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Abstract

This work introduces original explicit solutions for the elastic �elds radiated by non-uniformly
moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral
representations in which acceleration-dependent contributions are explicitly separated out. These
solutions are obtained by applying an isotropic regularization procedure to distributional expressions
of the elastodynamic �elds built on the Green tensor of the Navier equation. The obtained regular-
ized �eld expressions are singularity-free, and depend on the dislocation density rather than on the
plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave
ones. A numerical method of computation is discussed, that rests on discretizing motion along an
arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of con-
stant velocity vector over which time-integrated contributions can be obtained in closed form. As a
simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where �elds
induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter
put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the
dynamic build-up and decay of which is illustrated by means of full-�eld calculations.
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1 Introduction
Dislocations are linear defects whose motion is responsible for plastic deformation in crystalline mate-
rials (Hirth and Lothe, 1982). To improve the current understanding of the plastic and elastic fronts
(Clifton and Markensco�, 1981) that go along with extreme shock loadings in metals (Meyers et al.,
2009), Gurrutxaga-Lerma et al. (2013) recently proposed to make dynamic simulations of large sets of
dislocations mutually coupled by their retarded elastodynamic �eld. Gurrutxaga-Lerma et al. (2014)
review the matter and its technical aspects in some detail. This new approach is hoped to provide com-
plementary insights over multi-physics large-scale atomistic simulations of shocks in matter (Zhakhovsky
et al., 2011). If we leave aside the subsidiary (but physically important) issue of dislocation nucleation,
dislocation-dynamics simulations involve two separate but interrelated tasks. First, one needs to compute
the �eld radiated by a dislocation that moves arbitrarily. Second, given the past history of each dislo-
cation, the current dynamic stress �eld incident on it due to the other ones, and the externally applied
stress �eld (e.g., a shock-induced wavefront), the further motion of the dislocation must be determined
by a dynamic mobility law. While some progress has recently been achieved in the latter subproblem |
which involves scarcely explored radiation-reaction e�ects and dynamic core-width variations (Pellegrini,
2014)| the focus of the present paper is on the former |a very classical one.

Indeed, substantial e�ort has been devoted over decades to obtaining analytical expressions of elasto-
dynamic �elds produced by non-uniformly moving singularities such as point loads (Stronge, 1970; Freund,
1972, 1973), cracks, and dislocations. Results ranged, e.g., from straightforward applications to linear-
elastic and isotropic unbounded media, to systems with interfaces such as half-spaces (Lamb’s problem)
or layered media (Eatwell et al., 1982); coupled phenomena such as thermoelasticity (Brock et al., 1997)
or anisotropic elastic media (Markensco� and Ni, 1987; Wu, 2000), to mention but a few popular themes.
Elastodynamic �elds of dislocations have been investigated in a large number of works, among which
(Eshelby, 1951; Kiusalaas and Mura, 1964, 1965; Mura, 1987; Nabarro, 1967; Brock, 1979, 1982, 1983;
Markensco�, 1980; Markensco� and Ni, 2001a,b; Pellegrini, 2010; Lazar, 2011b, 2012, 2013a,b). Early
numerical implementations of time-dependent �elds radiated by moving sources (Niazy, 1975; Madariaga,
1978) were limited to material displacements or velocities. As to stresses, Gurrutxaga-Lerma et al. (2014)
based their simulations on the �elds of Markensco� and Clifton (1981) relative to a subsonic edge dislo-
cation. Nowadays dynamic �elds of individual dislocations or cracks are also investigated by atomistic
simulations (Li and Shi, 2002; Tsuzuki et al., 2009; Spielmannov�a et al., 2009), or numerical solutions of
the wave equation by means of �nite-element (Zhang et al., 2015), �nite-di�erence, or boundary-integral
schemes (Day et al., 2005). Hereafter, the analytical approach is privileged so as to produce reference
solutions.

Disregarding couplings with other �elds such as temperature, one might be tempted to believe that
the simplest two-dimensional problem of the non-uniform motion of rectilinear dislocation lines in an
unbounded, linear elastic, isotropic medium, leaves very little room for improvements over past analytical
works. This is not so, and our present concerns are as follows:

(i) Subsonic as well as supersonic velocities. In elastodynamics, from the 70’s onwards, the method
of choice for analytical solutions has most often been the one of Cagniard improved by de Hoop (Aki and
Richards, 2009), whereby Laplace transforms of the �elds are inverted by inspection after a deformation
of the integration path of the Laplace variable has been carried out by means of a suitable change of
variable (see above-cited references). However, to the best of our knowledge, no such solutions can be
employed indi�erently for subsonic and supersonic motions, in the sense that the supersonic case need
be considered separately in order to get explicit results as, e.g., in (Stronge, 1970; Freund, 1972; Callias
and Markensco�, 1980; Markensco� and Ni, 2001b; Huang and Markensco�, 2011). Indeed, carrying
out the necessary integrals usually requires determining the wavefront position relatively to the point of
observation. To date, the supersonic edge dislocation coupled to both shear and longitudinal waves has
not been considered, and existing supersonic analytical solutions for the screw dislocation have not proved
usable in full-�eld calculations, except for the rather di�erent solution obtained within the so-called gauge-
�eld theory of dislocations (Lazar, 2009), which appeals to gradient elasticity. Thus, one objective of the
present work is to provide ‘automatic’ theoretical expressions that do not require wavefront tracking, for
both screw and edge dislocations, and can be employed whatever the dislocation velocity. To this aim,
we shall employ a method di�erent from the Cagniard{de Hoop one. This is not to disregard the latter
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but following a di�erent route was found more convenient in view of the remaining points listed here.
(ii) Distributions and smooth regularized �elds. For a Volterra dislocation in supersonic steady motion,

�elds are typically concentrated on Dirac measures along in�nitely thin lines, to form Mach cones (Stronge,
1970; Callias and Markensco�, 1980). Thus, the solution is essentially of distributional nature, and
its proper characterization involves, beside Dirac measures, the use of principal-value and �nite-parts
prescriptions (Pellegrini and Lazar, 2015). Of course, in-depth analytical characterizations of wavefronts
singularities can still be extracted out of Laplace-transform integral representations (Freund, 1972, 1973;
Callias and Markensco�, 1980). However their distributional character implies that the solutions cannot
deliver meaningful numbers unless they are regularized by convolution with some source shape function
representing a dislocation of �nite width. Only by this means can �eld values in Mach cones be computed.
Consequently, another objective is to provide �eld expressions for an extended dislocation of �nite core
width (instead of a Volterra one), thus taming all the �eld singularities that would otherwise be present
at wavefronts and at the dislocation location, where Volterra �elds blow up. In the work by Gurrutxaga-
Lerma et al. (2013), a simple cut-o� procedure was employed to get rid of in�nities. Evidently, a similar
device cannot be used with Dirac measures, which calls for a smoother and more versatile regularization.
Various dislocation-regularizing devices have been proposed in the past, some consisting in expanding
the Volterra dislocation into a 
at Somigliana dislocation (Eshelby, 1949, 1951; Markensco� and Ni,
2001a,b; Pellegrini, 2011). Such regularizations remove in�nities, but leave out �eld discontinuities on
the slip path (Eshelby, 1949). A smoother approach consisting in introducing some non-locality in the
�eld equations has so far only be applied to the time-dependent motion of a screw dislocation. The one
to be employed hereafter, introduced in (Pellegrini and Lazar, 2015), achieves an isotropic expansion the
Volterra dislocation and smoothly regularizes all �eld singularities for screw and edge dislocations. In
this respect, it resembles that introduced in statics by Cai et al. (2006). However, we believe it better
suited to dynamics.

(iii) Field-theoretic framework. The traditional method of solution (Markensco�, 1980) rests on im-
posing suitable boundary conditions on the dislocation path. It makes little contact with �eld-theoretic
notions of dislocation theory such as plastic strain, or dislocation density and current used in purely
numerical methods of solution (Djaka et al., 2015). Instead, we wish our analytical results to be rooted
on a �eld-theoretic background. One advantage is that the approach will provide a representation of
radiation �elds where velocity- and acceleration-dependent contributions are clearly separated out, which
is most convenient for subsequent numerical implementation. Again to the best of our knowledge, no
such representation of the elastodynamic �elds has been given so far. However, previous work in that
direction can be found in (Lazar, 2011b, 2012, 2013a).

(iv) Integrals in closed form. In (Gurrutxaga-Lerma et al., 2013) the numerical implementation of the
results by Markensco� and Clifton (1981), where the retarded �elds are expressed in terms of an integral
over the path abscissa, is not fully explicit. Indeed, this integral is split over path segments, and each
segment is integrated over numerically | a tricky matter, as pointed out by the former authors. By
contrast, and dealing with time intervals instead of path segments, the sub-integrals will be expressed
hereafter in closed form by means of the key inde�nite integrals obtained in (Pellegrini and Lazar, 2015).

(v) Arbitrary paths. Results will be given in tensor form, with the dislocation velocity as a vector.
Thus, they can be applied immediately to arbitrary dislocation paths parametrized by time. Using the
time variable as the main parameter is a natural choice, and does not require computing so-called ‘retarded
times’. Although we must leave such applications to further work, this makes it straightforward to
investigate radiative losses in various oscillatory motions, e.g., (lattice-induced) periodic oscillations in the
direction transverse to the main glide plane during forward motion, which space-based parametrizations
such as in the procedure outlined by Brock (1983) make harder to achieve.

Accordingly, our work is organized as follows. First, we begin by computing in Section 2 general forms
for the elastic �elds of non-uniformly moving screw and edge dislocations using the theory of distributions,
starting from the most general �eld equations in terms of dislocation densities and currents. Our approach
relies on Green’s functions [e.g., Barton (1989); Mura (1987)]. In Section 2.1, inhomogeneous Navier
equations for the elastic �elds are derived as equations of motion, with source terms expressed in terms
of the �elds that characterize the dislocation (dislocation density tensor and dislocation current tensor).
The Cauchy problem of the Navier equations is then addressed in Section 2.2, where the solutions for
the elastic �elds are written as the convolution of the retarded elastodynamic Green-function tensor |
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interpreted as a distribution| with the dislocation �elds. As a result, the mathematical structure of the
latter is partly inherited from the former. Some connections with past works are made in Section 2.3.
Second, we specialize the obtained �eld expressions to Volterra dislocations: the �elds themselves become
distributions. In Section 3, the structure of the Green tensor and of the elastodynamic radiation �elds
is revealed and analyzed in terms of locally-integrable functions and pseudofunctions (namely, singular
distributions that require a ‘�nite part’ prescription). The Volterra screw (Section 3.1) and edge (Section
3.2) dislocations are addressed separately for de�niteness. The expressions reported are mathematically
well-de�ned, and cover arbitrary speeds including faster-then-wave ones, which is the main di�erence
with classical approaches. Third, since distributional �elds, although mathematically correct, cannot in
general produce meaningful numbers unless being applied to test functions, we turn the formalism into
one suitable to numerical calculations by means of the isotropic-regularization procedure alluded to above,
where the relevant smooth test function represents the dislocation density. The procedure is introduced
in Section 4.1, and regularized expressions for the elastic �elds are obtained in integral form in Section
4.2, after the regularized Green tensor has been de�ned. Next, a numerical implementation scheme that
involves only closed-form results is proposed in Section 5, based on the key integrals of Pellegrini and Lazar
(2015). As a �rst illustration, the particular case of steady motion for the edge dislocation is discussed in
detail, with emphasis on faster-than-wave motion. Finally, the procedure is applied in Section 6 to the
numerical investigation of the elastodynamic equivalent of the Tamm problem, where �elds induced by
a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again,
are computed and analyzed. Section 7 provides a concluding discussion, which summarizes our approach
and results, and points out some limitations. The most technical elements are collected in the Appendix.

