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Abstract

We engineer a brane picture for the reduction of Seiberg dualities from 4D
to 3D, valid also in the presence of orientifold planes. We obtain effective
3D dualities on the circle by T–duality, geometrizing the non-perturbative
superpotential which is an affine Toda potential. When reducing to pure 3D,
we define a double-scaling limit which creates a sector of interacting singlets,
giving a unified mechanism for the brane reduction of dualities.
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1 Introduction

We construct the brane representation for the reduction of gauge theory dualities
from 4D to 3D. This analysis was started in [1] where it was shown how to translate
the dimensional reduction of dualities in terms of D– and NS–branes in type iia

supergravity. Here we elaborate on this picture, finding an algebraic description
of the superpotential involved in the dimensional reduction which incorporates
the generalization from unitary to real gauge groups. The brane picture gives a
unified treatment of various dualities involving different gauge groups and matter
content. It allows also to reduce further to pure 3D dualities, by a double-scaling on
the relative positions of some D–branes and the radius of the circle. In this process
an extra sector is created in the magnetic theories, reproducing the gauge theory
duality in the pure 3D limit in the brane picture.

Recent insight in the structure of supersymmetric field theories has been ob-
tained relating results in different dimensions. One example is the similarity between
the electric-magnetic duality discovered by Seiberg in [2] for four-dimensional sqcd

and the three-dimensional dualities studied in [3, 4]. The dualities can indeed be
connected by dimensional reduction, as discussed in [5] (see also [6]). It turns
out that in a necessary intermediate step of this reduction one needs to consider
the duality on R3 × S1. At scales lower than the inverse radius of S1 this gives
rise to a new, effective, 3D duality. The presence of the circle is manifest through
the contributions of Kaluza–Klein (kk) monopoles. The limit to pure 3D dualities,
recovering e.g. the results of [3, 4], depends on the details of the gauge and matter
content [5, 7].

In this paper we study the brane construction of this reduction, giving a physical
origin for the differences in the pure 3D limit. We obtain the effective 3D dualities by
T–duality, where Euclidean D1–branes reproduce the non-perturbative effects of the
kk monopoles. Equivalently these effects are captured by an algebraic formulation
in terms of S–dual F1–strings. Configurations creating the monopole superpotential
are classified by affine Dynkin diagrams and this superpotential is an affine Toda
potential. As depicted in Figure 1, we take the pure 3D limit in the electric theory
by moving some flavor branes to the mirror point x◦3 , when sending the radius to
infinity. The magnetic dual is obtained by an Hanany–Witten [8] (hw) transition,
generating an additional gauge theory at x◦3 . This gauge theory is described by a
sector of interacting singlets. It is necessary in reproducing the limit to pure 3D
dualities.

The brane construction is quite general and can also be applied to theories with
real gauge groups and tensor matter, which require some extra treatment in the
field theory analysis [5, 7]. In brane language these theories are obtained including
orientifold planes. Orientifolds are straightforwardly incorporated in our picture.
When the theory is put on the circle, a second orientifold plane is generated after
T-duality at the mirror point x◦3 [9, 10]. In the hw transition the orientifold, carrying
D−brane charge, modifies the rank of the gauge groups both at x3 = 0 and at
x3 = x◦3 . By considering various brane realizations with orientifolds we recover the
3D dualities with orthogonal or symplectic gauge groups and those with tensor
matter [3, 4, 11–19].
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x3

x3 = πr x3 = 0 x3 = x◦3 ≡ πα′
r x3 = 0

Figure 1: Geometry of the compact direction. The possible orientifolds are depicted in red color.
LHS: type IIA circle of radius r. RHS: T–dual circle of radius α′/r. The black arrowheads indicate
the motion of the D–branes to the mirror point x3 = x◦3 ≡ πα′/r.

The plan of this article is as follows. In Section 2.1, we recap the reduction of
N = 1 dualities from 4 to 3 dimensions. In Section 2.2, we summarize the brane
realization of the dimensional reduction. We discuss the generation of an affine Toda
potential on the Coulomb branch variables when the theories are studied on a circle
and its relation to the second orientifold appearing in the T–dual picture. Moreover,
we explain the double-scaling limit and the reduction to pure three-dimensional
dualities. In Section 3 we apply the brane picture on symplectic gauge theories with
fundamental, antisymmetric and adjoint matter. In Section 4 we study the brane
setup of unitary gauge groups with antisymmetric flavor. In Section 5 we study
orthogonal gauge groups, our analysis is at the level of the local properties and the
gauge algebra. We conclude in Section 6 by outlining some open questions.

2 Brane reduction of dualities

2.1 Remarks on the 4D/3D reduction

In this subsection we review some general field theoretical aspects of the reduction
of N = 1 4D dualities to N = 2 dualities in 3D. For a more complete review see
Section 2.1 of [1] and the original work [5]. Here we just recall few aspects which
are important for our analysis.

Connecting via dimensional reduction pairs of dual theories in 4D to corre-
sponding pairs in 3D requires some care. A consistent reduction has been obtained
by studying the 4D theory on a circle of finite radius r, where a non-perturbative su-
perpotential is generated from kk monopoles on S1. We refer to this superpotential
as Wη in the rest of this paper.

In order to preserve the 4D duality in the dimensional reduction where r → 0,
one needs to consider, in some cases, an RG flow triggered by real masses of order 1

r .
Furthermore, it has been argued in [5] that while some electric quarks are integrated
out, one sometimes has to consider the magnetic theory in a particular vacuum.
This magnetic vacuum corresponds to a large vev for the scalar field in the vector
multiplet.

The details of the reduction – involving the superpotential Wη , the real mass
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0 1 2 3 4 5 6 7 8 9

D4 × × × × ×
D6 × × × × × × ×
D6’ × × × × × × ×
NS × × × × × ×
NS′ × × × × × ×
O4± × × × × ×
O6± × × × × × × ×

Table 1: Brane setup for the realization of the gauge theories of interest in this paper.

flow and the non-trivial vacua – depend on the nature of the gauge group and the
matter content. We refer the reader to the papers [5, 7, 20–22] for more details and
explicit examples.

Let us note that the 4D dualities on a finite circle, with non-perturbative su-
perpotentials Wη , give rise to new, effectively 3 dimensional dualities, which are
interesting in their own right.

To sum up, the aspects important for the forthcoming analysis are the superpo-
tential Wη , the real mass flow and the associated vacuum structure in the magnetic
theory upon shrinking the circle to zero size.

In the following we describe the brane construction of this reduction. We provide
an algebraic description of Wη in terms of the gauge group structure. This allows
for a generalization from unitary to real gauge groups. We also find the brane
description of the real mass flow and the vacuum structure.

2.2 The general strategy

In this section we first summarize the brane engineering of theories with four
supercharges on R3× S1. In the second part we provide a brane picture for reducing
4D dualities to 3D. There, for the sake of being explicit, we focus on the example
of U(N) gauge theories and fundamental matter. The analysis of real groups and
tensor matter follows analogously and is the subject of sections 3, 4 and 5.

A brane description of theories on R3 × S1 is found e.g. in [1]. Let us give a brief
summary. The four dimensional gauge theory is engineered by a type iia brane
system of D4–branes stretched between NS– and NS′–branes as denoted in Table
1. A dimensional reduction of field theories can be reproduced in this picture by
T-dualizing along one compact, space-like dimension (say x3). There is a compact
Coulomb branch (cb) which is parameterized by the scalars σi in the vector multiplet
the dual photons φi, where i = 1 · · · rank(G). The vev of the scalars σi, and hence
the position on the cb, corresponds to the positions of the D3-branes in x3. In this
configuration the D3 branes repel each other. The force can be understood in terms
of Euclidean D1–branes stretched between the NS and the D3–branes.

