Experimental and Theoretical Analysis of Hydrogen Bonding in Two-Dimensional Chiral 4′,4′′′′-(1,4-Phenylene)bis(2,2′:6′,2″-terpyridine) Self-Assembled Nanoarchitecture
Abstract
The two-dimensional self-assembly of 4′,4 (1,4-phenylene)bis(2,2′:6′,2″-terpyridine) molecules is experimentally and theoretically investigated. Scanning tunneling microscopy (STM) shows that this molecular building block forms a compact chiral supramolecular network on graphite at the 1-octanol/graphite interface. The molecules adopt a sideby-side arrangement inside the organic domains. In contrast, the molecules are arranged perpendicularly at the domain boundary. Detailed theoretical analysis based on the density functional theory (DFT) shows that these arrangements are stabilized by double and single hydrogen bonds between pyridine groups. Only the molecular peripheral pyridine groups are involved in the hydrogen bonds stabilizing the long-range ordered molecular nanoarchitectures.
Domains
Physics [physics]
Origin : Publisher files allowed on an open archive