2 Basic geometric equations and �eld equations of motion

2.1 Field identities and equations of motion
In this Section, the equations of motion of the elastic �elds produced by moving dislocations are derived
in the framework of incompatible elastodynamics (see, e.g., Mura (1963, 1987); Kosevich (1979); Lazar
(2011b, 2013b)). An unbounded, isotropic, homogeneous, linearly elastic solid is considered. In the
theory of elastodynamics of self-stresses, the equilibrium condition is1

_pi � �ij;j = 0 ; (1)

where p and � are the linear momentum vector and the stress tensor, respectively. For incompatible
linear elastodynamics, the momentum vector p and the stress tensor � can be expressed in terms of the
elastic velocity (particle velocity) vector v and the incompatible elastic distortion tensor � by means of
the two constitutive relations

pi = � vi ; (2a)
�ij = Cijkl�kl ; (2b)

where � denotes the mass density, and Cijkl the tensor of elastic moduli or elastic tensor. It enjoys the
symmetry properties Cijkl = Cjikl = Cijlk = Cklij . For isotropic materials, the elastic tensor reduces to

Cijkl = � �ij�kl + �
�
�ik�jl + �il�jk) ; (3)

where � and � are the Lam�e constants. If the constitutive relations (2a) and (2b) are substituted into
Eq. (1), the equilibrium condition expressed in terms of the elastic �elds v and � may be written as

� _vi � Cijkl�kl;j = 0 : (4)

The presence of dislocations makes the elastic �elds incompatible, which means that they are not anymore
simple gradients of the material displacement vector u. In the eigenstrain theory of dislocations (e.g.,

1We use the usual notation �ij;k := @k�ij and _�ij := @t�ij .
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Mura (1987)) the total distortion tensor �T consists of elastic and plastic parts2

�T
ij := ui;j = �ij + �P

ij ; (5)

but vi = _ui. Here �P is the plastic distortion tensor or eigendistortion tensor. The plastic distortion is
a well-known quantity in dislocation theory and in Mura’s theory of eigenstrain. Nowadays, this �eld
can be understood as a tensorial gauge �eld in the framework of dislocation gauge theory (Lazar and
Anastassiadis, 2008; Lazar, 2010).

For dislocations, the incompatibility tensors are the dislocation density and dislocation current tensors
(e.g., Holl�ander (1962); Kosevich (1979); Lazar (2011a)). The dislocation density tensor � and the
dislocation current tensor I are classically de�ned by (e.g., Kosevich (1979); Landau and Lifschitz (1986))

�ij = ��jkl�P
il;k ; (6a)

Iij = � _�P
ij ; (6b)

or they read in terms of the elastic �elds

�ij = �jkl�il;k ; (7a)

Iij = _�ij � vi;j : (7b)

Eqs. (6a) and (6b) are the fundamental de�nitions of the dislocation density tensor and of the disloca-
tion current tensor, respectively, whereas Eqs. (7a) and (7b) are geometric �eld identities. Originally,
Nye (1953) introduced the concept of a dislocation density tensor, and the de�nition (6a) of � goes
back to Kr�oner (1955, 1958) and Bilby (1955) (see also Kr�oner (1981)). The tensor I was introduced
by Kosevich (1962) under the name ‘dislocation 
ux density tensor’ |a denomination used by Kosevich
(1979); Teodosiu (1970), and Lardner (1974)| and by Holl�ander (1962) as the ‘dislocation current’ (see
also Kosevich (1979); Landau and Lifschitz (1986); Teodosiu (1970)). We adopt hereafter the latter de-
nomination. Both � and I have nine independent components. Moreover, they ful�ll the two dislocation
Bianchi identities (see also Landau and Lifschitz (1986); Lazar (2011a))

�ij;j = 0 ; (8a)
_�ij + �jklIik;l = 0 ; (8b)

which are geometrical consequences due to the de�nitions (6a){(7b). Thus,if the dislocation density
tensor and dislocation current tensor are given in terms of the elastic �elds and plastic �elds according
to Eqs. (6a){(7b), then the two dislocation Bianchi identities (8a) and (8b) are satis�ed automatically.
Conversely, if the two dislocation Bianchi identities (8a) and (8b) are ful�lled, then the dislocation density
tensor and the dislocation current tensor can be expressed in terms of elastic and plastic �elds according
to Eqs. (6a){(7b) using the additive decomposition (5). Therefore, the dislocation Bianchi identities (8a)
and (8b) are a kind of compatibility conditions for the dislocation density tensor and dislocation 
ux
tensor or ‘dislocation conservation laws’ (see also Kosevich (1979)).

From the physical point of view, Eq. (8a) states that dislocations do not end inside the body and
Eq. (8b) shows that whenever a dislocation moves or the dislocation core changes its structure and shape,
the dislocation current I is nonzero. Thus, the dislocation density can only change via the dislocation
current, which means that the evolution of the dislocation density tensor � is determined by the curl of
the dislocation 
ux tensor I.

From the equilibrium condition (4), uncoupled �eld equations for the elastic �elds � and v produced
by dislocations may be derived as equations of motion (see, e.g., Lazar (2011b, 2013b)). They read

Lik�km = �nmlCijkl �kn;j + � _Iim ; (9a)
Likvk = Cijkl Ikl;j ; (9b)

2Note, however, that the tensors �ij and �P
ij de�ned by Mura are the transposed of the ones used in the present work.

The same goes for �ij .
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where Lik stands for the elastodynamic Navier di�erential operator

Lik = � �ik@tt � Cijkl@j@l: (10)

Substituting Eq. (3) into Eq. (10), its isotropic form reads

Lik = � �ik@tt � ��ik �� (�+ �) @i@k (11)

where � denotes the Laplacian. Eq. (9a) is a tensorial Navier equation for � and Eq. (9b) is a vectorial
Navier equation for v, where the dislocation density and current tensors act as source terms.

2.2 Green tensor and integral solutions
We now turn to the solution of the retarded �eld problem of Eqs. (9a) and (9b). For this purpose we
use Green functions (e.g., Barton (1989)). Let �(:) denote the Dirac delta function and �ij denote the
Kronecker symbol. The elastodynamic Green tensor G+

ij is the solution, in the sense of distributions,3 of
the (anisotropic) inhomogeneous Navier equation with unit source

LikG+
km(r � r0; t� t0) = �im �(t� t0)�(r � r0) ; (12)

subjected to the causality constraint

G+
ij(r � r

0; t� t0) = 0 for t < t0 : (13)

The following properties hold in the equal-time limit (Appendix A):

lim
�!0+

G+
ij(r; �) = 0; lim

�!0+
@tG+

ij(r; �) = ��1�ij�(r): (14)

Now we consider the Cauchy problem of the inhomogeneous Navier equation, expressed by Eqs. (9a)
and (9b). For an unbounded medium, its solutions are (see also Eringen and Suhubi (1975); Barton
(1989); Vladimirow (1971))

�im(r; t) = �nml
Z t

t0
dt0
Z
CjkplG+

ij(r � r
0; t� t0)�pn;k(r0; t0)dr0

+
Z t

t0
dt0
Z
�G+

ij(r � r
0; t� t0) _Ijm(r0; t0)dr0

+
Z
G+
ij(r � r

0; t� t0) _�jm(r0; t0) dr0

+
Z

_G+
ij(r � r

0; t� t0)�jm(r0; t0) dr0 (15a)

and

vi(r; t) =
Z t

t0
dt0
Z
CjklmG+

ij(r � r
0; t� t0) Ilm;k(r0; t0) dr0

+
Z
G+
ij(r � r

0; t� t0) _vj(r0; t0) dr0

+
Z

_G+
ij(r � r

0; t� t0) vj(r0; t0) dr0 ; (15b)

where integrals over r0 are over the whole medium, and where the following functions have been prescribed
as initial conditions at t = t0 throughout the medium:

�(r; t0) ; _�(r; t0) ; v(r; t0) ; _v(r; t0) : (16)

3The ‘plus’ superscript serves to distinguish this distribution from the associated function Gij(r; t) to be introduced in
Sec. 5.
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Because the elastodynamic Navier equation is a generalization of the wave equation, Eqs. (15a) and (15b)
are similar to the Poisson formula for the latter (Vladimirow, 1971).

Since G+
ij(r � r

0; t � t0) and _G+
ij(r � r

0; t � t0) vanish as t0 ! �1, Eqs. (15a) and (15b) can be
represented as convolutions of the Green tensor with the sources of the inhomogeneous Navier equations,
only (Mura, 1963; Lazar, 2011b). Letting thus t0 ! �1 the solutions for � and v reduce to

�im(r; t) = �nml
Z t

�1
dt0
Z
CjkplG+

ij(r � r
0; t� t0)�pn;k(r0; t0) dr0

+
Z t

�1
dt0
Z
�G+

ij(r � r
0; t� t0) _Ijm(r0; t0) dr0 ; (17a)

vi(r; t) =
Z t

�1
dt0
Z
CjklmG+

ij(r � r
0; t� t0) Ilm;k(r0; t0) dr0 ; (17b)

or equivalently

�im(r; t) = �nml
Z t

�1
dt0
Z
CjkplG+

ij;k(r � r0; t� t0)�pn(r0; t0) dr0

+
Z t

�1
dt0
Z
� _G+

ij(r � r
0; t� t0) Ijm(r0; t0) dr0 ; (18a)

vi(r; t) =
Z t

�1
dt0
Z
CjklmG+

ij;k(r � r0; t� t0) Ilm(r0; t0) dr0 : (18b)

Eqs. (17a){(18b) are valid for general dislocation distributions (continuous distribution of dislocations,
dislocation loops, straight dislocations). Later on, we shall specialize to straight dislocations.

Let the velocity V (t) of a moving dislocation be some given function of time. Then, the following
relation holds between its associated dislocation density and current tensors:

Iij = �jkn Vk �in : (19)

This relation means that the current I is caused by the moving dislocation density �. Thus, I is a
convection dislocation current (G�unther, 1973; Lazar, 2013b). Substituting Eq. (19) into relation (8b),
the Bianchi identity (8b) reduces to the following form in terms of the dislocation density tensor and the
dislocation velocity vector

_�ij = ��jkl(�kmnVm�in);l = (Vj�il);l � (Vl�ij);l : (20)

Sometimes the Bianchi identity (20) is called dislocation density transport equation (see, e.g., Djaka et al.
(2015)).

We moreover obtain from Eqs. (9a) and (9b) the �eld equations of motion in the form

Lik�km = �nml
�
Cijkl �kn;j + � @t(Vl�in)

�
; (21a)

Likvk = �nmlCijkm (Vl�kn);j ; (21b)

where the sources are given in terms of the dislocation density tensor and the dislocation velocity vector.
Obviously, the validity of Eq. (20) is conditioned by the assumptions that underlie Eq. (19). Thus,
Eq. (19) makes sense only for a discrete dislocation line with rigid core, since it neglects changes with
time of its core shape. However, by imposing a suitable parameterization of the dislocation density or
of the plastic eigenstrain (e.g., Pellegrini (2014)), an additional term in the current tensor related to
core-width variations could easily be derived from Eq. (6b). Such e�ects are neglected in the present
study. Accordingly, from Eq. (20) and using Vj;l = Vl;l = 0 for the problem considered, we deduce with
the help of the Bianchi identity (8a) that for one single rigid dislocation

_�ij = �Vk �ij;k: (22)
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2.3 Remarks
It is worthwhile pointing out that although we insisted, for better physical insight, on deriving Eq. (18a)
from �eld equations with sources expressed in terms of dislocation density and current, the latter equation
is fully consistent with the perhaps more familiar writing of the elastic distortion in terms of the plastic
distortion and the second derivatives of the Green tensor as (e.g., Mura (1987))4

�ij(r; t) = �
Z t

�1
dt0
Z

dr0G+
ik;jl(r � r

0; t� t0)Cklmn�P
mn(r0; t0)� �P

ij(r; t) : (23)

Also, the issue of the upper boundary t0 = t of the time-integration in the integral solutions deserves
some comments. It is sometimes read in treatises on Green functions, e.g., (Barton, 1989), that the upper
boundary should lie slightly above t, which is usually denoted by t+. Such a device helps one to easily
check that the integral formulas are indeed solutions of the equation of motion they derive from. Because
of the causality constraint, the upper time-integration boundary can as well be taken as +1. However,
it is less recognized that the boundary can as well be chosen slightly below t, which we denote as t�.
This is possible because of the two limiting properties (14), the �rst of which ensuring that removing the
interval ]t�; t+[ from the integration interval t0 2] �1; t+[ makes no di�erence on the �nal result. The
second property in (14) allows us to show |in Appendix B| that solutions written with integrals over
t0 2]�1; t�[ satisfy the equation of motion as well. Since the solution is unique, all these formulations
give identical results. However, the use of t�, which amounts to eliminating the immediate vicinity of
the point t0 = t from time integrals, is much more convenient for numerical and analytical purposes, as
will be shown in Section 5.2. This device has already been employed in (Pellegrini, 2011, 2012, 2014;
Pellegrini and Lazar, 2015), but was introduced there without any detailed justi�cation. Until Section 4,
we continue denoting the upper boundary as t0 = t in general formulas, for simplicity.