These D1–branes map in the field theory to monopoles, which generate an
Affleck–Harvey–Witten [23] (ahw) superpotential for the cb coordinates. The force
of this superpotential maps to the repulsive force between branes.
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Note that there is a special Euclidean D1-brane when the configuration is
compact, as depicted in the left side of Figure 2 (there the S-dual scenario with
F1-strings instead of D1-branes is shown). This special D1-brane connects the
1st and the Nth D3-brane “on the rear side” of the compact x3. In field theory
this corresponds to an additional term in the superpotential. As mentioned in
Section 2.1, a crucial role in the dimensional reduction of dualities is played by
the superpotential Wη , appearing at finite circle radius. In the brane picture it is
reproduced precisely by this special, winding D1 brane.

In the literature the “regular” D1-branes are usually referred to as Bogomol’nyi–
Prasad–Sommerfield (bps)- and the “special” ones as kk-monopoles.

So far the summary of engineering gauge dynamics from branes as given in [1].
Now we want to discuss how the superpotential Wη is given in terms of gauge
group data. Stable configurations of branes, possibly in the presence of orientifolds,
are in one to one correspondence with the Dynkin diagram of the gauge group.
The Dynkin diagrams, in turn, are in one to one correspondence with the possible
superpotentials Wη .

• The fundamental (in the sense of [24, 25]) bps monopoles are labeled by the simple
co-roots of the Lie co-algebra. For unitary gauge groups G this corresponds to
placing the i–th D1–brane between the i–th and the (i + 1)–th D3–brane (for i =
1, . . . , rank(G)). It is useful to study the S–dual configurations where D1–branes
become F1–strings. In this picture the D3–branes are still distributed on the circle
and connected by F1–strings, as depicted in the upper left corner of Figure 2.
We now exploit the crucial fact that the spectrum of the allowed bps F1–strings is
given by the simple roots of the corresponding Lie algebra [10, 26]. For a unitary
gauge group the simple roots of the AN series correspond to σi − σi+1, i.e. to the
difference between the positions of two consecutive D3–branes.
We can include real gauge groups by adding orientifold planes (see Appendix B for
details). The allowed spectrum of F1–strings is again given by the corresponding
Dynkin diagrams, classified by the BN , CN and DN series.
Summing the contributions from the bps monopoles we obtain the superpotential
on the Coulomb branch, finding a Toda potential for the associated Lie algebra [27]

W(Σ)BPS ≡
rank(G)

∑
i=1

2
α2

i
exp[α∗i · Σ] , (2.1)

• The picture incorporates very naturally the kk monopoles due to the compact
direction. It turns out that the extra F1 string, which winds around the circle
connecting, for unitary G, the 1st and the Nth D3 brane, can be accounted for by
extending the Dynkin diagram to its affine version. We depicted this in Figure 2.
Summing the contributions from the bps and the kk monopoles we obtain the
superpotential on the compact Coulomb branch, finding an affine Toda potential
for the associated affine algebra [27]

W(Σ) = W(Σ)BPS + W(Σ)KK ≡
rank(G)

∑
i=1

2
α2

i
exp[α∗i · Σ] +

2η

α2
0

exp[α∗0 · Σ] , (2.2)
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σ1 σ2 σN−1 σN

. . .

x3

x0,1,2

σ1 − σ2 σ2 − σ3

. . .
σN−1 − σN

σN−1

σN

σ1

σ2

x3

σ1 − σ2 σ2 − σ3

. . .
σN−1 − σN

σN − σ1

Figure 2: Branes and Dynkin diagrams for AN and ÃN. The left column shows the S-dual
configuration of F1–strings stretched between D3–branes. In the right column we depict the
corresponding AN and ÃN Dynkin diagrams. After compactification a new string appears
between σ1 and σN and corresponds to the affine node (in blue in the brane cartoon and in the
Dynkin diagram).

where Σ = σ/e2
3 + iφ, αi are the simple roots and α∗i are the associated co-roots.

The extra simple root α0 corresponds to the kk monopole and the corresponding
contribution W(Σ)KK to (2.2) is identified with Wη in field theory.

• After this general recipe let us spell out some details for the example of unitary
gauge groups. Here we have the affine algebra ÃN , where the extra simple root
is associated to the combination σN − σ1 (see Figure 2). For SU(N) theories1 the
superpotential (2.2), associated to the ÃN diagram, is

W =
N−1

∑
i=1

1
Yi

+ ηYN , (2.3)

where Yi = eΣi−Σi+1 . The last term in (2.3) breaks explicitly the U(1)A symmetry in
the three-dimensional field theory. This symmetry is associated to the rotation in
the (4, 5) plane in the brane picture. The geometric realization of the breaking of
this symmetry for compact x3 has been discussed in [1].

• Next we want to discuss real gauge groups. Here we outline few aspects, the proper
analysis is given in the next sections. They are realized by including O3 or O5 planes.
Let us first discuss the configurations with O3 planes on R3 × S1. As reviewed
in Appendix B the four differently charged orientifolds O3+, O3−, Õ3

+
and Õ3

−

project a unitary group to SP(2N), SO(2N), SP(2N) and SO(2N + 1) respectively.
In presence of a compact direction orientifolds come in pairs and here2 we have six
different such pairs [10]. Brane configurations with (O3−, O3−), (Õ3−, O3−) and

1 In the U(N) case the same result holds but the last (affine) root splits in two terms Y+ = eσ1/e2
3+iφ1

and Y− = e−σN /e2
3−iφN .

2 For simplicity we do not distinguish between O3+ and Õ3
+

planes.

5



(O3+, O3+) are associated to affine Dynkin diagrams. The other pairs (O3+, O3−),
(O3+, Õ3−) and (Õ3−, Õ3−) correspond to twisted affine Dynkin diagrams. In this
paper we are interested only in the “affine” pairs, since those are obtained by a
T–duality from type iia configurations with O4–planes.
A similar discussion holds with O6–planes, while the effect of the orientifold charge
on the projection is exchanged. O5+ is associated to an SO(N) and O5− to an
Sp(2N) gauge group. The pairs (O5±, O5±) are obtained by T–duality from a
type iia configuration with O6± planes.

Eventually we include matter fields. Standardly, we can couple them to the four
dimensional gauge theory by adding stacks of D6–branes in the type iia setup, as
shown in Table 1.In the T–dual frame they become D5–branes.

So far the brane configurations for the dynamics of gauge theories on R3 × S1.
Let us now turn to dualities and how their dimensional reduction can be understood
in this picture. Here we highlight the steps following the example of U(N) gauge
theories with fundamental matter, in the next sections we apply them to more
general cases.

The brane construction of Seiberg dualities in 4D is well understood, it boils
down to an hw transition in the type iia configuration. In the hw transition every
time a D6–brane crosses a non-parallel fivebrane, a D4–brane is generated. This
brane creation mechanism in necessary for charge conservation, to preserve the so
called linking number [8]. Moving the entire stack of flavor D6–branes from one
side of the NS to the other amounts to changing the brane configuration of the
electric gauge theory to the configuration describing the magnetic one.

