On-chip supervised learning rule for ultra high density neural crossbar using memristor for synapse and neuron, IEEE/ACM Int. Symp. Nanoscale Architectures (NANOARCH) Proceedings of IEEE, pp.7-12, 2014.

B. Jousselme, One-step electrochemical modification of carbon nanotubes by ruthenium complexes via new diazonium salts, Journal of Electroanalytical Chemistry, vol.621, issue.2, pp.277-285, 2008.
DOI : 10.1016/j.jelechem.2008.01.026

URL : https://hal.archives-ouvertes.fr/hal-00396678

K. Balasubramanian, R. Sordan, M. Burghard, and K. Kern, A Selective Electrochemical Approach to Carbon Nanotube Field-Effect Transistors, Nano Letters, vol.4, issue.5, pp.827-830, 2004.
DOI : 10.1021/nl049806d

J. Charlier, L. Baraton, C. Bureau, and S. Palacin, Directed Organic Grafting on Locally Doped Silicon Substrates, ChemPhysChem, vol.96, issue.101, pp.70-74, 2005.
DOI : 10.1002/cphc.200400373

URL : https://hal.archives-ouvertes.fr/cea-01056651

M. Suri, Physical aspects of low power synapses based on phase change memory devices, Journal of Applied Physics, vol.112, issue.5, p.54904, 2012.
DOI : 10.1063/1.4749411

URL : https://hal.archives-ouvertes.fr/hal-00787372

F. Rosenblatt, The Perceptron-a Perceiving and Recognizing Automation Report 85-460-1 Cornell Aeronautical Laboratory, 1957.

B. Widrow and M. E. Hoff, Adaptive switching circuits, IRE WESCON Convention Record, vol.4, pp.96-104, 1960.

D. Tank and J. J. Hopfield, Simple 'neural' optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit, IEEE Transactions on Circuits and Systems, vol.33, issue.5, pp.533-541, 1986.
DOI : 10.1109/TCS.1986.1085953

D. Chabi, W. Zhao, D. Querlioz, and J. Klein, On-Chip Universal Supervised Learning Methods for Neuro-Inspired Block of Memristive Nanodevices, ACM Journal on Emerging Technologies in Computing Systems, vol.11, issue.4, 2015.
DOI : 10.1145/2629503

D. Chabi, Z. Wang, C. Bennett, J. Klein, and W. Zhao, Ultrahigh Density Memristor Neural Crossbar for On-Chip Supervised Learning, IEEE Transactions on Nanotechnology, vol.14, issue.6, pp.954-962, 2015.
DOI : 10.1109/TNANO.2015.2448554

Y. Lecun, C. &. Cortes, and C. J. Burges, The MNIST database of handwritten digits, Date of access, pp.5-06, 2016.

C. Bennett, Supervised learning with organic memristor devices and prospects for neural crossbar arrays, Proceedings of the 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH??15), pp.181-186, 2015.
DOI : 10.1109/NANOARCH.2015.7180609

L. Torsi, M. Magliulo, K. Manoli, and G. Palazzo, Organic field-effect transistor sensors: a tutorial review, Chemical Society Reviews, vol.6, issue.172, pp.8612-8628, 2013.
DOI : 10.1039/c3cs60127g

E. Zamanidoost, M. Klachko, D. Strukov, and I. Kataeva, Low area overhead in-situ training approach for memristor-based classifier, Proceedings of the 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH??15), pp.139-142, 2015.
DOI : 10.1109/NANOARCH.2015.7180601

I. Kataeva, F. Merrikh-bayat, E. Zamanidoost, and D. Strukov, Efficient training algorithms for neural networks based on memristive crossbar circuits, 2015 International Joint Conference on Neural Networks (IJCNN), pp.10-11097280785, 2015.
DOI : 10.1109/IJCNN.2015.7280785

M. Mclean, Concurrent Learning Algorithm and the Importance Map, Network Science and Cybersecurity 239?250 Springer, 2014.
DOI : 10.1007/978-1-4614-7597-2_15

C. Yakopcic, R. Hasan, T. M. Taha, M. R. Mclean, and D. Palmer, Efficacy of memristive crossbars for neuromorphic processors, 2014 International Joint Conference on Neural Networks (IJCNN), pp.10-1109, 2014.
DOI : 10.1109/IJCNN.2014.6889807

S. Ortín, A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron, Scientific Reports, vol.5, p.14945, 2015.
DOI : 10.1109/LPT.2013.2273373

M. Suri and V. Parmar, Exploiting Intrinsic Variability of Filamentary Resistive Memory for Extreme Learning Machine Architectures, IEEE Transactions on Nanotechnology, vol.14, issue.6, pp.963-968, 2015.
DOI : 10.1109/TNANO.2015.2441112

C. H. Bennett, Exploiting the short-term to long-term plasticity transition in memristive nanodevice learning architectures, 2016 International Joint Conference on Neural Networks (IJCNN), 2016.
DOI : 10.1109/IJCNN.2016.7727300

O. Johansson, Electron Donor???Acceptor Dyads Based on Ruthenium(II) Bipyridine and Terpyridine Complexes Bound to Naphthalenediimide, Inorganic Chemistry, vol.42, issue.9, pp.2908-2918, 2003.
DOI : 10.1021/ic020420k