3 Straight Volterra dislocations in the framework of distribu-
tions

In this Section, the elastodynamic �elds produced by the non-uniform motion of straight screw and edge
Volterra dislocations are studied using the theory of distributions or generalized functions (Schwartz,
1950/51; Gel’fand and Shilov, 1964; Kanwal, 2004). The �eld equations of motion are solved by means
of Green functions. The problem is two-dimensional, of anti-plane strain or plane strain character.

3.1 Screw dislocation
We address �rst the anti-plane strain problem of a Volterra screw dislocation in non-uniform motion
at time t along some arbitrary path s(t0) prescribed in advance in the time range �1 < t0 � t. The
dislocation line and the Burgers vector bz are parallel to the z-axis. The dislocation velocity has two
non-vanishing components: Vx = _sx(t), Vy = _sy(t). The dislocation density and dislocation current
tensors are

�zz = bz ‘z �(R(t)) ; Izj = bz �jkzVk(t) ‘z �(R(t)) ; (24)

where R(t) = r � s(t) 2 R2, ‘z is a unit vector in z-direction and i; j; k = x; y. The index z is a �xed
index (no summation).

Eqs. (21a) and (21b) simplify enormously for the nonvanishing components �zx, �zy, and vz. Using
Eq. (24) and _�zz = �Vk�zz;k, we obtain from Eqs. (21a) and (21b) the following equations of motion of
a screw dislocation:

Lzz�zm = �zml
�
Czjzl �zz;j + �

� _Vl �zz � VlVk �zz;k
��
; (25a)

Lzzvz = �zml Czjzm Vl �zz;j ; (25b)
4 Indeed, ignoring our present emphasis on the distributional character of the Green tensor, Eq. (18a) is nothing but Eq.

(38.36) on p. 351 of Mura’s treatise. This is realized upon comparing Mura’s Eq. (38.19) with the above de�nition (6b) of
Iij , bearing in mind the transposed character of our dislocation tensors with respect to Mura’s (see note 3).
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where _V is the dislocation acceleration. With the dynamic elastic tensor for non-uniform motion, namely,

eCijkl(V ) = Cijkl � � VjVl �ik (26)

and using the property of the di�erentiation of a convolution, the appropriate solution may be written
as the convolution integrals

�zm(r; t) = �zml
Z t

�1
dt0
Z n

G+
zz;k(r � r0; t� t0) eCzkzl(V (t0))

+ �G+
zz(r � r

0; t� t0) _Vl(t0)
o
�zz(r0; t0) dr0 ; (27a)

vz(r; t) = �zml
Z t

�1
dt0
Z
CzkzmG+

zz;k(r � r0; t� t0)Vl(t0)�zz(r0; t0) dr0 ; (27b)

The dynamic elastic tensor (26) was originally introduced by S�aenz (1953) for uniformly moving disloca-
tions (see also Bacon et al. (1979), who use a di�erent index ordering), and employed in elastodynamics
by Wu (2000) with the same index ordering as in Eq. (26). It possesses only the major symmetry
eCijkl(V ) = eCklij(V ).

Substituting the dislocation density (24) into Eqs. (27a) and (27b), and performing the integration
over r0, we obtain

�zm(r; t) = bz‘z �zml
Z t

�1

n
G+
zz;k(r � s(t0); t� t0) eCzkzl(V (t0)) + �G+

zz(r � s(t
0); t� t0) _Vl(t0)

o
dt0 (28a)

vz(r; t) = bz‘z �zml
Z t

�1
CzkzmG+

zz;k(r � s(t0); t� t0)Vl(t0) dt0 ; (28b)

where G+
zz is the retarded Green function (distribution) of the anti-plane problem de�ned by

LzzG+
zz =

�
� @tt � ��

�
G+
zz = �(t)�(r) : (29)

If the material is in�nitely extended, the two-dimensional elastodynamic Green-function distribution
of the anti-plane problem, which is nothing but the usual Green function of the two-dimensional scalar
wave equation (e.g. Morse and Feshbach (1953); Barton (1989)), interpreted as a distribution, reads (see,
e.g., Eringen and Suhubi (1975); Kausel (2006))

G+
zz(r; t) =

�(t)
2��

�
t2 � r2=c2

T
��1=2

+ (30)

with the velocity of transverse elastic waves (shear waves, also called S-waves)

cT =
p
�=� ; (31)

and where �(t) is the Heaviside unit-step function that restricts this causal solution to positive times. In
this writing, the generalized function x�+, de�ned as (see, e.g., Schwartz (1950/51); Gel’fand and Shilov
(1964); Kanwal (2004); de Jager (1969))

x�+ =
�

0 for x < 0
x� for x > 0 ; (32)

has been used. The derivative of x1=2
+ is given by

�
x1=2

+
�0 =

1
2
x�1=2

+ : (33)

The derivative of x�1=2
+ gives a pseudofunction (see Schwartz (1950/51); Gel’fand and Shilov (1964);

Zemanian (1965)):

�
x�1=2

+
�0 = �

1
2

Pf x�3=2
+ : (34)
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The symbol Pf in Eq. (34) stands for pseudofunction. In general, pseudofunctions are distributions gen-
erated by Hadamard’s �nite part of a divergent integral. They arise naturally when certain distributions
are di�erentiated. In Eq. (34) the regular distribution x�1=2

+ was di�erentiated. Using Eqs. (33) and (34),
the derivative of the Green function (30) is expressed as the pseudofunction

G+
zz;k(r; t) =

�(t)
2��

xk
c2

T
Pf
�
t2 � r2=c2

T
��3=2

+ : (35)

Finally, the elastic �elds of a non-uniformly moving screw Volterra dislocation read, in distributional
form

�zx(r; t) =
bz‘z
2�c2

T

Z t

�1

�
_Vy(t0)

��t2 �R2(t0)=c2
T
��1=2

+

+
��

1�
V 2
y (t0)
c2

T

�
Ry(t0)�

Vx(t0)Vy(t0)
c2

T
Rx(t0)

�
Pf
��t2 �R2(t0)=c2

T
��3=2

+

�
dt0 ; (36a)

�zy(r; t) = �
bz‘z
2�c2

T

Z t

�1

�
_Vx(t0)

��t2 �R2(t0)=c2
T
��1=2

+

+
��

1�
V 2
x (t0)
c2

T

�
Rx(t0)�

Vx(t0)Vy(t0)
c2

T
Ry(t0)

�
Pf
��t2 �R2(t0)=c2

T
��3=2

+

�
dt0 ; (36b)

vz(r; t) =
bz‘z
2�c2

T

Z t

�1

�
Vy(t0)Rx(t0)� Vx(t0)Ry(t0)

�
Pf
��t2 �R2(t0)=c2

T
��3=2

+ dt0 ; (36c)

where �t = t� t0.
The �elds given by Eqs. (36a){(36c) clearly consist of two parts: (i) Fields depending on the dislocation

velocities Vx and Vy alone and proportional to the pseudofunction distribution of power�3=2 |dislocation
velocity-dependent �elds or near �elds, built from the gradient of the Green tensor; (ii) Fields depending
on the dislocation accelerations _Vx and _Vy and proportional to the regular distribution of power �1=2
|dislocation acceleration-dependent �elds or far �elds, built on the Green tensor itself. The velocity
�eld (36c) possesses no acceleration part.

It should be mentioned that it seems to be hard to �nd a measurement which can distinguish between
the acceleration- and velocity-depending �elds. Such a decomposition is basically conceptual. In a natural
way, we may separate � into two parts, one which involves the dislocation acceleration and goes to zero
for _V = 0, and one which involves only the dislocation velocity and yields the static �eld for a dislocation
with V = 0. Dislocations at rest or in steady motion do not generate elastodynamic waves. Only
non-uniformly moving dislocations emit elastodynamic radiation.

Some historical remarks are in order. In the 1950s already, Sauer (1954, 1958) emphasized the interest
of introducing the theory of distributions in supersonic aerodynamics. In particular, in gas dynamics and
wing theory, pseudofunctions of power �3=2 have been used in the framework of distribution theory, e.g.,
Sauer (1954, 1958); Dorfner (1957) (see also de Jager (1969)).

3.2 Edge dislocation
We next turn to the straight edge Volterra dislocation in the plane-strain framework. Its associated
dislocation density and current tensors read, respectively,

�ij = bi ‘j �(R(t)) ; Iij = bi �jklVk(t) ‘l �(R(t)) ; (37)

where R(t) = r � s(t) 2 R2 and i; j; k = x; y. Using _�ij = �Vk �ij;k, we obtain from Eqs. (21a) and
(21b) the following equations of motion:

Lik�km = �nml
�
Cijkl �kn;j + �

� _Vl�in � VlVk �in;k
��
; (38a)

Likvk = �nml Cijkl Vl �kn;j ; (38b)
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where V = _s. Using the property of the di�erentiation of a convolution, the corresponding solutions of
Eqs. (38a) and (38b) are given in convolution form

�im(r; t) = �nml
Z t

�1
dt0
Z �

G+
ij;k(r � r0; t� t0) eCjkpl(V (t0))�pn(r0; t0)

+ �G+
ij(r � r

0; t� t0) _Vl(t0)�jn(r0; t0)
�

dr0 ; (39a)

vi(r; t) = �nml
Z t

�1
dt0
Z
CjkpmG+

ij;k(r � r0; t� t0)Vl(t0)�pn(r0; t0) dr0 ; (39b)

where the two-dimensional (distributional) Green tensor G+
ij is de�ned as the retarded solution of Eq. (12),

with (11).
Substituting Eq. (37) into (39a) and (39b) and performing the r0-integration, we �nd

�im(r; t) = �nml
Z t

�1

�
G+
ij;k(r � s(t0); t� t0) eCjkpl(V (t0)) bp‘n

+ �G+
ij(r � s(t

0); t� t0) _Vl(t0) bj‘n
�

dt0 (40a)

vi(r; t) = �nml
Z t

�1
CjkpmG+

ij;k(r � s(t0); t� t0)Vl(t0) bp‘n dt0 : (40b)

Using the distributional approach, the two-dimensional retarded Green tensor is given by (see Eason
et al. (1956); Eringen and Suhubi (1975); Kausel (2006) for the Green tensor in the classical approach)

G+
ij(r; t) =

�(t)
2��

�
xixj
r4

h
t2
�
t2 � r2=c2

L
��1=2

+ +
�
t2 � r2=c2

L
�1=2

+ � t2
�
t2 � r2=c2

T
��1=2

+ �
�
t2 � r2=c2

T
�1=2

+

i

�
�ij
r2

h�
t2 � r2=c2

L
�1=2

+ � t2
�
t2 � r2=c2

T
��1=2

+

i�
: (41)

It consists of regular distributions of power 1=2 and �1=2. The shear velocity cL is de�ned in (31), and
cT is the velocity of the longitudinal elastic waves (P-wave) expressed in terms of the Lam�e constants as

cL =
p

(2�+ �)=�: (42)

It is noted that G+
zz(r; t), Eq. (30), is twice the spherical part of G+

ij(r; t) in (41). Using Eqs. (33) and
(34), the derivative of the Green tensor (41) is obtained as

G+
ij;k(r; t) =

�(t)
2��

��
�ikxj + �jkxi

r4 �
4xixjxk

r6

�h
t2
�
t2 � r2=c2

L
��1=2

+ +
�
t2 � r2=c2

L
�1=2

+

� t2
�
t2 � r2=c2

T
��1=2

+ �
�
t2 � r2=c2

T
�1=2

+

i

+
2 �ijxk
r4

h�
t2 � r2=c2

L
�1=2

+ � t2
�
t2 � r2=c2

T
��1=2

+

i

+
xixjxk
r4

�
t2

c2
L

Pf
�
t2 � r2=c2

L
��3=2

+ �
1
c2

L

�
t2 � r2=c2

L
��1=2

+

�
t2

c2
T

Pf
�
t2 � r2=c2

T
��3=2

+ +
1
c2

T

�
t2 � r2=c2

T
��1=2

+

�

+
�ijxk
r2

�
1
c2

L

�
t2 � r2=c2

L
��1=2

+ +
t2

c2
T

Pf
�
t2 � r2=c2

T
��3=2

+

��
; (43)

which involves pseudofunctions of power �3=2 in addition to distributions of power 1=2 and �1=2. Eqs.
(41) and (43) display G+

ij(r; t) and G+
ij;k(r; t) in expanded form for clarity. However, more compact

expressions for these distributions that emphasize the occurrence of t solely via well-de�ned groups
containing either cTt or cLt can be found in (Pellegrini and Lazar, 2015) [see also Eq. (A.3) below].
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Substituting Eqs. (41) and (43) into Eqs. (40a) and (40b), we obtain the elastic distortion tensor of
the non-uniformly moving Volterra edge dislocation as