For example unitary sqcd with F + k flavors, i.e. F + k pairs of fields in the
fundamental and anti-fundamental representation of U(N), is engineered by a stack
of N D4–branes stretched between an NS and an NS′, with F + k D6–branes on top
as denoted in Table 1. The magnetic dual is obtained by swapping the NS with the
NS′, changing the number of D4–branes in the stack to F + k− N.

From the 4D brane picture we can obtain the one describing Seiberg duality
on R3 × S1 by a T–duality as described earlier in this section. The T–dual of the
configuration describing the 4D electric theory maps to the brane configuration
of the effective 3D electric theory with Wη and analogously the T–dual of the 4D
magnetic brane configuration maps to the brane setup of the magnetic theory with
Wη .

In our example of unitary sqcd we obtain the type iib configuration with a stack
of N D3 and F + k D5–branes at finite radius of x3. This brane setup describes the
electric theory with U(N) gauge group, the superpotential Wη , and F + k flavors.
The magnetic dual configuration has F + k−N D3 and F + k D5–branes, it describes
a U(F + k− N) gauge theory with the superpotential Wη , F + k flavors and (F + k)2

gauge singlets.

Ultimately we want to obtain pure 3D dualities in this brane picture. In order
to reproduce the construction in [5] we move, as depicted in Figure 1, some flavor
branes of the electric theory to the mirror point of the T–dual circle. In field theory
this corresponds to giving a mass ∼ O( α′

r ) to the associated matter fields. When
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taking the radius r to zero, it corresponds to the double-scaling limit mentioned in
the introduction and used in the next sections.

The magnetic dual can be obtained by an hw transition swapping the NS−-
branes in the type iib configuration. This is equivalent to a double-scaling limit
in the magnetic theory, that we had obtained by T–duality from type iia, when
the flavor D5–branes each drag a D3 to the mirror point. In field theory it hence
reproduces the higgsing of the theory.

More explicitly, in the example of unitary sqcd, we move one stack of k D5–
branes clockwise and another one counterclockwise on the circle, until they re-
connect at the mirror point x◦3 . When taking the limit r → 0 the D5–branes at x◦3
correspond to a set of massive fields, which do not contribute to the low energy
theory. On the other hand in the magnetic theory, the D5–branes at x◦3 do give rise
to massless states, contributing to the low energy dynamics. The reason is that the
hw transition creates k D3–branes at x◦3 . In terms of field theory, this corresponds
to an extra U(k) gauge theory with k massless fundamental flavors and k2 massless
singlets. The singlets interact with the flavor fields through a superpotential, as the
D5 and the NS′ are parallel.

In all cases studied in this paper the extra gauge sector in the magnetic theory
at x3 = x◦3 can be described as a theory of interacting gauge singlets. Furthermore,
this extra sector always interacts with the monopoles of the magnetic theory at
x3 = 0 and the interaction involves some of the gauge singlets describing the theory
at x3 = x◦3 . Next we discuss the example of unitary gauge groups with fundamental
flavor, other examples will be described in the next sections.

In the example of sqcd the extra sector corresponds to a U(2k) gauge theory
with 2k flavors f and f̃ , a singlet L with 4k2 components and the superpotential
W = L f f̃ .

This theory is “mirror” dual [28] to a set of singlets M, L and V±, where M
is identified with the meson M ≡ f f̃ and the singlets V± are identified with the
monopoles of the U(2k) sector, V+ ≡ eΣ1 and V− ≡ e−Σ2k , where Σi is the ith
cb coordinate of the U(2k) gauge theory. The mirror theory is interacting, with
superpotential W = LM + V+V− det M. In the ir this superpotential is set to zero
by the eom.

We just have argued that the U(2k) gauge theory at x3 = x◦3 is effectively
described by a theory of interacting gauge singlets. Now we want to come back to
the brane picture of 3D duality. There is an interaction between this U(2k) sector
and the magnetic U(F− N) gauge theory at x3 = 0. This interaction can be studied,
as in the beginning of this section, by D1–branes stretching between the two stacks
of D3–branes. More explicitly, they describe a repulsive force between the 1st D3
brane at x3 = 0 and the (2k)th D3–brane at x◦3 , and analogously a repulsive force
between the (F − N)th D3–brane at x3 = 0 and the 1st D3-brane at x◦3 . In field
theory language this force is manifest through the superpotential3

W = y+V− + y−V+ , (2.4)

where y+ = eΣ1 and y− = e−ΣF−N and Σi is the ith cb coordinate of the U(F− N)

3 This superpotential corresponds to an ahw superpotential due to the higgsing of the magnetic gauge
theory.
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Sp(2N) Sp(2Ñ) SU(2F) U(1)A U(1)R

Q 2N 1 2F 1 1− (N + 2)/F
q 1 2Ñ 2F −1 (N + 2)/F
M 1 1 F(2F− 1) 2 2− 2(N + 2)/F

Table 2: Field content for the Sp(2N) gauge theory with global SU(2F) × U(1)A × U(1)R
symmetry.

gauge theory at x3 = 0.
Note that the superpotential (2.4) survives in the mirror dual descrition of the

U(2k) gauge theory. Indeed, the monopoles of the U(2k) sector, which interact with
the monopoles of the U(F− N) sector, are exactlty those which are identified with
the singlets V+ and V− under mirror symmetry.

The interaction (2.4) can be seen as generating the relations y± = 0 on the chiral
ring of the magnetic theory with gauge group U(F− N), as in the Aharony duality.

Indeed, given their interaction with the monopoles y± of the magnetic theory,
the singlets V+ and V− have the natural interpretation as monopoles of the electric
theory. In this sense we have recovered a brane description of the dynamics of
Aharony duality.

In the rest of this paper we illustrate the generality of this picture, considering
the effects of orientifold planes. Their D−brane charge modifies the standard brane
creation effect in the hw transition. Nevertheless, the extra sector at x◦3 in the
magnetic theory remains mirror dual to singlets.

3 Sp(2N) theories

In this section we discuss the reduction of the duality for Sp(2N) with 2F funda-
mentals. An Sp(2N) gauge theory with 2F fundamentals4 and global symmetry
SU(2F)×U(1)A ×U(1)R without superpotential is dual to an Sp(2(F − N − 2))
gauge theory with 2F dual fundamentals q and a meson M with superpotential
W = Mqq. This duality was first presented in [29]. The U(1)A symmetry is anoma-
lous at the quantum level. We present the global charges associated to this symmetry
because it is quantum realized in the three-dimensional case. The field content is
given in Table 2.

3.1 Brane description

There are two ways to represent this theory, by either considering an O4+–plane or
an O6−–plane. These two constructions give rise to similar theories, that differ for
the representation of the matter fields under the global symmetries. When modifying
the theory (by allowing larger numbers of NS–branes) the two constructions give
rise to different two-index matter fields, adjoint or antisymmetric. We will study
both possibilities.

4 In some cases the flavor symmetry is SU(F)2 instead of SU(2F) and we have F pairs of fundamental
and anti fundamental. We will denote this possibility as having F flavors.
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NS′NS

O4+ O4− O4+

N D4

N D4

F D6

F D6

Figure 3: Brane cartoon for the realization of an Sp(2N) theory in the electric phase with an
O4–plane.

