C. Cawthorne and J. E. Fulton, Nature, vol.216, p.515, 1967.

G. S. Was, Fundamentals of Radiation Materials Science, 2007.

P. Dubuisson, Core Structural Materials -feedback experience from Phénix Design Manufacturing and Irradiation behaviour of Fast Reactor Fuel, pp.235-247, 2013.

A. Renault, Correlation of radiation-induced changes in microstructure/microchemistry, density and thermos-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor, J. Nucl. Mater, vol.460, p.72, 2015.

M. L. Flem and P. Gavoille, Advanced steel claddings for SFRS: feedback and challenges, Final workshop GETMAT, p.2013, 2013.

E. Wakai and N. Hashimoto, Swelling of cold worked austenitic stainless steels irradiated in HFIR under spectrally tailored conditions, J. Nucl. Mater, vol.307, p.352, 2002.

S. Hamada and M. Suzuki, Microstructural evolution in austenitic stainless steels irradiated to 57 dpa in HFIR, J. Nucl. Mater, vol.179, p.515, 1991.

P. Dubuisson, A. Maillard, and C. Delalande, The effect of phosphorus on the radiation induced microstructure of stabilized austenitic stainless steels, 15th International Symposium on the Effects of Radiation on Materials, 1990.

E. Lee and L. Mansur, Fe-15Ni-13Cr austenitic stainless steels for fission and fusion reactor applications. III. Phase stability during heavy ion irradiation, J. Nucl. Mater, vol.278, p.20, 2000.

P. Mazias, Overview of microstructural evolution in neutronirradiated austenitic stainless steels, J. Nucl. Mater, vol.205, p.118, 1993.

J. L. Seran, Behaviour under neutron irradiation of the 15-15Ti and EM10 steels used as standard materials of the Phénix fuel subassembly, Effects of radiation on materials, 15th International Symposium ASTM STP 1125, Philadelphia, p.1209, 1992.

I. Neklyudov and V. Voyevodin, Radiation swelling of modified austenitic steels, Russ. Phys. J, vol.51, p.400, 2008.

V. Voyevodin and I. Neklyudov, Microstructural evolution and radiation stability of steels and alloys, J. Nucl. Mater, vol.271, p.290, 1999.

B. Raj and M. Vijayalakshmi, Radiation Damage of Structural Materials for Fast Reactor Fuel Assembly (ICTP&IAEA, 2009.

J. Seran, L. L. Naour, and P. Grosjean, Swelling of microstructure of neutron irradiated titanium modified type 316 stainless steel, Effect of Radiation on Materials, p.12

. Int, . Symp, . Philadelphia, and . Usa, , p.233, 1985.

L. Mansur, Theory and experimental background on dimensional changes in irradiated alloys, J. Nucl. Mater, vol.216, p.97, 1994.

C. Delalande, Influence du Phosphore sur le comportement hors et sous irradiation des aciers austénitiques multi stabilisés, vol.3, 1992.

A. Padilha and R. Plaut, Annealing of cold-worked austenitic stainless steels, ISIJ Int, vol.43, p.135, 2003.

S. Yang and J. Spruiell, Cold-worked state and annealing behavior of austenitic stainless steel, J. Mater. Sci, vol.17, p.677, 1982.

R. Schramm and R. Reed, Stacking-fault energies of 7 commercial austenitic stainless-steels, J. Miner. Met. Mater. Soc, vol.7, p.1345, 1975.

V. Voronin and E. Valiev, Neutron diffraction analysis of Cr-Ni-Mo-Ti austenitic steel after cold plastic deformation and fast neutrons irradiation, J. Nucl. Mater, vol.459, p.97, 2015.

M. Terada and R. Altobelli, Microstructure and intergranular corrosion of the austenitic stainless steel 1.4970, J. Nucl. Mater, vol.358, p.40, 2006.

A. Padilha and G. Schanz, Ausscheidungsverhalten des titanstabilisierten austenitischen stahls 15% Q-15% Ni-1% Mo-Ti-B (DIN-werkstoff-nr. 1.4970), J. Nucl. Mater, vol.105, p.77, 1982.