�im(r; t) =
1

2��
�nml

Z t

�1
dt0
�
eCjkpl(V (t0)) bp‘n

��
�ikRj(t0) + �jkRi(t0)

R4(t0)
�

4Ri(t0)Rj(t0)Rk(t0)
R6(t0)

�

�
�
�t2
�

�t2 �R2(t0)=c2
L

��1=2

+
+
�

�t2 �R2(t0)=c2
L

�1=2

+

� �t2
�

�t2 �R2(t0)=c2
T

��1=2

+
�
�

�t2 �R2(t0)=c2
T

�1=2

+

#

+
2 �ijRk(t0)
R4(t0)

h��t2 �R2(t0)=c2
L
�1=2

+ � �t2
��t2 �R2(t0)=c2

T
��1=2

+

i

+
Ri(t0)Rj(t0)Rk(t0)

R4(t0)

� �t2

c2
L

Pf
��t2 �R2(t0)=c2

L
��3=2

+ �
1
c2

L

��t2 �R2(t0)=c2
L
��1=2

+

�
�t2

c2
T

Pf
��t2 �R2(t0)=c2

T
��3=2

+ +
1
c2

T

��t2 �R2(t0)=c2
T
��1=2

+

�

+
�ijRk(t0)
R2(t0)

�
1
c2

L

��t2 �R2(t0)=c2
L
��1=2

+ +
�t2

c2
T

Pf
��t2 �R2(t0)=c2

T
��3=2

+

��

+ � _Vl(t0) bj‘n
�
Ri(t0)Rj(t0)
R4(t0)

h
�t2
��t2 �R2(t0)=c2

L
��1=2

+ +
��t2 �R2(t0)=c2

L
�1=2

+

� �t2
��t2 �R2(t0)=c2

T
��1=2

+ �
��t2 �R2(t0)=c2

T
�1=2

+

i

�
�ij

R2(t0)

h��t2 �R2(t0)=c2
L
�1=2

+ � �t2
��t2 �R2(t0)=c2

T
��1=2

+

i��
; (44)

and the velocity vector reads

vi(r; t) =
bp‘n
2��

�nml Cjkpm
Z t

�1
dt0 Vl(t0)

��
�ikRj(t0) + �jkRi(t0)

R4(t0)
�

4Ri(t0)Rj(t0)Rk(t0)
R6(t0)

�

�
�
�t2
�

�t2 �R2(t0)=c2
L

��1=2

+
+
�

�t2 �R2(t0)=c2
L

�1=2

+

� �t2
�

�t2 �R2(t0)=c2
T

��1=2

+
�
�

�t2 �R2(t0)=c2
T

�1=2

+

#

+
2 �ijRk(t0)
R4(t0)

h��t2 �R2(t0)=c2
L
�1=2

+ � �t2
��t2 �R2(t0)=c2

T
��1=2

+

i

+
Ri(t0)Rj(t0)Rk(t0)

R4(t0)

� �t2

c2
L

Pf
��t2 �R2(t0)=c2

L
��3=2

+ �
1
c2

L

��t2 �R2(t0)=c2
L
��1=2

+

�
�t2

c2
T

Pf
��t2 �R2(t0)=c2

T
��3=2

+ +
1
c2

T

��t2 �R2(t0)=c2
T
��1=2

+

�

+
�ijRk(t0)
R2(t0)

�
1
c2

L

��t2 �R2(t0)=c2
L
��1=2

+ +
�t2

c2
T

Pf
��t2 �R2(t0)=c2

T
��3=2

+

��
: (45)

Those elastic �elds consist of two di�erent kinds of contributions, about which the same comments as in
the screw case can be made.

Expressions (44){(45) encompass gliding as well as climbing edge dislocations. If V kb, they describe
a gliding edge dislocation, and with V ? b they deliver the �elds of a climbing edge dislocation (see, e.g.,
Lazar (2011b); Pellegrini (2010)). If we specialize to non-uniformly moving straight edge dislocations
with Burgers vector in the x-direction, bx, and with the dislocation line ‘z parallel to the z-axis, then the
dislocation density and current tensors of a gliding edge dislocation with arbitrary velocity Vx(t) in the
x-direction are given by

�xz = bx ‘z �(R(t)) ; Ixy = bx �yxzVx(t) ‘z �(R(t)) ; (46)
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whereR(t) = (x�sx(t); y). For a climbing edge dislocation with arbitrary velocity Vy(t) in the y-direction,
they read

�xz = bx ‘z �(R(t)) ; Ixx = bx �xyzVy(t) ‘z �(R(t)) ; (47)

where R(t) = (x; y � sy(t)).
In general, the elastodynamic �elds of straight dislocations have the form of time-integrals over the

history of the motion, and display a so-called ‘afterglow’-type response (Barton, 1989) with slow relax-
ation tails. The reason, speci�c to the two-dimensional problem, is that �elds continuously arrive from
remote emission points on past locations of the dislocation line. This e�ect is accounted for by the
two-dimensional Green function.

We are therefore left to evaluate time-integrals of considerable complexity, which only in some simple
cases yield closed-form results in terms of elementary functions. Consequently, the procedure developed
hereafter relies, after a suitable regularization method has been applied, on a decomposition of arbitrary
motion into time-intervals of constant velocity for which explicit �eld expressions can be given.

4 Regularization in the framework of distributions

4.1 Regularization procedure
Up to now, our results for the �elds of non-uniformly moving Volterra dislocations are singular distribu-
tions. Although being mathematically well-de�ned in the latter sense, and therefore free of non-integrable
singularities, they are inconvenient for numerical purposes in the case of arbitrarily prescribed motion
s(t). In order to get singularity-free �elds, we have to regularize these distributions. The standard means
of doing this is the convolution of distributions with a suitable test function. This operation, which is
called the regularization of a distribution, converts the distribution into an in�nitely smooth function.

The procedure we call hereafter isotropic regularization consists in the convolution of the singular
distributions by the following isotropic representation of the two-dimensional Dirac delta distribution
(Kanwal, 2004):

�(r) = �(x)�(y) = lim
"!0

�"(r) ; with �"(r) =
"

2�(r2 + "2)3=2 ; (48)

which plays here the role of the test function. Here �"(r) is a non-singular Dirac-delta sequence with
parametric dependence. For " �nite this corresponds to considering a line source with rotationally-
invariant core of radius ". We start with the regularization of the dislocation density and dislocation
current tensors. The regularization of the dislocation density tensor of a Volterra dislocation is denoted
by the convolution product

�iso
ij (r; t) = [�ij � �"](r; t) =

Z
�ij(r � r0; t) �"(r0) dr0 ; (49)

where � denotes the two-dimensional spatial convolution. The regularized dislocation density tensor reads

�iso
ij =

bi‘j
2�"2

1
��
R(t)="

�2 + 1
�3=2 : (50)

The dislocation density tensor �iso
ij is �nite and reaches its maximum value of bi‘j=(2�"2) at the dislocation

core center (Fig. 1). Therefore, �"(r) plays the role of the dislocation shape function in the regularization.
To further motivate this somewhat ad-hoc regularization, it is interesting to compare it with one of a

more fundamental nature. Thus, Fig. 1 also displays the dislocation density tensor, obtained in gradient
elasticity of Helmholtz type (Lazar et al., 2005; Lazar and Maugin, 2006; Lazar, 2014),

�ij =
bi‘j
2�"2 K0

�
R(t)="

�
; (51)

which has a weak (logarithmic) residual singularity at the dislocation line. Gradient elasticity of the
Helmholtz type serves a regularization based on higher order partial di�erential equations where the
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Figure 1: Scaled dislocation densities versus scaled distance to core center: regularized dislocation
density �iso

ij (solid), and dislocation density �ij from gradient elasticity of Helmholtz type (dashed).

corresponding regularization function is the Green function of the Helmholtz operator (Lazar, 2014). In
the intermediate range, the dislocation density tensors (50) and (51) are in surprisingly good agreement
(see Fig. 1) in spite of markedly di�erent asymptotic behaviors.5 Moreover, the function (50) is �nite
everywhere, in contrast to (51).

The regularized dislocation current tensor is given by

I iso
ij (r; t) = [Iij � �"](r; t) : (52)

The regularized elastic distortion tensor and elastic velocity vector are de�ned, respectively, by

�iso
ij (r; t) = [�ij � �"](r; t) ; (53a)

viso
i (r; t) = [vi � �"](r; t) : (53b)

Using the property of the di�erentiation of a convolution (see, e.g., Vladimirow (1971)) and the equations
of motion for the elastic �elds (9a) and (9b), we can show that the regularized elastic �elds (53a) and
(53b) satisfy the following inhomogeneous Navier equations

Lik�iso
km = Lik[�km � �"] = [Lik�km] � �" = [�nmlCijkl�kn;j + � _Iim] � �" = �nmlCijkl�iso

kn;j + � _I iso
im ; (54a)

Likviso
k = Lik[vk � �"] = [Likvk] � �" = [Cijkl Ikl;j ] � �" = Cijkl I iso

kl;j ; (54b)

with the regularized dislocation density tensor (49) and the regularized dislocation current tensor (52)
as inhomogeneous parts. In addition, using Eqs. (8a) and (8b), it can be shown that the regularized
dislocation density tensor (49) and the regularized dislocation current tensor (52) satisfy Bianchi identities

�iso
ij;j = @j [�ij � �"] = [�ij;j ] � �" = 0 ; (55a)

_�iso
ij = @t[�ij � �"] = [ _�ij ] � �" = �[�jklIik;l] � �" = ��jklI iso

ik;l : (55b)

4.2 Regularized �elds
The regularized elastodynamic �elds are now derived using the isotropic regularization. Eq. (37) is not
speci�c to edge dislocations, but applies to screw dislocations as well upon taking ‘i = �iz and bi = bz�iz.
We therefore start from that expression. Using the isotropic-regularized form of �ij

�iso
ij = bi‘j�"(R(t)); (56)

5The modi�ed Bessel function behaves as K0(x) �
p
�=2x�1=2e�x when x� 1 and K0(x) � � ln(x=2)�C for 0 < x � 1

(C denotes Euler’s constant).
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substituting into Eqs. (39a) and (39b), and performing the r0-integration we obtain the regularized �elds
in the form

�iso
ij (r; t) = �njlbp‘n

Z t�

�1

n
Giso
iq;k(r � s(t0); t� t0) eCkqpl

�
V (t0)

�
+ �Giso

ip (r � s(t0); t� t0) _Vl(t0)
o

dt0 ; (57a)

viso
i (r; t) = �nmlbp‘nCjkpm

Z t�

�1
Giso
ij;k(r � s(t0); t� t0)Vl(t0) dt0 ; (57b)

where the regularized Green tensor function is

Giso
ij (r; t) = [G+

ij � �
"](r; t) =

Z
G+
ij(r � r

0; t) �"(r0) dr0; (58)

and where the upper boundary has been chosen as t� (slightly less than t), according to the remark made
in Sec. 2.3. The latter convention is used throughout the rest of the paper.

The regularized Green tensor satis�es the inhomogeneous Navier equation

LikGiso
km(r � r0; t� t0) = �im �(t� t0) �"(r � r0) : (59)

Carrying out the convolution in Eq. (58) yields the remarkable result that due to our choice for �" the
regularized form Giso(r; t) of the distribution G+

ij(r; t) is conveniently expressed in terms of the function
Gij(r; t), continued to complex time, as (Pellegrini and Lazar (2015))

Giso
ij (r; t) = �(t) Re [Gij(r; t)ct!ct+i"] (i; j = x; y); (60a)

Giso
zz (r; t) = �(t) Re [Gzz(r; t)cTt!cTt+i"] ; (60b)

where our notations mean that cTt and cLt must be replaced in Gij(r; t) by cTt + i" and cLt + i",
respectively, according to the remark following Eq. (43).