• In the O4+–plane case, the brane setup is summarized in Table 1 and Figure 3. In
this case we consider a stack of 2N D4–branes and an O4+–plane stretched between
an NS and an NS′–brane. We consider also 2F D6–branes on the NS′–brane. At
brane level this theory as an SO(2F) global symmetry, while on the field theory side
there is the enhancement to SU(2F). This is similar to the usual doubling of the
global symmetry for unitary gauge groups. The dual theory is obtained by an hw

transition that exchanges the NS and the NS′–branes. In presence of an orientifold
the linking number is modified. For example an O4+ has to be treated as a stack of
−4 D6–branes [30]. After the transition we obtain the dual picture, in which the net
number of D4–branes is 2(F− N − 2).

• A similar theory can be constructed by using an O6−–plane. Consider two NS−-
branes, 2N D4s, 2F D6’s and an O6−–plane as in Figure 4(a). If all the NS−-branes
are parallel, the system has N = 2 supersymmetry. The orientifold projects the
SU(2N) gauge group to Sp(2N) (where, as usual, Sp(2) ' SU(2)). The theory has
an SU(F) global symmetry with F flavors. We expect this symmetry to be enhanced
to SU(F)2. Here we rotate the NS−-branes and the D6’–branes by an angle θ as
in Figure 4(a), and we have two stacks of NS±θ and D6±θ . For generic angles the
N = 2 adjoint is massive. If θ = π/2 the orientifold is parallel to the NS±θ–branes
and this field is massless and has to be considered in the low-energy spectrum.
We will come back to this configuration later. This model (for θ 6= π/2) has a
dual description as discussed above. In this case the O6− behaves like a stack of
−4 D6–branes in the hw transition. The brane picture becomes the one shown in
Figure 4(b) where the dual gauge group is again Sp(2(F− N − 2)).

3.2 Dimensional reduction

O3–planes

Let us begin with the reduction of the duality with an O4+–plane. The three-
dimensional system is obtained by compactifying the x3–direction and T–dualizing.
The NS–branes remain invariant while the orientifold becomes an pair of (O3+, O3+)–
planes. We can study the properties of the Coulomb branch by looking at the
spectrum of bps F1 strings as explained above. In this case the superpotential can

9



(a)

(b)

D4

NSθ NS−θ

O6

D6θ D6−θ

D4

NSθ NS−θ

O6

D6−θ D6θ

Figure 4: Brane cartoon for the realization of an Sp(2N) theory in the (a) electric and (b)
magnetic phase with an O6–plane.

σ1 σ2 σN−1 σN O3+

. . .

x3

σ1 − σ2

. . .
σN−1 − σN 2σN

⇐=

O3+

σN

σN−1σ2

σ1

x3

2σ1 σ1 − σ2

. . .
σN−1 − σN 2σN

=⇒ ⇐=

Figure 5: Dynkin and affine Dynkin diagrams and spectrum of BPS F1–strings associated to the
fundamental monopoles for Sp(2N) theories in the linear case and on the circle. The affine
root is represented in blue on the affine Dynkin diagram and in the brane cartoon.
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F-N-1 D3 2 F D5

2 D5

1 D5

1 D5

F-N-1 D3

Figure 6: Dual Aharony flow Sp in the O3 configuration

be read off from the top half of Figure 5,

W =
N−1

∑
i=1

2
Yi

+
1

YN
, (3.1)

where Yi = e(σi−σi+1)/e2
3+i(φi−φi+1) and YN = e2(σN/e2

3+iφN). The extra root in the affine
case is proportional to the variable Y0 = e2(σ1/e2

3+iφ1) (shown in blue on the botton
half of Figure 5) and it gives the superpotential

Wη = η e2σ1/e2
3+2iφ1 . (3.2)

The same result is obtained after the hw transition.

Now we want to flow to the Aharony duality. We start by considering 2(F + 1)
D5–branes in the electric theory. We rotate two D5–branes on the circle and reconnect
them on the other side of the circle. Since the D5s intersect the NS–brane in this
configuration, there are no massless fields in this extra sector. If we take the r → 0
limit on this configuration, we obtain an Sp(2N) theory with 2F fundamentals.

Next we turn to the dual theory. In this case if we perform an hw transition,
there are 2(F − N − 1) D3s at the origin. On the other side of the circle the two
D3s created by the D5 crossing the NS–brane are destroyed by the extra orientifold
plane located there. This example shows one of the general aspects of our analysis.
In principle it is not necessary to reconnect the D5–branes at x◦3 . For example for
unitary gauge groups the double scaling was realized by putting the D5–branes at
x3 < x◦3 [1]. Here avoiding the orientifold to create a negative number of D3–branes
in the hw transition we have to reconnect the D5s at x◦3 . In the rest of the paper we
will always follow this strategy.

The final configuration is represented in Figure 6. In this case, even if there is no
gauge symmetry, an extra meson arising from the D5–brane remains massless. This
suggests that we cannot simply decouple this sector before considering the effect of
this massless field in the ordinary dual gauge theory. In fact in this case the two
D5–branes attract the branes labeled by σ1 and −σ1 in the dual gauge sector. This
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Figure 7: Aharony flow Sp in O5 picture

attractive force is reflected in the scale-matching relation between Y1 and the meson
M2F+1,2F+2. It corresponds to the superpotential interaction

W = η̃ylow M2F+1,2F+2 , (3.3)

i.e. the low-energy description of the superpotential Wη . In the large-mass limit the
effect of this interaction has to be considered.

This reproduces the field theory expectation: the dual theory is an Sp(2(F−N−
1)) theory with 2F fundamentals, an antisymmetric meson M and superpotential

W = Mqq + yY , (3.4)

where we identified the broken component of the electric singlet M that parametrizes
a direction in the dual Higgs branch, with the electric monopole Y that parame-
terizes the Coulomb branch of the electric phase. This is commonly the case when
dealing with mirror symmetry and in fact the electric singlet describes the Higgs
branch of the dual phase, i.e. the Coulomb branch of the electric theory.

O5–planes

Also in the case of the O6–plane realization one can reduce the duality to three
dimensions by compactifying the x3–direction. After T–duality the type iib system
contains a pair of O5–planes and describes a theory with the same superpotential
Wη as above. By considering F + 2 flavors and by integrating out of them we
recover the usual Aharony duality. At the brane level this is obtained by introducing
F + 2 D5±θ . We introduce real masses as in the construction with the O3–plane.
The orientifold identification is however different: in this case we have a unitary
symmetry. Moving a pair D5±θ along x3 gives a mass to one flavor.

One can flow to Aharony duality by taking the double scaling limit as above (see
Figure 7). Let us explain the duality in this case. First we move the D5–branes in the
x3–direction, assigning the real masses. We reconnect them on the other side of the
circle. They reconnect at x3 = x◦3 , where the second orientifold plane is located. The
extra sector does not have massless degrees of freedom, and we can take the r → 0
limit in this case. We obtain a three-dimensional Sp(2N) theory with 2F flavors.
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Now we can turn to the dual picture, by exchanging the NS±θ–branes. The D3s are
created when the branes cross each other. While at the origin the orientifold cancels
two D3s every time an NS−-brane crosses it, the net effect on the D3s at x3 = x◦3 is
the absence of branes in the gauge theory. The final configuration is reproduced in
Figure 7.

Like in the case with O3–planes, here we have an extra sector with massless
singlets (coming from the original mesons). The r → 0 limit has to be taken by
considering the effect of this sector on the Sp(2(F− N− 1)) theory. This is the same
mechanism introduced above: the superpotential Wη is absorbed in a scale matching,
the meson couples with the magnetic monopoles, and in the final three-dimensional
dual theory the extra interaction between the electric and magnetic monopoles takes
place.

