
HAL Id: cea-01334188
https://hal-cea.archives-ouvertes.fr/cea-01334188v2

Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Understanding the variability of daily travel-time
expenditures using GPS trajectory data
Riccardo Gallotti, Armando Bazzani, Sandro Rambaldi

To cite this version:
Riccardo Gallotti, Armando Bazzani, Sandro Rambaldi. Understanding the variability of daily
travel-time expenditures using GPS trajectory data. EPJ Data Science, 2015, 4, pp.18.
�10.1140/epjds/s13688-015-0055-z�. �cea-01334188v2�

https://hal-cea.archives-ouvertes.fr/cea-01334188v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Gallotti et al. EPJ Data Science  (2015) 4:18 
DOI 10.1140/epjds/s13688-015-0055-z

R E G U L A R A R T I C L E Open Access

Understanding the variability of daily
travel-time expenditures using
GPS trajectory data
Riccardo Gallotti1* , Armando Bazzani2,3 and Sandro Rambaldi2,3

*Correspondence:
rgallotti@gmail.com
1Institut de Physique Théorique,
CEA-Saclay, Gif-sur-Yvette, France
Full list of author information is
available at the end of the article

Abstract
Transportation planning is strongly influenced by the assumption that every
individual has a constant daily budget of ≈1 hour for his daily mobility. However,
recent experimental results are proving this assumption as wrong. Here, we study the
differences in daily travel-time expenditures among 24 Italian cities, extracted from a
large set of GPS data on vehicles mobility. To understand these variations at the level
of individual behaviour, we introduce a trip duration model that allows for a
description of the distribution of travel-time expenditures in a given city using two
parameters. The first parameter reflects the accessibility of desired destinations,
whereas the second one can be associated to a travel-time budget and represents
physiological limits due to stress and fatigue. Within the same city, we observe
variations in the distributions according to home position, number of mobility days
and a driver’s average number of daily trips. These results can be interpreted by a
stochastic time-consumption model, where the generalised cost of travel times is
given by a logarithmic-like function, in agreement with the Weber-Fechner law. Our
experimental results show a significant variability in the travel-time budgets in
different cities, and for different categories of drivers within the same city. This
explicitly clashes with the idea of the existence of a constant travel-time budget and
opens new perspectives for the modelling and governance of urban mobility.

Keywords: human mobility; individual travel behaviour; duration model; travel time
budget; time perception; value of time; Weber-Fechner law

1 Introduction
Recently, human mobility has been extensively studied using data on individual trips pro-
vided by the information-communication technologies [–]. In mobility-related deci-
sions, travel time appears as a natural cost function, since it represents a limited resource
used for performing daily activities []. The concepts of Travel-Time Expenditure (TTE,
the daily amount of time spent traveling) and Travel-Time Budget (TTB, the average daily
amount of time that people make available for mobility []) have been introduced by trans-
portation planners to model the mobility demand and to explain some of the features char-
acterising urban mobility []. Travel-Time Expenditure and Budget are more comprehen-
sive quantities than the commuting time from home to work and back between home and
work, and the related concept of Marchetti’s constant [, ]. Indeed, this second per-
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spective is limited to the journey-to-work mobility and thus excludes a large fraction of
the individuals’ mobility demand associated to amenities.

The existence of a Travel-Time Budget is assumed on the basis of the behavioural hy-
pothesis that people spend a fixed amount of time available on traveling []. The extreme
interpretation of Travel-Time Budget as a universal constant stable in space and time is
still sustained and very influential in urban planning. Indeed, if Travel-Time Budget is
constant, any investments in better infrastructure would not reduce daily travel times
(and possibly, through that, polluting emissions) since it would only create new induced
travel demand []. Most of the empirical results on Travel-Time Budget are determined
as average values from large travel surveys. At a disaggregate level, however, Travel-Time
Expenditures appear strongly related to the heterogeneity of the individuals, to the charac-
teristics of the activities at destinations and to the residential areas []. Aggregated results
suggest that the average amount of time spent traveling is constant both across populations
and over time: approximatively .-. h per day []. Despite the gains in average travel
speed due to infrastructural and technological advances in the past decades, Travel-Time
Expenditures appear more or less stable or even growing [–]. This growth can be as-
sociated to the super-linear relationship between a city’s population and the delays due to
congestion [].

In Italy, Global Positioning System (GPS) devices are installed in a significative sample of
private vehicles for insurance reasons. The initial and the final points of each trajectory are
recorded, together with the path length and some intermediate points at a spatial distance
of  km or at a time distance of  seconds. These data allow a detailed reconstruction
of individual mobility in different urban contexts [] and measure the elapsed of time
during mobility [].