The function Gij(r; t) is readily deduced from the associated distribution G+
ij(r; t) by removing causal-

ity and wavefront constraints on its variables (i.e., in practice, by simply removing the �(t) prefactor and
the ‘plus’ subscripts), which allows for its continuation to complex-valued arguments. For instance, in
the antiplane-strain case,

Gzz(r; t) =
1

2��
�
t2 � r2=c2

T
��1=2 ; (61)

to be compared with (30). The function Gij(r; t) of the plane-strain case is obtained from Eq. (41) in
the same manner. Similarly, the regularization of the gradient of the Green tensor is given by

Giso
ij;k(r; t) = �(t) Re [Gij;k(r; t)ct!ct+i"] (62)

where Gij;k(r; t) is the function that can be read from the distributional expressions of the gradients
(35) (anti-plane-strain) or (43) (plane-strain), removing as above �(t), the ‘plus’ subscripts, and the
‘Pf’ prescriptions. Analytic continuation of functions has long been known as a method of representing
pseudofunctions (Bremermann and Durand III , 1961; Gel’fand and Shilov, 1964). Indeed, upon taking
the limit "! 0+ Eqs. (60) and (62) induce de�nitions of the distributions G+

ij and G+
ij;k as

G+
ij(r; t) = lim

"!0+
Giso
ij (r; t); G+

ij;k(r; t) = lim
"!0+

Giso
ij;k(r; t): (63)

The functions Giso
ij (r; t) and Giso

ij;k(r; t) are nowhere singular in the r-plane, and possess equal-time
limits similar to Eq. (14) (Appendix A):

lim
t!0+

Giso
ij (r; t) = 0; lim

t!0+
@tGiso

ij (r; t) = ��1�ij�"(r): (64)

15



For uniform motion V (t) � V and s(t) = V t. Then, letting � = t�t0, the regularized �eld expressions
(57a) and (57b) reduce to

�iso
ij (r; t) = �njlbp‘n eCkqlp(V )

Z +1

0+
Giso
iq;k(r � V t+ V �; �) d� ; (65a)

viso
i (r; t) = �nmlbp‘nCjkmpVl

Z +1

0+
Giso
ij;k(r � V t+ V �; �) d� : (65b)

Such steady-state �elds are usually computed in the co-moving frame centered on the dislocation. This
change of origin, which consists in turning the position vector r into V t + r, removes the trivial time
dependence in (65a) and (65b). In particular, the static �elds (V = 0) read

�iso
ij (r; t) = �njlbp‘nCkqlp

Z +1

0+
Giso
iq;k(r; �) d� ; (66a)

viso
i (r; t) = 0 : (66b)

Due to the symmetries in the indices l and m, one can replace Cjkmp by eCjkmp in Eq. (65b). Thus,

viso
i (r; t) = �nmlbp‘n eCjkmp(V )Vl

Z +1

0+
Giso
ij;k(r � V t+ V �; �) d� : (67)

We thus retrieve the following relation for uniform motion between the elastic velocity and the elastic
distortion, which is as a direct consequence of the equation vi = _ui:

viso
i = �Vj�iso

ij (uniform motion) : (68)

We focus hereafter on non-uniform motions that begin at t = 0, starting from a steady state of
constant initial velocity V (0) at times t < 0. The contributions of negative times can then be separated
out into the following integral, which di�ers from the ones in Eqs. (65) by the lower integration bound:

I iso(0)
ijk (r; t) =

Z 0�

�1
Giso
ij;k(r � V (0)t0; t� t0) dt0 =

Z +1

t+
Giso
ij;k(r � V (0)t+ V (0)�; �) d� : (69)

Then, Eqs. (57) read, for t > 0,

�iso
ij (r; t) = �njlbp‘n

�
I iso(0)
iqk (r; t) eCkqpl(V (0)) (70a)

+
Z t�

0�

h
Giso
iq;k(r � s(t0); t� t0) eCkqpl

�
V (t0)

�
+ �Giso

ip (r � s(t0); t� t0) _Vl(t0)
i
dt0
�
;

viso
i (r; t) = �nmlbp‘nCjkpm

"

I iso(0)
ijk (r; t)V (0)

l +
Z t�

0�
Giso
ij;k(r � s(t0); t� t0)Vl(t0) dt0

#

; (70b)

whereas at negative times the �elds are given by Eqs. (65) with V = V (0). Integral (69) vanishes as
t! +1, accounting for the ‘afterglow-type’ progressive erasure of the steady-state �eld that was present
prior to non-uniform motion (Pellegrini, 2014).

5 Implementation
We now examine a way of handling Eqs. (70) for numerical purposes.

5.1 Discrete representation of motion
Following a series of studies devoted to the study of inertial e�ects during non-uniform dislocation motion
(Pillon, Denoual and Pellegrini, 2007; Pillon and Denoual, 2009; Pellegrini, 2014), our discretization
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scheme consists in transforming the physical velocity function V (t) into a piecewise-constant function,
whose constant-valued pieces are separated by a �nite number of velocity jumps. Speci�cally, motion is
split into N(t) + 1 time intervals ]t
�1; t
 [, 0 � 
 � N of constant velocity V (
). By convention the �rst
interval 
 = 0 is the semi-in�nite one of negative times, with t�1 = �1 and t0 = 0�. Also, the last
interval 
 = N is conventionally bounded upwards by the current time, so that tN = t�. The other ones
are of arbitrary duration. The integer N(t) represents the number of velocity jumps that have occurred
up to time t. The velocity jumps are �V (
) = V (
) � V (
�1). The velocity and acceleration are thus
represented as

V (t) = V (N(t)) = V (0) +
N(t)X


=1

�(t� t
�1)�V (
); (71a)

_V (t) =
N(t)X


=1

�(t� t
�1)�V (
): (71b)

Introducing discrete positions at jump times

s
 =

X


0=1

(t
0 � t
0�1)V (
0) (
 < N); (72)

the position reads, consistently with (71a),

s(t) =
�
V (0)t if t < 0
sN�1 + (t� tN�1)V (N) if t > 0;

: (73)

5.2 Fields as sums of closed-form time integrals
Expanding the time integrals (70) on the set of constant-velocity intervals and using (71b) yields

�iso
ij (r; t) = �njlbp‘n

�
I iso(0)
iqk (r; t) eCkqpl

�
V (0)�+

N(t)X


=1

eCkqpl
�
V (
)�

Z t


t
�1

Giso
iq;k(r � s(t0); t� t0) dt0

+ �
N(t)X


=1

Giso
ip (r � s
�1; t� t
�1)�V (
)

l

�
; (74a)

viso
i (r; t) = �nmlbp‘nCjkpm

2

4I iso(0)
ijk (r; t)V (0)

l +
N(t)X


=1

V (
)
l

Z t


t
�1

Giso
ij;k(r � s(t0); t� t0) dt0

3

5 : (74b)

The most important building-block of Eqs. (74) is the time integral

I iso(
)
ijk (r; t) =

Z t


t
�1

Giso
ij;k(r � s(t0); t� t0) dt0 ; (75)

which generalizes (69). Rewriting it by means of (73), it reduces to

I iso(
)
ijk (r; t) =

Z t


t
�1

Giso
ij;k(r � [s
�1 + (t� t
�1)V (
)] + (t� t0)V (
); t� t0) dt0 ; (76)

where an extra term tV (
) has been added and subtracted in the �rst slot of Giso
ij;k. The new vector

involved,

svirt

 (t) = s
�1 + (t� t
�1)V (
); (77)

represents the virtual position that the dislocation would have as instant t if motion had continued at
uniform velocity V (
) after the velocity jump at t
�1. Such virtual motions determine �elds in remote
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regions of space that have not yet been swept by subsequent acceleration waves (Pillon and Denoual,
2009). Introducing the inde�nite integral

J iso
ijk(r; t;V ) =

Z t
Giso
ij;k(r + �V ; �) d� ; (78)

and letting again � = t� t0, integral (76) now reads

I iso(
)
ijk (r; t) =

Z t�t
�1

t�t

Giso
ij;k(r � svirt


 (t) + �V (
); �) d�

= J iso
ijk(r � svirt


 (t); t� t
�1;V (
))� J iso
ijk(r � svirt


 (t); t� t
 ;V (
)) : (79a)

In particular, because tN = t�, the last term 
 = N reads

I iso(N)
ijk (r; t) = J iso

ijk(r � svirt

 (t); t� tN�1;V (
))� J iso

ijk(r � svirt

 (t); 0+;V (
)) : (79b)

An equation analogous to (79a) applies as well to the 
 = 0 term, since by (69) and (78),

I iso(0)
ijk (r; t) = J iso

ijk(r � V (0)t;+1;V (0))� J iso
ijk(r � V (0)t; t+;V (0)) : (79c)

Closed-form expressions for the function J iso
ijk(r; t;V ), derived from the latter reference, are summa-

rized in Appendix C [Eqs. (C.2), (C.3) and (C.5), (C.6)]. Closed-form expressions are provided as well
for the limiting functions J iso

ijk(r;+1;V ), needed in (79c) [Eqs. (C.3), (C.12a) and (C.6), (C.12b)]. It is
shown in Appendix C.3.4 that the following limits commute:

lim
�!+1

lim
V!0

J iso
ijk(r; � ;V ) = lim

V!0
lim

�!+1
J iso
ijk(r; � ;V ) ; (80)

so that the static �elds at V = 0 are well-de�ned.
Therefore, the �elds (74) �nally take the following form, to be used in numerical computations:

�iso
ij (r; t) = �njlbp‘n

�N(t)X


=0

I iso(
)
iqk (r; t) eCkqpl

�
V (
)�+ �

N(t)X


=1

Giso
ip (r � s
�1; t� t
�1)�V (
)

l

�
; (81a)

viso
i (r; t) = �nmlbp‘nCjkpm

N(t)X


=0

V (
)
l I iso(
)

ijk (r; t) : (81b)

The writing (79a) of the de�nite integral as a di�erence of boundary values of the inde�nite integral
(78) is the key step of the computational procedure. It requires the integrand to be analytic in the
immediate vicinity of the integration intervals (integration paths). This is warranted by the isotropic
regularization employed, which ensures that no branch cut of Giso

ij;k(r + �V ; �) is crossed as � varies
within these intervals (Pellegrini and Lazar (2015)).

Accordingly, in Eq. (79b) resides the ultimate justi�cation of our using t� as an upper boundary in
the time integrals of Eqs. (65): indeed, t0 = t is a point of analyticity breakdown beyond which the Green
tensor and its gradient vanish identically by causality, so that using either t or t+ does not allow one to
employ the integration formula (79a), contrary to using t�.

The above expressions have been implemented in a Fortran code, employed to produce the �eld maps
below, in which the prescriptions t+ and 0+ are translated as t+ � and �, with � = 10�5.

5.3 Steady �elds (uniform motion)

The particular case of uniform motion is addressed by letting V (
) � V for all 
, so that �V (
) � 0.
Equations (81) simplify as

�iso
ij (r; t) = �njlbp‘n eCkqpl

�
V
�N(t)X


=0

I iso(
)
iqk (r; t) ; (82a)

viso
i (r; t) = �nmlbp‘nCjkpmVl

N(t)X


=0

I iso(
)
ijk (r; t) : (82b)

18



Moreover, by (72), one has

s
 = V

X


0=1

(t
0 � t
0�1) = V (t
 � t0) = t
V : (83)

The virtual positions (77) then reduce to svirt

 (t) � V t for all 
. Using the fact that t0 = 0�, and

expressions (79a), (79b), and (79c), it follows that

N(t)X


=0

I iso(
)
ijk (r; t) = J iso

ijk(r � V t;+1;V )� J iso
ijk(r � V t; 0+;V ) : (84)

Substituting the latter expression into Eqs. (82), we deduce that in the co-moving frame the �elds are
time-independent, and read

�iso
ij (r) = �njlbp‘n eCkqpl

�
V
� �
J iso
iqk(r;+1;V )� J iso

iqk(r; 0+;V )
�

(co-moving frame) ; (85a)

viso
i (r) = �nmlbp‘nCjkpmVl

�
J iso
ijk(r;+1;V )� J iso

ijk(r; 0+;V )
�

(co-moving frame) : (85b)

Classical (i.e., non-distributional) expressions for the (singular) �elds of a uniformly-moving Volterra
dislocation, valid for velocities jV j < cT can be retrieved by abruptly setting " = 0 in those expressions
(no limit process). In this case, the second term cancels out (see Appendix C.3.1), so that

�Volterra
ij (r) = �njlbp‘n eCkqpl

�
V
�
J iso
iqk(r;+1;V )j"=0 (co-moving frame) ; (86a)

vVolterra
i (r) = �nmlbp‘nCjkpmVlJ iso

ijk(r;+1;V )j"=0 (co-moving frame) : (86b)

The main di�erence between both sets of expressions is that due to the �nite core size ", �elds given by
Eq. (85) are non-singular everywhere, and correctly display one (cT < jV j < cL) or two (jV j > cL) Mach
cones for faster-than-wave velocities. Moreover, Volterra-dislocation �elds can be made to exhibit Mach
cones only by carefully taking the limit "! 0 in the sense of distributions (Pellegrini and Lazar, 2015).
However, the latter cones are supported by in�nitely thin Dirac lines, and thus cannot be rendered in
�eld maps. In general, distributional expressions are not directly suitable to full-�eld representation.