3.3 Generalizations

Sp(2N) with antisymmetric matter

An Sp(2N) gauge theory with F flavors Q and Q̃ and an antisymmetric field A,
with superpotential W = Tr Ak+1 is dual to an Sp(2(k(F− 2)− N)) gauge theory
with F flavors q and q̃, an antisymmetric a and superpotential W = Tr ak+1 +

∑k−1
j=0 Mk−j−1qajq̃, where Mj = QAjQ̃ is the generalized meson, with j = 0, . . . , k− 1.

This duality was first presented in [31].
In this case we consider two stacks of k NS±θ–branes. The gauge symmetry is

broken by separating them along the directions 4 and 5 and leads to a polynomial
superpotential for the antisymmetric field A. The electric theory is broken to

Sp(2N)→
k

∏
i=1

Sp(2ri) , (3.5)

while the magnetic one becomes

Sp(2Ñ)→
k

∏
i=1

Sp(2r̃i) , (3.6)

where r̃i = F− ri − 2 (see Figure 8).
In this case we can perform the reduction on each sector. The bare monopoles

associated to each Sp(2ri) factor recombine, through the scale matching relation,
with the antisymmetric field when the superpotential deformations are turned off.
This correspond to recombining the NS±θ–branes.

The theory on the circle can be further reduced to an Aharony-like duality
by integrating out some matter fields. In the three-dimensional case we refer to
the antisymmetric representation discussed in [17], obtained by combining the
irreducible antisymmetric with a singlet.

If we consider (F + 2) flavors and integrate out two of them in each sector we
arrive in the dual at a ∏k

i=1 Sp(2(F− ri − 1)) gauge theory. After reconnecting the
branes, the dual theory is Sp(2(k(F− 1)− N)). As a check we consider (F + 2K)
flavors and flow to a known duality. Integrating out 2K flavors after assigning them
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Figure 8: Electric and magnetic sides of the duality for Sp(2N) gauge theories with antisym-
metric matter.

the same large real mass generates a Chern–Simons (cs) term. We arrive at the
duality of Kapustin, Kim and Park [17] between5 Sp(2N)2K and Sp(2(k(F + |K| −
1)− N))−2K.

Sp(2N) with adjoint matter

An Sp(2N) gauge theory with 2F fundamentals and an adjoint field X, with
superpotential W = Tr(X)2(k+1) is dual to an Sp(2((2k + 1)F − N − 2)) gauge
theory with 2F fundamentals, an adjoint Y and superpotential

W = Y2(k+1) +
2k

∑
j=0

M2k−jqY jq , (3.7)

where Y is in the adjoint of the dual group and Mj = QX jQ. This duality was first
presented in [32].

The electric theory is represented by 2N D4–branes and an O4−–plane stretched
between 2k + 1 NS–branes and one NS′. In addition, there are 2F D6–branes on the
NS–branes. By separating the NS–branes along the (45)–plane we have a polynomial
deformation in the adjoint X.

In a generic vacuum the adjoint X acquires a vacuum expectation value. At
matrix level there is a rank= 2r0 sector at zero vev, and it gives rise to an SP(2r0)
gauge group. The other k rank= ri sectors, where the vev of the adjoint is non zero,
give raise to a set of U(ri) sectors. The ranks are chosen such that ∑k

i=0 ri = N. This
higgsing corresponds to separating the D4–branes along the directions 4 and 5 in
the brane picture, as in Figure 9. Eventually, in a generic vacuum, the gauge group
is broken as

Sp(2N)→ Sp(2r0)×
k

∏
i=1

U(ri) . (3.8)

5 The cs levels have an extra factor of two because of the normalization of the generators in the Lie
algebra.
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Figure 9: Electric and magnetic sides of the duality for Sp(2N) gauge theories with adjoint
matter.

in the electric theory and

Sp(2Ñ)→ Sp(2(F− r0 − 2))×
k

∏
i=1

U(F− ri) . (3.9)

in the magnetic theory. At the brane level this dual description is obtained by
first separating the NS–branes, then performing the hw transition and eventually
reconnecting them, see Figure 9.

In the case of Sp(2N) gauge theories with 2F fundamentals and adjoint matter
with superpotential W = Tr X2(k+1) one can perform the reduction in the Sp(2r0)
and in the U(ri) sectors separately. In each sector, an superpotential Wη is generated.
By reconnecting the branes and using the scale-matching relation one can identify
the bare monopoles of the theory with the product Sp(2r0)×U(ri) with the dressed
monopoles of the Sp(2N) theory. In the dual case the situation is similar. First one
dualizes each sector, obtaining Sp(2(F− 2− r0))×∏ U((F− ri)), then reconnects
the branes and eventually uses the scale matching relation to recover the duality
without the polynomial deformation in the adjoint field.

We can flow to the Aharony-like duality. Let us consider 2F + 2 D5–branes in
the electric phase. The dual gauge group is broken to

Sp(2r̃0)×
k

∏
i=1

U(r̃i + 1) , (3.10)

where r̃0 = F − r0 − 1 and r̃i = F − ri. In the brane description, we move two
D5–branes in each sector and perform the hw transition. The dual gauge group at
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x3 = 0 becomes

Sp(2(F− r0 − 1))×
k

∏
i=1

U(F− ri) . (3.11)

This is given by imposing in the field theory description the correct vacuum structure
preserving the duality. By joining the NS–branes back it becomes Sp(2((2k + 1)F−
N − 1)).

As a check we flow to a known duality. We can consider 2(F + K) fundamentals,
integrating out 2K of them generating a cs term. One obtains the duality of Kapustin,
Kim and Park [17], between an Sp(2N)2K– and an Sp(2((2k + 1)(F + |K|)− N −
1)−2K gauge theory, with superpotential as in [17].

4 U(N) groups and antisymmetric matter

For unitary groups with tensor matter there are two main cases: antisymmetric and
symmetric tensors. We refer the reader to [33] where these dualities have been first
presented. Here we focus on the antisymmetric case. In the antisymmetric case one
has:

• An SU(N) gauge theory with an antisymmetric tensor A, its conjugate Ã with

W = Tr(AÃ)2 (4.1)

and F flavors is dual to an SU(3F− N − 4) with superpotential

W = Tr(aã)2 + M1qq̃ + M0qãaq̃ + Pqãq + P̃q̃aq̃ , (4.2)

where a, ã are the dual antisymmetric fields, q, q̃ the dual quarks and the mesons
are

P = QÃQ , P̃ = Q̃AQ̃ , M0 = QQ̃ , M1 = QÃAQ̃ . (4.3)

• We can also consider the superpotential

W = Tr(AÃ)2 + AQ̃ÃQ + (QQ̃)2 (4.4)

in the electric case. The SU(N) gauge theory is dual to an SU(2F− N − 4) gauge
theory with superpotential

W = Tr(aã)2 + qãq̃a + (qq̃)2 . (4.5)

This duality can be obtained from the previous one by a Higgs mechanism: a dual
meson appears as a linear perturbation in the dual theory. After higgsing we obtain
(4.4) from (4.1) and the dual rank is modified accordingly.