B. Fultz and J. M. Howe, Transmission Electron Microscopy and Diffractometry of Materials, 2002.

C. David, A study of the effect o titanium on the void swelling behaviour of D9 steels by ion beam simulation, J. Nucl. Mater, vol.383, p.132, 2008.

J. S. Yang, Radiation-induced changes in microstructure, 13th int. symp. ASTM STP 955, vol.1, p.628, 1987.

G. S. Was and R. S. Averback, Comprehensive Nuclear Materials, p.7, 2012.

T. Allen and J. Cole, Swelling and radiation-induced segregation in austenitic alloys, J. Nucl. Mater, vol.342, p.90, 2005.

F. A. Garner, Use of self-ion bombardment to study void swelling in advanced radiation-resistant alloys, 17th Int. Symp. Conf. on Environmental Degradation of Materials in Nuclear Power Systems, 2015.

A. Courcelle, SMINS Workshop, 2013.

T. Muroga and F. Garner, Microstructural investigation of swelling dependence on nickel content in fast neutronirradiated Fe-Cr-Ni austenitic ternaries, J. Nucl. Mater, vol.546, pp.179-181, 1991.

O. Borodin, Synergistic effects of helium and hydrogen on self-ion-induced swelling of austenitic 18Cr10NiTi stainless steel, J. Nucl. Mater, vol.442, p.817, 2013.

A. Kalchenko, Prediction of swelling of 18Cr10NiTi austenitic steel over a wide range of displacement rates, J. Nucl. Mater, vol.399, p.114, 2010.

F. A. Garner, Irradiation performance of cladding and structural steels in liquid metal reactors, Materials Science and Technology, vol.10, 1994.

F. A. Garner, Recent insights on the swelling and creep of irradiated austenitic alloys, J. Nucl. Mater, vol.123, p.459, 1984.

H. Venker and K. Ehrlich, Relation between partial diffusion coefficients in alloys and their swelling behaviour under fast neutron irradiation, J. Nucl. Mater, vol.60, p.347, 1976.

R. Stoller and M. Toloczko, On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Meth. Phys. Res, vol.310, p.75, 2013.

F. A. Garner, Comprehensive Nuclear Materials, 2012.

F. A. Garner and W. G. Wolfer, The effect of solute additions on void nucleation, J. Nucl. Mater, vol.102, p.143, 1981.

L. K. Mansur and H. Yoo, The effects of impurity trapping on irradiation-induced swelling and creep, J. Nucl. Mater, vol.74, p.228, 1978.

T. Muroga and F. Garner, Microstructural investigation of swelling dependence on nickel content in fast neutron-irradiated Fe-Cr-Ni austenitic ternaries, J. Nucl. Mater, vol.179, p.546, 1991.

J. Bates and R. Powell, Irradiation-induced swelling in commercial alloys, J. Nucl. Mater, vol.102, p.200, 1981.

T. Muroga, F. A. Garner, and J. M. Mccarthy, Influence of nickel content on microstructures of Fe-Cr-Ni austenitic ternaries irradiated with fast neutrons or heavy ions, Effect of Radiation on Materials, 15th Int. Symp, p.1015, 1992.

W. G. Wolfer and L. K. Mansur, The capture efficiency of coated voids, J. Nucl. Mater, vol.91, p.265, 1980.

J. J. Hoyt and F. A. Garner, The solute dependence of bias factors in Irradiated Fe-Ni alloys, J. Nucl. Mater, vol.179, p.1096, 1991.

L. Mansur and W. Wolfer, Influence of a surface coating on void formation, J. Nucl. Mater, vol.70, p.825, 1978.

C. Baptiste-rouxel, Y. Bisor, A. De-carlan, A. Courcelle, and . Legris, Influence of the austenitic stainless steel microstructure on the void swelling under ion irradiation, EPJ Nuclear Sci. Technol, vol.2, p.30, 2016.