Figure 2 displays the regularized stress �eld components of a ‘glide’ edge dislocation (b = (1; 0; 0))
in steady horizontal motion, computed in the co-moving frame from Eqs. (85) for some velocities V
less than the Rayleigh velocity cR (Weertman and Weertman, 1980; Hirth and Lothe, 1982), and for
two regularizing core widths ". Material constants are such that the wavespeed ratio is cL=cT = 2:2
(� = 2:84), so that cR ’ 0:937096 cT. Units are taken dimensionless, such that cT = 1 and � = 1, and
the box size is Lx�Ly = 10� 10. For " = 0:075, the new regularized �elds, albeit smooth, are very close
to the standard results for a Volterra dislocation [see Eqs. (7-24) to (7-26) in (Hirth and Lothe, 1982)]6
For V = 10�3cT, the �elds are nearly identical to the static ones. The e�ect of increasing the core width
(to " = 0:5 in the �gure) is to reduce the overall stress strength, and to widen the gaps between the
di�erent lobes of the �eld patterns. In those gaps the �elds have near-zero values (especially close to the
core center), which illustrates the regularizing property of ".

Figure 3 represents, for " = 0:075 and same material parameters as in Fig. 2, the stress components
at faster-than wave velocities. In this regime, Mach-cones show up from our analytical �eld expressions,
unlike with classical �eld expressions. Even in the steady state Mach cones radiate energy to in�nity
(Stroh, 1962), which gives rise to a �nite drag force opposed to uniform dislocation motion (Rosakis,
2001). In the range cT < V < cL, only the shear-wave Mach cone is present, whereas the lobes are of
‘longitudinal’ character. The shear-wave cone vanishes for the special velocity V =

p
2cT at which the

dislocation undergoes frictionless motion (Eshelby, 1949). Upon crossing the latter velocity the Mach-
cones in �xx and �yy change their sign (single root) whereas the one in �xy vanishes without changing
its sign (double root). Since the lobes of �yy change their sign as well, the �yy component vanishes
totally at this velocity. Near to the longitudinal wave speed V . cL = 2:2cT, the lobes of �xx and �yy
extend vertically to form an incipient Mach cone associated to the longitudinal wave, whereas the forward

6Actually, the overall sign of the stress components for V 6= 0 given in Hirth and Lothe’s treatise must be changed to
match our own expressions, as well as the standard static ones in Eq. (3-43) of the same reference in the limit V ! 0.
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Figure 2: E�ect of the regularizing core width " on the stress �eld components of a ‘glide’ edge dislocation,
in steady horizontal motion in the positive direction, at low velocities V < cR. Velocity and " as indicated.
For better display, stress levels have been thresholded as indicated in the bar legend.

Figure 3: Stress �eld components of a ‘glide’ edge dislocation, in faster-than-wave steady horizontal
motion in the positive direction, with velocities V > cT, for " = 0:075. Same material parameters and
scale as in Fig. 2.
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(positive) lobe of �xy vanishes. Two pairs of Mach cones make up the �eld structure at V > cL with
longitudinal branches in the �xx and �yy components of opposite signs (compressive-like above the glide
plane, and tensile-like below it), while Mach cones in �xy are negative. Since in the plane strain set-up
the pressure is p = �(1+�)(�xx+�yy)=3, where � = �=[2(�+�)] is Poisson’s ratio, the shear-wave Mach
cones of �xx and �yy are of opposite sign and same intensity (see Figure), to cancel out mutually in the
pressure �eld, leaving only a longitudinal Mach cone in pressure for supersonic velocities V > cL (not
shown).

It should be noted that stable steady motion in the ‘velocity gap’ cR < V <
p

2cT is impossible on
theoretical grounds (Rosakis, 2001). However, as the present work does not not address the equation of
motion that drives the dislocation under an external stress, which would forbid such motion, �eld maps
can be computed anyway in this unphysical regime (V = 1:2 cT in Fig. 3).

6 The two-dimensional elastodynamic Tamm problem for dislo-
cations

In this Section, the formalism is applied to a case of non-uniform motion of physical interest. In elec-
tromagnetic �eld theory, the Tamm problem (Tamm, 1939), introduced to help elucidating the nature
of the Cerenkov radiation, consists in studying the �elds radiated by a charge moving in a polarizable
medium at faster-than-light velocity during a �nite time interval, and at rest otherwise. For a recent
review, discussion, and historical account, see Afanasiev (2004).

We transpose hereafter this problem to the elastodynamic �elds radiated by a ‘glide’ edge dislocation
(for illustrative purposes, but the method applies to the other two characters as well), using Eqs. (81)
with core-width parameter " = 0:075. Material parameters, and dimensionless units, are the same as in
the previous Section. A dislocation, initially at rest, is instantaneously accelerated to faster-than-wave
speed V = 2:5cT at t = 0, and moves uniformly at this speed until it is instantaneously pinned at t = 5
into rest again (e.g., by some impurity or by forest dislocations in intersecting glide planes). Then N = 2
in Eqs. (81) and the problem allows one to examine �elds radiated in both the acceleration and the
deceleration steps.

Figs. 4, 5 and 6 display, respectively, 512�256-pixel pictures of the stress components �xx, �xy and
�yy at times: (1) t = 3:30; (2), t = 6:74; (3) t = 9:49; and (4) t = 13:62, in a box of physical size
Lx �Ly = 40� 20. All three components are plotted for further reference. After the initial acceleration,
the dislocation velocity is faster than the longitudinal wave, so that two Mach cones build up. In pictures
(1), the initial �eld of the dislocation at rest has already been erased, and the two concentric expanding
rings of the acceleration wave, propagating at velocities cT (inner ring) and cL (outer ring) control the
lateral expansion of the Mach cones. The latter remain tangent to the rings. Images (2) to (4) take
place after dislocation sudden pinning, and illustrate the interplay between the acceleration rings, and
the braking (Bremsstrahlung) waves. The latter delimit the build-up region of the new static �eld. After
dislocation pinning, the branches of the Mach cones are released to in�nity while remaining tangent
to the braking rings. In pictures (2) and (3), the longitudinal acceleration wave has catched up with
the dislocation, while the transverse one still lags behind. The latter overcomes the dislocation only in
pictures (4).

It is interesting to observe the reinforcement of the �elds, on the part of the boundary of the lon-
gitudinal acceleration ring comprised between the two Mach cones, in components �xx and �yy. These
high-�eld segments have signs opposite to those of the longitudinal Mach cone, so that this region is sub-
jected to a high stress gradient. In the example displayed, where the dislocation velocity is rather close to
cL, the longitudinal acceleration ring and braking ring closely follow each other, inducing a particularly
strong e�ect observable in pictures (3) of the �gures, near to the forward longitudinal wave front.

The �xy component in Fig. 5 presents another interesting geometric e�ect: as the stress is negative
on the slip plane ahead of the transverse acceleration ring [picture (1)], the latter screens out part of the
right positive lobe of the new static �eld once it catches up with the pinned dislocation [picture (4)], and
thus continues to play a non-negligible role long after the initial acceleration has taken place. Obviously,
in all cases the full static �elds displayed in Fig. 2 are retrieved in stable form only after the slowest
(shear) initial acceleration wave has overcome the dislocation.
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Figure 4: Stress component �xx of a ‘glide’ edge dislocation in the Tamm problem (see text).

Figure 5: Stress component �xy of a ‘glide’ edge dislocation in the Tamm problem (see text).
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Figure 6: Stress component �yy of a ‘glide’ edge dislocation in the Tamm problem (see text).

7 Concluding discussion
To summarize, we proposed in the �eld-theoretical framework of continuum dislocation theory a new
approximate procedure to compute analytically �elds radiated by dislocations undergoing non-uniform
motion at arbitrary velocities |including supersonic ones| and along arbitrary paths. Our results
hold for an unbounded, isotropic, linear-elastic medium. The procedure becomes exact for motions with
piecewise-constant velocity function V (t). Overall, our work hinges on technical results of two sorts:

1) First, after having clari�ed the fundamental distributional nature of the Green tensor, a so-called
isotropic regularization procedure has been employed to regularize �elds produced by point sources.
Using distributions, the theory of the non-uniform motion of straight dislocations becomes formally
simpler: prior to regularization, all the terms that enter the integral solution of the Volterra problem
[Eqs. (28) and (40)], are regular distributions and pseudofunctions of clear mathematical meaning, unlike
in classical approaches where such terms are usually non-integrable. The bottom line is that with the
help of these objects, the dynamic Volterra-dislocation theory becomes well-de�ned, i.e., free of so-called
non-integrable singularities. It then became possible to carry out all di�erentiations in the elastodynamic
�elds, and to handle the ‘non-integrable singularities’ in a suitable mathematical way. In particular, the
framework legitimates operations such as the interchange of integration and di�erentiation, which are
ill-de�ned in the standard approach (Markensco�, 1983). Thus, the theory of dislocations in particular
and, more generally, that of defects in the elastic continuum, has the theory of distributions as its natural
background, as emphasized, e.g., by Pellegrini (2011). However, only few authors have worked along this
line. For static dislocations, Kunin (1965); deWit (1973a,b) and Mura (1987) used already some results
of distribution theory. Of course, the statics of dislocations is much simpler than their dynamics.

We showed that the regularization could be implemented from the outset, i.e., at the most fundamental
level of the elastodynamic Green’s tensor and its gradient, by carrying out their spatial convolution with
a speci�c isotropic �-sequence, used with a �xed width parameter representing the dislocation core width.
The nicety is that in practice, this amounts to considering the analytic continuation to complex values
of the time variable of the function associated with the distributional Green’s tensor, as shown by Eqs.
(60) and (62), in which the imaginary part of the time is proportional to the source width, divided by
the relevant wavespeed. Thus, the isotropic regularization is very easy to implement in the isotropic case
where the wavespeeds have closed-form analytical expressions. On the other hand, the same ‘trick’ would
need to be modi�ed for anisotropic media for which (except in a few particular cases) the wavespeeds
must in general be computed numerically (Aki and Richards, 2009; Bacon et al., 1979). It should be
noted that the particular Somigliana dislocation of Eshelby (1949) can as well be brought down to an
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analytic continuation of �eld expressions with respect to the space coordinate in the direction of motion
instead of time (Pellegrini, 2011). The latter regularization is by essence anisotropic, and might be better
suited to anisotropic media. However, it was not employed here in view of the next point below, for
which using the isotropic regularization proved a little easier. Whatever the exact approach employed,
this shows that a powerful way of regularizing distributional Green’s functions is to seek regularizations
in the form of analytic continuations. The main virtue of such regularizations is to suppress the need for
tracking wavefronts in subsequent calculations, so that the results can be applied without modi�cations to
supersonic sources. More generally, it has been observed that techniques of analytic continuation greatly
simplify the formulas involved in problems of moving dislocations (Pellegrini, 2011, 2012, 2014).

We expect the same method to apply as well to more complex Green’s functions such as the one
(Eatwell et al., 1982) adequate to problems with layered media or free surfaces (Stronge, 1970; Freund,
1973), thus alleviating the need to consider separately the subsonic and supersonic cases as in traditional
methods of solution. Moreover, provided that the Green’s function is known in closed form this analytic-
continuation approach should straightforwardly extend to coupled-physics problems, e.g., thermoelasticity
(Brock et al., 1997), which we must however leave to further work.