• The discussion can be generalized to the superpotential W = Tr(AÃ)k+1. In this
case one can break the gauge group by adding a polynomial superpotential in
(AÃ)j. By turning this superpotential off one then finds a generalized Kutasov–
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Figure 10: Brane cartoon summarizing all the constructions of unitary gauge theories with
tensor matter

Schwimmer–Seiberg [34] (kss) duality with dual rank Ñ = (2k + 1)F− N − 4 for
the generalization of (4.1) and Ñ = 2kF− N − 4 for the generalization of (4.4).

4.1 Brane description

The brane realization of these models has been done in [35, 36]. All cases in this
family can be summarized in the brane cartoon in Figure 10. In order to understand
the action of the orientifold we start by discussing a configuration with three NS−-
branes without the O6–plane. The theory is an N = 2 quiver with two unitary
nodes, connected by a pair of bifundamentals and adjoints (see Figure 11). At each
node there are F flavors. This configuration and its generalization to N = 1 where
extensively studied in [37]. Adding the orientifold plane the two nodes are identified
and projected to a single U(N) gauge node. The matter fields are identified as well
and there are two possibilities, corresponding to the different signs of the orientifold
projection: the pair (A, Ã) or (S, S̃). Here we focus on the case with (A, Ã).

Now we can break to N = 1 by rotating the external NS–branes: rotating the left
and right NS−-brane by an angle θ (resp. −θ) corresponds to introducing a mass
term µ(θ±) proportional to tan(θ±) for the adjoints in the N = 2 vector multiplet.
Integrating out the massive adjoints we obtain the superpotential W = Tr AÃ. If
the rotation angle is π/2, the adjoint is infinitely massive and the superpotential
vanishes. More in general we can consider two stacks of k NS±θ–branes, obtaining
the superpotential W = (AÃ)k+1.

The flavor branes can be added in two ways. In the first case one can add two
stacks of D6s parallel to the orientifold and to the NS–brane, one on the left and one
on the right. In the second case one can rotate the stack of D6s on the left (right) to a
stack of D6θ (D6−θ). In the first case we have to add the term QÃQ̃A + (QQ̃)2 to the
superpotential. In the second case, the flavor branes are parallel to the NS±θ–branes
and the quartic terms for the fundamentals are absent. The two configurations with
D6 or D6±θ–branes have different ranks in the dual hw picture.

The Seiberg duality can be studied in terms of brane motions. It is convenient
to describe the motion at first without the orientifold and then add the projection at
the end. The starting theory has two unitary gauge groups connected by a pair of
bifundamentals and extra flavors. The Seiberg-dual phase is obtained by a cascading
process, first we dualize one gauge group, then the other, and finally we dualize

17



N

F

N

F

Figure 11: Orbifold projection of the A2 quiver realizing a U(N) theory with tensor matter.

again the first gauge group. In terms of branes it corresponds to exchanging the first
two NS–branes, then the last two and then the first two again. Before this exchange,
it is convenient to move the D6–branes. We have to distinguish the two situations,
where we have either two stacks of D6±θ or two stacks of D6s parallel to the central
brane.

• In the first case, the D6θ crosses first the NS–brane and then the NS−θ–brane. Both
times the crossing generates a stack of D4–branes. The same operation has to be
performed on the second brane. In this case there are 2 D4–branes ending on each
D6±θ . The S–rule is not violated because one stack of D4s is attached to an NS–brane
and the other to an NS∓θ . If we interchange the position of the NS−-branes we
obtain the dual picture. The reduction of this duality has been studied in [1] from
the brane perspective.
At this point we can consider the effect of the O6− orientifold on the central
NS–brane. The following happens.

1. the gauge group is projected from SU(N)× SU(N) to SU(N);
2. the bifundamentals connecting the gauge groups become the tensor matter fields;
3. the two flavor groups are identified.

At the level of the duality the orientifold carries the charge of −4 D6–branes. By
carefully considering the orientifold charge in each transition we end up with the
SU(3F− N − 4) gauge theory as expected.

• In the second case the D6–branes are parallel to the NS–brane. We move the D6 on
the left of the NS towards the NSθ and the other in the opposite direction. Once
they cross the NS±θ , each D6 generates a stack of F D4–branes. After this motion
the duality works as in the case above. By carefully adding the orientifold charge,
the dual SU(2F− N − 4) gauge theories are recovered.

One can also study the duality with k NS±θ–branes. In this case one first
separates these branes along the direction orthogonal to the plane that they occupy
in (4589) and then studies the duality in each sector separately. By reconnecting the
branes the expected dualities are recovered.
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Figure 12: U(N) gauge theory with antisymmetric matter, electric theory. (a) and (b) show
the case without superpotential (D5–branes parallel to NS±θ), (c) and (d) show the case with
superpotential (D5–branes are parallel to the NS–branes).

4.2 Dimensional reduction

Now we compactly x3 and T–dualize along this direction. We consider the U(N)
case, where the baryonic symmetry is gauged. On the T–dual circle, the theory
develops a superpotential of the form

W = ηY+Y− , (4.6)

where Y+ = eσ1/e2
3+iφi and Y− = e−(σN/e2

3+iφN). This can be understood from the brane
picture as follows: there are two sets of D3s, one connecting the NSθ and NS–branes
and the other connecting the NS−θ and NS–branes. On each stack a superpotential
Wη is generated by the Euclidean D1–branes. The two superpotentials are identical
and identified by the orientifold. Finally, one has (4.6).

Now we want to investigate the dual phase. As discussed above there are
two possible situations: the D5–branes are parallel to the NS–branes or to the
NS±θ–branes. In the first case Ñ = 3F− N − 4, while in the second case we have
Ñ = 2F− N − 4.

On the circle, the extra superpotential

W = η′y+y− (4.7)

is generated. Here y+ = eσ̃1/ẽ2
3+iφ̃i and y− = e−(σ̃Ñ/ẽ2

3+iφ̃Ñ). Figures 12 (a) and 12 (b)
show the brane cartoon of the electric theory in the case without the extra superpo-
tential. The NS–branes are drawn in black, the D5s in green, the orientifold plane
is orange and the D3s are red. In Figures 12 (c) and 12 (d) we represent the case
with the superpotential turned on. Now we want to flow to the theory without the
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Figure 13: Aharony-like duality for models with antisymmetric matter.

superpotential Wη . We consider the case with F + 2 green branes in each sector,
and assign a positive large real mass to one flavor and one negative large real mass
to a second one. We rotate one pair of D5±θ clockwise on the circle and another
pair counterclockwise. Finally, we reconnect the pairs at x3 = x◦3 , where the second
orientifold is placed.

Now we can proceed as above, we interchange the NS–branes and arrive at the
dual configuration. Finally, we obtain the setup in Figure 13.

These pictures represent the Aharony-like duality for the models with anti-
symmetric matter. The extra sectors are dualized to singlets, as done in [1] for the
U(N) sqcd. The extra singlets that are generated interact with the monopoles of the
magnetic theory, and they are identified with the Coulomb branch variable of the
electric theory. This can be explicitly verified on the field theory side. The duality
now involves a U(3F− N − 2) gauge group in the case where the superpotential is
W = (AÃ)2. One can add the extra deformation (QQ̃)2 + AQ̃ÃQ (corresponding
to rotating the branes as in Figure (c)). In the dual phase this deformation enforces
a Higgs flow to the theory with U(2F− N − 2), and it exactly corresponds to the
expected dual, after dualizing the extra sectors and considering the ahw superpo-
tential. This confirms the validity of our rules and of our picture. We can reproduce
the same story by considering k external NS±θ–branes. In this case we can break the
NS±θ–branes, e.g. generating a power superpotential W ' ∑i λi(AÃ)j. By breaking
the gauge group in the decoupled sectors we can use the same rules used above and
reconstruct the dual theory. Finally, we obtain the dual ranks U((2k + 1)F−N− 2k)
and U(2kF− N − 2k). As a final check, we can flow to the case with cs terms. In
this case we reproduce the duality between the U(N)K theory with F flavors and
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SO(N) SO(Ñ) SU(2F) U(1)A U(1)R

Q N 1 2F 1 1− (N − 2)/F
q 1 Ñ 2F −1 (N − 2)/F
M 1 1 F(2F− 1) 2 2− 2(N − 2)/F

Table 3: Field content for the SO(N) gauge theory with global SU(2F) × U(1)A × U(1)R
symmetry.

the dual U((2k + 1)(F + K)− N − 2k)−K studied in [17].