2) The above regularization step does not by itself produce Mach cones, since Green’s functions can
only generate circular wavefronts at each instant. To arrive at Mach cones, which are are caustics of
circular wavefronts, we need a second type of results. The �elds emitted by a moving dislocation involve
convolution integrals over past times of expressions built from the regularized Green’s function. We faced
the problem of their numerical computation. To handle arbitrary dislocation motion, these time integrals
have been split into secondary integrals over a discrete set of time intervals in which the dislocation
velocity can be assumed constant. The latter assumption makes it possible to get those secondary
integrals in closed form, thereby giving the dynamic �elds in terms of time-discretized but closed-form
expressions. Time integration provides expressions able to generate Mach cones. By this means, full-�eld
dynamic maps of the stress �eld could be produced, even in instances of supersonic motion, which has
not been previously done from analytical expressions, to our knowledge.

As we carried it out, this second step is much more speci�c to the isotropic problem at hand than the
�rst one above. The key closed-form integrals of Appendix C were �rst reported in Pellegrini and Lazar
(2015), where they were simply proved by di�erentiation |few details being given as to their method of
obtention. Su�ce it to say that the method rests on representing two-dimensional vectors in the plane
as complex numbers, which eases the integration over time to obtain inde�nite integrals in terms of
elementary functions, in full tensor form. From them stem the expressions for �nite-time intervals used
in the present paper. Their complexity is a consequence of the vector character of the velocity, which can
take on any direction. It is very di�cult to retrieve from them the known analytical expressions for steady
subsonic motion, and this step is best done numerically from Eqs. (86). This drawback is a relative one,
if one bears in mind that those powerful expressions are able to account for regularized �elds, Mach cones
for both shear and longitudinal waves, and arbitrary velocity direction. It is not clear that like integrals
could be arrived at in generalized problems involving free surfaces, layered media, or even anisotropic
media. Should closed-form time integration prove unfeasible, numerical integration could be attempted,
in the hope of bene�tting from the smooth character of the regularized Green kernels. However, some
di�culties might occur in the rendering of Mach cones. This would be worth investigating in the future.

Turning now to the physical content of the results, it must be emphasized that we restricted ourselves,
for simplicity, to a rigid dislocation core size. Thus ‘relativistic’ e�ects of dynamic core-width variations
(Pellegrini, 2012, 2014), and their associated radiative contributions, are not accounted for. However,
this should not be considered a limitation of the method. How to bypass this restriction, which is
necessary to couple the present calculations to an equation of motion for dislocations, will be examined
elsewhere in connection with the use of Eshelby’s regularization. Indeed, although easier to implement,
the isotropic regularization is ill-suited to handling Lorentz-contraction e�ects (the source must contract
in the direction of motion only).

Obviously, the formalism does not need any modi�cation to address dynamic nucleation or annihilation
processes in the bulk of the material. By conservation of the dislocation density, such events involve pairs
of dislocations of opposite signs.7 To account, e.g., for a nucleation event, one only needs to add the
�elds of each dislocation of the expanding pair, as computed via Eqs. (81). These �elds mutually cancel

7Such dipoles are two-dimensional counterparts of dislocation loops in three dimensions.
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out in the incipient state of pair nucleation when both dislocations are at rest with coinciding positions.
Finally, it should be remarked that the �elds patterns in Sec. 6 are (unsurprisingly) found symmetric,

up to sign changes, on both sides of the glide plane. However, recent numerical work with a �eld model
of continuum mechanics (Zhang et al., 2015) suggests that non-linear elasticity might be responsible for a
strong asymmetry of the �elds, and in particular of the Mach cones where �elds are strongest. Indeed, the
latter work features asymmetric �eld patterns much alike those in some atomistic simulations (Li and Shi,
2002; Tsuzuki et al., 2009). The ones by Li and Shi (2002) concern tungsten |an almost isotropic metal;
hence, the main cause of asymmetry cannot reside in elastic anisotropy. Therefore, another conclusion of
the present work is that such e�ects cannot be captured by linear elasticity alone.

Consequently, although the present dynamic �elds expressions based on linear isotropic elasticity are
quite speci�c to the problem at hand, and might su�er from some limitations from the physical standpoint,
they are appropriate to �rst investigations of collective radiative properties of dislocations ensembles by
means of simulations of the type discussed in (Gurrutxaga-Lerma et al., 2014), in the scarcely explored
high-velocity/high-acceleration range.
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A Equal-time limits
We demonstrate here the equal-time limit identities obeyed by the Green tensor, in the two-dimensional
framework of the rest of the paper. For the anti-plane strain case, these identities are well-known from
the study of the Helmholtz equation, and read (see Barton (1989), p. 241)

lim
t!0+

G+
zz(r; t) = 0 ; lim

t!0
@tG+

zz(r; t) = ��1�(r) : (A.1)

We focus hereafter on the plane-strain case, using elements from Section 4. The strategy consists in
�rst proving the equal-time identities (64) on the isotropic-regularized Green tensor, and then letting
the regularizing size " go to zero, to retrieve those identities for G+

ij(r; t), following the general principle
expressed by Eqs. (63).

Starting from de�nition (60a), and introducing the tensor

Tij = �ij � 2
xixj
r2 ; (A.2)

we cast the regularized Green tensor in the form (Pellegrini and Lazar, 2015)

Giso
ij (r; t) =

�(t)
4��

Re
X

p=T;L

1
cp

�
�ij �

1
r2 [2(cpt+ i")2 � r2]Tij

�
1

p
(cpt+ i")2 � r2

; (A.3)

where the sum is over the wavespeed index, and where the ‘plus’ and ‘minus’ signs apply to the transverse,
and longitudinal terms, respectively. Then, immediately,

lim
t!0+

Giso
ij (r; 0) = �

1
4��

Re
X

p=T;L

i
cp

�
�ij �

1
r2 [2"2 + r2]Tij

�
1

p
r2 + "2

= 0 ; (A.4)

since the expression under the Re operator is purely imaginary.
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We next appeal to the following identities, demonstrated in Appendix A of (Pellegrini and Lazar,
2015), where the Dirac terms originate from the branch cut of the complex square root function:

@
@t

q
(cpt+ i")2 � r2 =

cp(cpt+ i")
p

(cpt+ i")2 � r2
+ 2i

p
r2 + "2�(t); (A.5a)

@
@t

1
p

(cpt+ i")2 � r2
= �

cp(cpt+ i")
[(cpt+ i")2 � r2]3=2 �

2i
p
r2 + "2

�(t) : (A.5b)

From these, we compute

@tGiso
ij (r; t) =

�(t)
4��

Re
X

p=T;L

cpt+ i"
[(cpt+ i")2 � r2]3=2

�
��ij �

1
r2 [2(cpt+ i")2 � 3r2]Tij

�
; (A.6)

in which the imaginary terms proportional to �(t) in Eqs. (A.5) have not survived due to the Re operator.
Going to the limit t! 0, we deduce

lim
t!0+

@tGiso
ij (r; t) =

1
4��

Re
X

p=T;L

"
(r2 + "2)3=2

�
�ij �

1
r2 (r2 + 2"2)Tij

�
= ��1 �ij

2�
"

(r2 + "2)3=2 ; (A.7)

that is, by de�nition (48) of �"(r),

lim
t!0+

@tGiso
ij (r; t) = ��1�ij�"(r) : (A.8)

Letting �nally "! 0+ in Eqs. (A.4) and (A.8) proves Eqs. (14).

B The upper boundary in time integrals
The considerations put forward in Section 2.3 are justi�ed here, using v(r; t) as an example; one would
proceed in the same manner with �(r; t). Let � > 0 an in�nitesimal number, and t� = t � �. Consider
�rst the traditional writing of the time-integral with t+ as an upper boundary. From (17b), one reads

vi(r; t) =
Z t+

�1
dt0
Z
CjklmG+

ij(r � r
0; t� t0)Ilm;k(r0; t0) dr0 : (B.1)

Then,

@tvi(r; t) = Cjklm

"Z
G+
ij(r � r

0;��)Ilm;k(r0; t+)dr0 +
Z t+

�1
dt0
Z
@tG+

ij(r � r
0; t� t0)Ilm;k(r0; t0)dr0

#

:

(B.2)

The �rst term within brackets vanishes by the causality property (13). The second time-derivative reads

@2
t vi(r; t) = Cjklm

"Z
@tG+

ij(r � r
0;��)Ilm;k(r0; t+) dr0 +

Z t+

�1
dt0
Z
@2
tG

+
ij(r � r

0; t� t0)Ilm;k(r0; t0) dr0
#

=
Z t+

�1
dt0
Z
@2
tG

+
ij(r � r

0; t� t0)CjklmIlm;k(r0; t0) dr0 (B.3)

for the same reason. It follows that, by de�nition of the Green tensor,

Lipvp(r; t) =
Z t+

�1
dt0
Z
LipG+

pj(r � r
0; t� t0)CjklmIlm;k(r0; t0) dr0

=
Z t+�

�1
dt0
Z
�(r � r0)�(t� t0)CiklmIlm;k(r0; t0) dr0 = CiklmIlm;k(r; t0) ; (B.4)
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so that the integral solution indeed veri�es the �eld equations of motion. This standard demonstration
(e.g., Barton (1989)) relies on causality and on the fact that t+ > t.

Consider now using t� as an upper boundary. Then,

@tvi(r; t) = Cjklm

"Z
G+
ij(r � r

0; �) Ilm;k(r0; t�) dr0 +
Z t�

�1
dt0
Z
@tG+

ij(r � r
0; t� t0) Ilm;k(r0; t0)dr0

#

;

(B.5)

so that

@2
t vi(r; t) = Cjklm
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G+
ij(r � r

0; �) _Ilm;k(r0; t�) dr0 + Cjklm
Z
@tG+

ij(r � r
0; �) Ilm;k(r0; t�) dr0

+
Z t�

�1
dt0
Z
@2
tG

+
ij(r � r

0; t� t0) Ilm;k(r0; t0) dr0 : (B.6)

By the equal-time limits (14), the �rst term in the left-hand side vanishes while the second one reduces
to

Cjklm
Z
@tG+

ij(r � r
0; �) Ilm;k(r0; t�) = ��1CiklmIlm;k(r; t) : (B.7)

It follows that

Lipvp(r; t) = CiklmIlm;k(r; t) +
Z t��

�1
dt0
Z
�(r � r0)�(t� t0)CiklmIlm;k(r0; t0) dr0 = CiklmIlm;k(r; t) ;

(B.8)

since now the interval of integration does not contain t0 = t any more. This second method thus relies
on the equal-time limits rather than on causality. However, the same result is obtained in both cases, so
that both writings of the integral are correct.

C The inde�nite integral J iso
ijk

For brevity, the reference (Pellegrini and Lazar, 2015) is denoted as (PL) hereafter.

C.1 Preliminary remarks and notations
Although they are of a wider range of application, as the present work demonstrates, the expressions that
were given in (PL) for the quantity herein denoted by J iso

ijk(r; t;V ) were presented there in a way adapted
to dislocations instantaneously accelerated from rest to constant velocity. The equations of immediate
interest to us being somewhat scattered through the text of the latter reference, the purpose of this
Appendix is to summarize them neatly. The following intermediate quantities are employed:

� = V =c ; (C.1a)
bn = V =V = �=� ; (velocity director) (C.1b)
br = r=r ; (C.1c)

R (�) = r + V � ; (C.1d)

S(�) =
p
c2�2 �R(�)2 ; (C.1e)

A�ij = (1� �2)(�ij � bnibnj)� bnibnj ; (C.1f)

Xij = ri�j � �irj ; (C.1g)

where c is a generic placeholder for wavespeeds cT or cL. When V = 0, the unit director n̂ is arbitrary.
Except for the index z, all indices below take on values 1 or 2. The introduction of the cross-product Xij
allows for writings of expressions (C.2) and (C.5) below shorter than the ones reported in (PL).
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C.2 Explicit expressions
C.2.1 Antiplane-strain case

The expression of the only nonzero component of J iso
ijk(r; t;V ) is read from Eqs. (46{48) of (PL). Let

Jzzk(r; � ;V ; c) = S�1�r � A+ � r
��1(XklRl � c� rk) : (C.2)

Introducing �T = V =cT, we have (PL),

J iso
zzk(r; t;V ) =

1
2��

ReJzzk(r � i "�T; t+ i "=cT;V ; cT) : (C.3)

Thus, the function Jzzk(r; � ;V ; c) is used quite generally with complex-valued arguments r and � .

C.2.2 Plane-strain case

The following intermediate quantities are needed:

Bmlx = 2bnmbnl � �ml ; Bmly = �zmpbnpbnl + �zlpbnpbnm ; (C.4a)

Qi = S�1Ri ; (C.4b)

qi = (r � A+ � r)�1ri ; (C.4c)

Uij = �ij +QiQj ; Vij = (r � A+ � r)�1A�ij ; Wij = �ij � 2 qmA+
mirj ; (C.4d)

Lx;i = c�S�1R�2Ri ; (C.4e)

Ly;i = ��zip
�
c�S�1R�2Rp + (� �Q� c�S�1)qp

�
; (C.4f)

Lx;ik = c�S�1R�2 �Uik � 2R�2RiRk
�
; (C.4g)

Ly;ik = ��zip
�
Lx;pk + S�1 �Ukl�l � c�S�1Qk

�
qp +

�
� �Q� c�S�1� (r � A+ � r)�1Wkp

�
: (C.4h)

The result to be given is built from the third-rank tensor [Eq. (89) in (PL)]

Jijk(r; � ;V ; c) =
�
2�2��1 ��S�1(Ukj�i + Uki�j) + [(Wki�l � �iWkl)Vmj + (Wkj�l � �jWkl)Vmi] rmQl

+ (XilVkj +XjlVki + 2XklVij)Ql + S�1 (VimXjl + VjmXil) rmUkl
� c�S�1 �S�1Qk (Vimrj + Vjmri) rm + (Vikrj + Vjkri + 2Vijrk) + (VimWkj + VjmWki) rm

�

� (Ll;iBklj + Ll;jBkli + 2Ll;kBilj)� rm (Ll;ikBmlj + Ll;jkBmli)
	
: (C.5)

By slightly modifying the above de�nitions of Qi, Lj;i and Lj;ik in an obvious way, an overall factor S�1

could be factored out in this formidable expression. This is not done here because we do not want to
divert too much from the notations of (PL).

One immediately deduces from the equations presented in Section 4.4 of (PL) that8

J iso
ijk(r; t;V ) = J iso

zzk(r; t;V )�ij +
1

2��
Re

X

P=T;L

�
1
c2
P
Jijk(r � i"�P ; t+ i"=cP ;V ; cP ) : (C.6)

where �P = V =cP , cP takes on values cT or cL, and where the ‘plus’ and ’minus’ signs apply, respectively,
to the T-term and L-term in the sum. Longitudinal and transverse contributions are conspicuous. Again,
the function Jijk(r; � ;V ; c) is used in general with complex-valued arguments r and � .

8Equation (C.6) has no true counterpart in (PL), where Jijk(r; � ; V ; c) was denoted as Jijk(r; �), and where a quantity
Iiso

ijk(r + V t; t), equal to J iso
ijk(r; t; V )� J iso

ijk(r; 0+; V ) in the present notations, was introduced with a dependence in the r,
V and t variables that acknowledges its co-moving nature. Our notational changes, which include the appearance of the
generic wavespeed c as an argument in Jijk(r; � ; V ; c), make our equations easier to understand.
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C.2.3 Remarks

First, it is emphasized that expressions (C.3) and (C.6) are written in the co-moving frame. This is the
reason why they feature the quantity R introduced in Eq. (C.1d); see also remark following Eqs. (65).

Next, it should be pointed out that, as an inde�nite integral over time, J iso
ijk(r; t;V ) is determined up

to an arbitrary time-independent integration constant. This irrelevant term vanishes in the subtractions
that de�ne expressions (79a) and (79c), while J iso

ijk(r; t;V ) itself is of no de�nite physical signi�cance.
Moreover, we observe that Eqs. (C.3) and (C.6) make use of the simultaneous regularizing substitutions

r ! rshift = r� i�� and � ! � + i�=c, where " is the �nite core size, which leaves the vector R invariant.
For this, an analytic continuation to complex times and positions of the functions Jijk(r; � ;V ; c) is
required. Accordingly, all square roots are used in the sense of the principal determination |the one
usually implemented in computers. With this convention the following limits hold:

lim
r!0

rshift = lim
r!0

p
(r � i"�) � (r � i"�) = �i sign(br � bn)�" ; (C.7a)

lim
r!0

brshift = lim
r!0

rshift

rshift = sign(br � bn)bn : (C.7b)

Thus, the continuation of the norm r =
p
r � r of r is in general complex-valued (not a norm any more).

Finally, we observe that by going to the limit "! 0, expressions (C.3) and (C.6) become distributions,
with Mach cones in the form of Dirac-like measures for faster-than-wave velocities. Extracting this limit
for arbitrary velocities is thus a complicated business in general, an instance of which has been given in
(PL) in the antiplane-strain case. However, upon neglecting the distributional character of this limit,
more classical expressions of the �elds a Volterra dislocation are retrieved by letting " = 0 right away.
Of course, such expressions are singular (i.e., in�nite, hence not physically meaningful) at the dislocation
position and at wavefronts, and hold only in the absence of Mach cones, i.e., for velocities less than cT.
Thus, for Volterra dislocations and jV j < cT, we can take

J iso
zzk(r; t;V )j"=0 =

1
2��

ReJzzk(r; t;V ; cT) ; (C.8a)

J iso
ijk(r; t;V )j"=0 = J iso

zzk(r; t;V )j"=0 �ij +
1

2��
Re

X

P=T;L

�
1
c2
P
Jijk(r; t;V ; cP ) : (C.8b)

C.3 Particular values and limits
The above expressions yield non-singular �eld values in particular limits of interest. Limiting forms
are rather di�cult to extract in the plane-strain case, due to the complexity of (C.5). The expressions
reported below have been checked with the help of a symbolic computational toolbox.

C.3.1 Values at � = 0

For � = 0, the quantity S(�) becomes S = i r, while Qi = �i brk and Uij = �ij � bribrj . It follows that in
the particular case where r and � are taken real-valued, Jzzk and Jijk are purely imaginary. Hence,

lim
�!0+

ReJzzk(r; � ;V ; c) = 0; lim
�!0+

ReJijk(r; � ;V ; c) = 0 (r,� 2 R) : (C.9)

When " = 0, inserting these expressions into Eqs. (C.8) we conclude that

J iso
zzk(r; 0+;V )j"=0 = 0; J iso

ijk(r; 0+;V )j"=0 = 0 : (C.10)

C.3.2 Limit � ! +1

This limit is needed to compute the upper boundary term with � = +1 in expression (79c). Letting
u = br � bn, we introduce the notation

A = r�2(r � A+ � r) = (1� �2) + �2u2 : (C.11)
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A straightforward but very long calculation yields

lim
�!1

Jzzk(r; � ;V ; c) = �
1

r
p

1� �2A

�
(1� �2)brk + �2u bnk

�
; (C.12a)

lim
�!1

Jijk(r; � ;V ; c) =
p

1� �2

r�2A2

n
�[(1� �2)A+ 2�2 u2]�ijbrk + �2A(bri�jk + �ikbrj)

� �2(A� 2)u �ijbnk � (1 + �2)Au(bni�jk + bnj�ik)

+ [(1� �2)A+ 2�4 u2](bribnj + bnibrj)bnk
+ [(2� �2)A+ 2�4 u2]bnibnjbrk
+ �2(1� �2)�1[(2� 3�2)A+ 2�4 u2]u bnibnjbnk

+ 2�2(1� �2)u(bnibrj + bribnj)brk � 2�4 u bribrjbnk � 2�2(1� �2)bribrjbrk
o
:

(C.12b)

Using these expressions in Eqs. (C.3) and (C.6), which involves using complex values of their argument
r, gives access to the quantities

J iso
zzk(r;+1;V ) and J iso

ijk(r;+1;V ) : (C.13)

The above expressions can also be inserted right away into Eqs. (C.8) to compute, for Volterra dislocations
and velocity jV j < cT the quantities J iso

zzk(r;+1;V )j"=0 and J iso
ijk(r;+1;V )j"=0.

C.3.3 Limit V ! 0

This limit is needed for static �eld expressions. We have (PL)

lim
V!0

Jzzk(r; � ;V ; c) = �
c�

r
p
c2�2 � r2

brk ; (C.14a)

lim
V!0

Jijk(r; � ;V ; c) =
c�

r
p
c2�2 � r2

bribrjbrk �
c�
r3

p
c2�2 � r2 Tijk(br) ; (C.14b)

where the following third-rank tensor has been used:

Tijk(br) = �jkbri + �ikbrj + �ijbrk � 4 bribrjbrk : (C.15)

Expansions to second order in powers of � would be needed to retrieve Eq. (C.14b) from expression (C.5),
which is inversely proportional to �2. A shorter route is discussed in (PL).

C.3.4 Double limit � !1, V ! 0

From (C.12a) and (C.14a), it is clear that the limits commute for Jzzk(r; � ;V ; c): one �nds

lim
�!1

lim
V!0

Jzzk(r; � ;V ; c) = lim
V!0

lim
�!1

Jzzk(r; � ;V ; c) = �
1
r
brk : (C.16)

The case of Jijk(r; � ;V ; c) is more subtle. Carrying out a Laurent expansion of (C.12b) near V = 0
(� = 0), one gets

lim
�!1

Jijk(r; � ;V ;c) =
c2

r
[��ijbrk � u(bni�jk + bnj�ik) + (bribnj + brjbni)bnk + 2bnibnjbrk]V �2

+
1
r

�
1
2

(1� 2u2)�ijbrk + (bri�jk + brj�ik) + u �ijbnk �
1
2
u(3� 2u2)(bni�jk + bnj�ik)

�
1
2

(1 + 2u2)(bribnj + brjbni)bnk + 2u(bribnj + brjbni)brk � 2u2bnibnjbrk + 2u bnibnjbnk � 2bribrjbrk
�

+O
�
V 2� : (C.17)
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Despite appearances, it can be shown that the O(V 0) term in this expansion does not depend on the
director bn (!). The task is most easily performed by introducing polar angles for br and bn, and reducing
each tensor component of the term by means of trigonometric identities, possibly with the help of an
algebraic computational toolbox. The result is equal to

lim
�!1

Jijk(r; � ;V ;c) =
c2

r
[��ijbrk � u(bni�jk + bnj�ik) + (bribnj + brjbni)bnk + 2bnibnjbrk]V �2

+
1
r

�
bribrjbrk +

1
2
Tijk(br)

�
+ O

�
V 2� : (C.18a)

On the other hand, Laurent-expanding (C.14b) near � =1 directly gives

lim
V!0

Jijk(r; � ;V ; c) = �
c2�2

r3 Tijk(br) +
1
r

�
bribrjbrk +

1
2
Tijk(br)

�
+ O

�
��2� : (C.18b)

The leading terms in expansions (C.18a) and (C.18b) are di�erent from one another, and blow-up in
the limits considered. However, they are physically irrelevant and can be disregarded because they are
proportional to c2: such terms (not containing c in any other way) are eliminated between the transverse
and longitudinal parts in Eq. (C.6). Since the �nite next-to-leading-order terms coincide, we can consider
in practice that the limits commute as well for Jijk(r; � ;V ; c), as far as J iso

ijk is concerned.

C.3.5 Limit R ! 0

This limit corresponds to letting r ! �V � in the co-moving frame, which provides the �elds at the
origin of coordinates in the laboratory frame. In principle, this point should be of no particular interest,
except in the static case V = 0 where it locates the center of the dislocation core. However, since, e.g.,
Lx;i in (C.4e) has one term proportional to 1=R and moreover Lx;ik in (C.4g) has one term proportional
to 1=R2, we need to verify that no ill-de�niteness arises in this limit. Assuming that V 6= 0 the following
limit and Taylor expansion are obtained:

lim
r!�V �

Jzzk(r; � ;V ; c) =
1
V �
bnk ; (C.19a)

Jijk(r; � ;V ; c) =
c2

V 2R

�
1 +

V �
R

�
Tijk(bn) +

c2 � (V=2)2

V 3�
Tijk(bn)�

1
4V �

(�jkbni + �ikbnj + �ijbnk)

+ O
�
R
�
: (C.19b)

Thus, the antiplane-strain limit (C.19a) is not problematic, whereas the plane-strain expansion (C.19b)
is singular as R ! 0. However the divergent terms, proportional to c2, are irrelevant for the same reason
as in the previous Section, and can be disregarded. In practice, one can thus consider that

lim
r!�V �

Jijk(r; � ;V ; c) ’ �
1

4V �
[Tijk(bn) + (�jkbni + �ikbnj + �ijbnk)] ; (C.20)

which is �nite.
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