5 Orthogonal gauge groups

In this section we discuss orthogonal gauge groups. An SO(N) gauge theory with
2F fundamental vectors and global symmetry SU(2F)×U(1)A ×U(1)R without
superpotential is dual to an SO(2F− N − 4) gauge theory with 2F fundamental
vectors q and a meson in the (conjugate) symmetric representation of the global
SU(2F) with superpotential W = Mqq. This duality was first presented in [38]. The
field content is given in Table 3.

5.1 Aspects of field theory

On can associate three distinct gauge groups to the Lie algebra so(N), as discussed
in [39] where they were called SO(N)± and Spin(N). In four dimensions the
different choices depend on the spectrum of line defects, while in three dimensions
they depend on the monopole charges in the dual algebra.

The Coulomb branch variables associated to the so(N) algebra are

Yi = e(σi−σi−1)/e2
3+i(φi−φi−1) , i = 1, . . . , N − 1 (5.1)

and 



YN = e(σN−1−σN)/e2
3+i(φN−1−φN) N even ,

YN = e2σN/e2
3+2iφN N odd .

(5.2)

At finite radius there is also a superpotential Wη = ηZ from the kk monopoles [7,
27, 40], where Z = Y1 ∏N−2

i=2 Y2
i YN−1YN in the even case and Z = Y1 ∏N−1

i=2 Y2
i YN in

the odd case. The two expressions finally boil down to Z = e(σ1+σ2)/e2
3+i(φ1+φ2). In

presence of matter fields this superpotential still contributes to the theory, but there
is a difference with the symplectic and unitary cases: the superpotential Wη does
not completely lift the Coulomb branch, parameterized by YSpin = e2σ1/e2

3+2iφ1 in
the Spin(N) case and Y = eσ1/e2

3+iφ1 in the SO(N) case. There are three possible
dualities: Spin(N)↔ SO(Ñ)−, SO(N)− ↔ Spin(Ñ) or SO(N)+ ↔ SO(Ñ)+, where
in each case Ñ = F− N + 2.

It is possible to reduce the 4D dualities to 3D dualities by considering the limit
r → 0, i.e. η → 0, without adding real masses. This is possible because of the
presence of a Coulomb branch. A region near the origin of the moduli space on
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the electric side of SO(N)+ corresponds in the dual to the region Ỹ = i/
√

η̃. This
breaks the gauge symmetry to SO(F− N + 2)× SO(2). This last sector in the ir

is described by its Coulomb branch variable interacting with the monopole of the
unbroken sector through an ahw superpotential. Similarly, one obtains a duality
between SO(N) and Spin(N) theories in pure 3D. At the local level, the O(N)
duality studied in [16, 40] is recovered.

5.2 Brane description

Now we turn to the brane picture. We will limit the discussion to the study of the
local properties, without focusing on the difference between the (S)pin(N) and
the (S)O± cases. We will comment on the possibility of extending the analysis
to the global property of the gauge group in the conclusions. At the brane level
these theories are obtained in two different ways. In one case, we put the O4−

(Õ4−) on N = 2n (N = 2n + 1) D4–branes stretched between the NS and NS′–brane.
This theory has an Sp(2F) global symmetry and we expect that this symmetry is
enhanced to SU(2F). In the second case we consider two NS±θ–branes connected
by a stack of D4–branes intersecting the O6+–plane symmetrically with respect to
the NS±θ–branes. We can distinguish between the even N = 2n case and the odd
N = 2n + 1 case, essentially this corresponds to the number of D4–branes. In this
case the global symmetry is SU(F) and we expect this enhances to SU(F)2.

In the T–dual type iib description there is an O3–plane between the two NS±θ

and the 2F D5±θ–branes. The gauge theory lives on the N D3s extended along x6.
First we study the generation of the superpotential in the Coulomb branch in the
case of a pure gauge theory. Then we discuss the new duality obtained on the circle
and finally we reproduce the 3D limit studied in [7]. The three-dimensional theory
on the circle has two possible orientifolds O3− or Õ3−. In the first case we have to
consider an even number of D3–branes while in the second case they have to be
odd. We can study in both cases the generation of the superpotential in terms of
the Coulomb branch variables.

The superpotential on the Coulomb branch is obtained in terms of the spectrum
of the allowed bps F1–strings in presence of the orientifold, as discussed in Sec-
tion 2.2. In the orthogonal case we can represent the two different possibilities for
the O3− or Õ3− with the BN and the DN series. (see Figure 14 and Figure 15).

The extra superpotential corresponds in both cases to the extra term Z =

e(σ1+σ2)/e2
3+i(φ1+φ2). Since it identifies two eigenvalues after we cross from one half to

the other of the circle it involves the identification and add the superpotential Wη .
Finally, we have

WSO(2n) =
rG

∑
i=1

1
Yi

+ ηZ , WSO(2n+1) =
rG−1

∑
i=1

1
Yi

+
2

YrG

+ ηZ . (5.3)

When we consider the D6–branes there is an unlifted direction in the Coulomb
branch, corresponding to the term e2σ1/e2

3 .
We consider F + 2 D5 on each NS–brane and take the pure 3D limit. In the

electric theory we are left with a pure 3D so(N) theory with 2F flavors. In the dual
theory the situation is more intricate. At x3 = 0 there is an so(F− N − 2) theory
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Figure 14: Dynkin and affine Dynkin diagrams and spectrum of BPS F1–strings associated
to the fundamental monopoles for SO(2N + 1) theories (BN algebra). The orientifold at the

mirror point x3 = x◦3 is an O−3 , while the one at x3 = 0 is an Õ−3 . For this reason the Dynkin

diagram of B̃N does not have a Z2 symmetry.

σ1 σ2 σN−1 σN −σN −σN−1O3−

. . .

x3

σ1 − σ2

. . .
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−σ1

−σ2x3

σ1 − σ2

. . .
σN−1 − σN

σ1 + σ2 σN−1 + σN

Figure 15: Dynkin and affine Dynkin diagrams and spectrum of BPS F1–strings associated to
the fundamental monopoles for SO(2N) theories (DN algebra). The affine root is in blue, the
root due to the orientifold in x3 = 0 in teal. Both orientifolds are O−3 and the affine Dynkin
diagram has a Z2 symmetry.
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Figure 16: Two D5–branes reconnect at the mirror point of the circle.

with superpotential W = Mqq. At x3 = x◦3 there is an so(4) gauge theory with two
fundamentals. It can be dualized to a singlet Y, interacting with the so(F− N − 2)
through an ahw superpotential. This interaction is W = yY where y is the magnetic
monopole. By interpreting Y as the electric monopole acting as a singlet in the
magnetic theory we arrive to the expected duality.

An alternative limit

Differently from the unitary and symplectic cases, here the pure 3D limit can be
obtained without any real mass flow [7]. The reason is that the region x3 ' 0 of
the Coulomb branch in the electric theory corresponds to the region x3 ' x◦3 in the
magnetic one. An so(2) gauge theory is created at x◦3 in the magnetic theory, and
the pure 3D limit can be taken directly, preserving the duality.

In the brane description we consider the D3s in the electric theory at the origin,
while in the magnetic theory the orientifold generates automatically a pair of D3–
branes at x◦3 . The dual gauge theory becomes so(2F − N − 2) × so(2). The final
configuration is in Figure 16. The so(2) sector is dual to a singlet Y, that interacts
with the so(2F− N − 2) sector through an ahw superpotential. Again, in the pure
3D case, Y has the same quantum numbers as the electric monopole.

It is possible to study the case with O6–planes as well. In this case the discussion
follows the one of the symplectic case, and we do not report the whole analysis.
The mirror orientifold is created on the circle and the extra sectors can be studied
with the usual brane techniques. One can also study the cases with tensor matter,
by adding k NS′–branes in the case with an O4–plane and k NS±θ for the cases
with the O6–planes. Moreover, one can consider the cases with O6–planes and
an extra NS–brane, this leads to unitary theories with symmetric matter and the
discussion follows the one in Section 4. In all the cases new examples of three-
dimensional dualities can be worked out. We conclude by observing that the known
three-dimensional case studied in [18] can be recovered from these dualities.

6 Conclusions

In this paper we completed the analysis started in [1] of the reduction of four-
dimensional dualities to three dimensions via brane constructions. We have shown
that this picture captures the relevant properties of the reduction of the duality on
R3 × S1. By T–duality the Coulomb branch on the circle is correctly described, after
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separating the D3–branes in the compact direction, by an affine Toda potential for
the F1–strings in an S-dual frame. When considering real groups or tensor matter
fields, a crucial role is played by the behavior of the orientifold under T–duality. A
second orientifold plane is generated at an opposite point on the T–dual circle. We
have shown that it is necessary to consider the physics at this mirror point when
taking the three-dimensional limit. This limit is a double scaling on the real masses
and the radius. The masses correspond to the positions of certain D5–branes (and
in the magnetic phases also D3–branes). By reconnecting the branes at the mirror
point, a new unified scenario to study the reduction of four-dimensional dualities
admitting a type iia description in four dimensions emerges. The construction
presents an algorithmic way to obtain many new three-dimensional dual pairs from
their four-dimensional parents which we have discussed in this article.

The construction presented here is generic for 4D dualities that can be described
by type iia brane systems and several extensions are possible. E.g. one could apply
the reduction to type iia setups involving chiral matter and orientifolds like the
ones studied in [41–43].

It would be interesting to study the spectrum of line defects and their connection
to dualities in the brane picture. The relations of line defects to global properties
of the gauge groups has been pointed out [39] and there are various implications
for the duality involving the orthogonal algebras so(n) [7]. It should be possible
to distinguish between “Spin(N)” and the “SO(N)±” (in the language of [7]) also
in the brane setup, e.g. following the discussion in [44]. More explicitly, in the
type iib description, one can separate the D3–branes, studying configurations of
semi-infinite (electric) D1–branes and (magnetic) F1–strings with endpoints on
the D3–branes. In the presence of an orientifold, this analysis should give rise to
the distinction between Spin(N) and SO(N)±. We leave this problem for future
investigation.

Another interesting extension of our analysis involves the pairs of orientifolds
associated to twisted affine Dynkin diagrams. These cases do not descend from
a compactification of a type iia background, and they do not represent a four-
dimensional theory. However, they do correspond to well-defined theories on
R3 × S1. One might expect obtaining new Seiberg-like dualities corresponding to
these configurations. By assigning suitable real masses one may even expect to
obtain new purely three-dimensional dualities, without four-dimensional parents.
It would be interesting to further investigate in this direction.

Let us comment on the generation of the monopole charges. The axial U(1)A,
anomalous in four dimensions, is broken by the kk monopole superpotential at
finite radius. However, rotating the D5s on the circle partially breaks the non-abelian
flavor symmetry and generates the axial symmetry. The massless singlets located
at x3 = x◦3 are charged under this symmetry and survive the pure 3D limit. They
correspond to the monopoles of the electric theory and, at the same time, their
U(1)A charge is imposed by the original global symmetry. This observation explains
the relation pointed out in [45], between the equations governing the cancellation
of the anomalies in 4D and those governing the monopole charges in 3D.

It is possible to reproduce our results when reducing the four-dimensional
superconformal index [46, 47] to the three-dimensional partition function [48, 49].
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That was done for the case of sqcd in [5] and in presence of adjoint matter in [50] 6.
One should consider the identities summarized in [52] and obtain new identities
for the three dimensional dualities. A possible strategy for this calculation is the
kk reduction of the one-loop determinants while shifting some fugacities of the
global and local symmetries. This reproduces the double-scaling limit discussed in
this paper. One should check that the surviving zero modes remove the possible
divergent contributions found in [7].
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A Conventions

In this appendix we summarize the conventions of the geometry that we used in
the paper. We consider a circle of length β and radius r = β/(2π). The kinetic term
is normalized as in [53]

S =
β

4g2
4

FµνFµν =
1

4g2
3

FµνFµν , (A.1)

where we used the relation g2
4 = 2πrg2

3. The Coulomb branch variables are

Xi = e4πσi/g2
3+iφi , (A.2)

with periodicity of σi proportional to 1/r. It follows that

η ≡ Λb = e−4π/(rg2
3) . (A.3)

To simplify the notation in the paper we work with the coupling e2
3 = g2

3/(4π).

6 Another example, involving matter matter in antisymmetric representation, appeared in [51].
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type charge gauge

Op− −2p−5 SO(2n)
Op+ 2p−5 Sp(2n)
Õp− 2p−5/2 SO(2n + 1)
Õp+ 2p−5 Sp(2n)

Table 4: Orientifold charges and corresponding gauge symmetry

B Orientifolds

Orientifold planes played a special role in our discussion, therefore we briefly review
here some of their basic aspects [54–56]. A p-dimensional orientifold (Op–plane) is
defined in string theory by its perturbative action. It corresponds to the projection
σ ·Ω · (−1)FL , where σ is the parity inversion of the coordinates transverse to the
plane, Ω is the world-sheet parity and FL is the left-moving fermion number. The
orientifold acts both on the NS [57] and on the R sector [58, 59], by two distinct
Z2 parities. The action on the NS sector is perturbative in string theory and we
denote it with a + or a −. The Z2 acting on the R sector is non-perturbative in
string theory and we denote it with the presence or the absence of a tilde (∼) on the
orientifold [9, 43]. These charges identify the action of the orientifold on the gauge
symmetry. We summarize the different possibilities in Table 4.

In this paper we have been mostly interested in the O3 and O5 cases, coming
from a T–duality from type iia. After compactification an O(p + 1) plane becomes
a pair of orientifolds which turn, after T–duality, into a pair of Op–planes (see
Figure 1) [9, 43], and this fact has been crucial in our analysis. There are in principle
16 different possibilities, depending on the discrete torsion, but only some of them
have been relevant for our analysis, as we discussed in the paper.
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