In this paper, we explore the statistical features of Travel-Time Expenditures related to
private mobility, both from an aggregate and individual point of view. Our goal is to point
out some of the factors influencing travel demand by means of new specific measures,
which describe differences among cities. The statistical analysis of empirical data points
to the existence of a universal law underlying the distributions of Travel-Time Expendi-
tures, which highlights the nature of time constraints in vehicular mobility. This result
allows us to observe in detail the differences in daily travel demand for different cities,
challenging the idea of a constant Travel-Time Budget and pointing out the important
role of accessibility [].

2 Assumptions
Previous empirical observations on different data-sources [, –] have shown out
that the TTE probability distribution p(T) (see Table  for a list of notations), associated
to a single mean of transportation, is characterised by an exponential tail

p(T) = β– exp(–T/β), for T >  hour, ()

where β is a fit parameter. Our analysis confirms the universal character of the exponential
behaviour for the TTE empirical distribution and points out relevant differences among
the considered cities (see Figure ).

As it is well known from Statistical Mechanics, the exponential distribution () can be
derived from the Maximal Entropy Principle under some minimal assumptions []. More
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Table 1 List of notations

Quantity Notation Abbreviation

Daily travel-time expenditure T TTE
Daily travel-time budget β TTB
Accessibility time α -
Single trip travel-time t -

Function Notation Abbreviation

Probability density of x p(x) PDF
Cumulative density of x (

∫ x p(x′)dx′) P(x) CDF
Survival function (1 – P(x)) S(x) -
Hazard function (dS(x)/dx) λ(x) -
Conditional probability of x given y π (x|y) -

Figure 1 Travel-Time Expenditure distributions. (Left) Travel-Time Expenditure (TTE) distribution for the
city of Naples (≈1 million inhabitants). The empirical probability density p(T ) (dots) is correctly interpolated by
the curve (6) (solid line) with α = 0.61 h, β = 1.11 h and R2 = 0.99. The dashed line, shown as a guide to the
eye, represents an exponential decay with a characteristic time β . (Right) TTE distribution for the city of
Grosseto (≈80,000 inhabitants). The interpolation with the curve (6) is successful also for smaller cities like
Grosseto: in this case the parameter values are α = 0.38 h, β = 0.83 h and R2 = 0.99.

precisely, one assumes (i) existence of an average finite TTE for the considered popula-
tion and (ii) the statistical independence of the behaviour of each individual. Under the
constraint that the average TTE is finite, we have the same probability of observing any
microscopic configuration which associates a TTE to each individual. The parameter β

defines the average time scale that limits the individual TTE and we will show that this
is a characteristic of each city. Therefore, we propose to associate the concept of TTB to
the value β which characterises the exponential decay of the daily travel-time distribution.
However, the Eq. () does not give information on the dynamical processes underlying the
human mobility which produces the distribution. We take advantage from the dynami-
cal structure of the GPS data to propose a duration model (see Section .) that seems
to be endowed with universal features with respect to the considered cities. The essential
hypotheses at the bases of the duration model are: (i) it exists a TTB; (ii) the individual
decision to continue the mobility for a time �T , after a TTE T , is the realisation of an
independent random event whose probability decrease proportionally to �T .

3 Results
3.1 The variability of Travel-Time Expenditures
The average value of TTE does not give a sufficient insight on the statistical features of
the distribution p(T). For each city, the statistical features of the distribution p(T) turn
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Figure 2 Values of α and β for the 24 cities
studied. The boxes represent 95% confidence
intervals obtained with a bootstrap, for empirical
best-fits for the model parameters. The differences
we observe in the accessibility time α and in TTB β

are thus significant and uncorrelated (r = 0.09). Both
timescales are weakly correlated with the city’s
population (r = 0.20 for α and r = 0.40 for β ).

out to be characterised by the two time scales α and β . In the duration model, after a
characteristic time α, the choice of going back home or proceeding with further extra
traveling is limited by the available TTB, whose average value is quantified by the time
scale β . α therefore represents the average time under which the use of a private car seems
to be not convenient.

We focus our study on  Italian cities where we have a large statistic of users. The
values of α and β are estimated from a best fit for S(T) with Eq. (S) (which is equivalent
to fitting the CDF). The results are displayed in Figure  and reported in the Table S.
Two examples are also proposed in Figure . The two parameters are independent, with a
Pearson correlation coefficient r = .. β falls in the interval .-. h, which is reasonably
consistent with the values reported in the literature []. Nevertheless, the differences we
observe among cities are statistically significant, as the % confidence intervals for the
fits, estimated with a bootstrap, are ≤. h. Therefore, our results clearly clash with the
concept a constant TTB.

Since the values of β are moderately correlated with the number of inhabitants of the
municipality (r = .) or population density (r = .), some of this variability is depen-
dent on the city population [, ]. The accessibility time α is only weakly correlated with
city population (r = .) and not correlated (r = .) with population density, and falls
in the interval .-. h. The confidence intervals for the fits are ≤. h, granting that
we have significant differences in accessibility time among cities. The general picture, dis-
played in Figure , shows that, if one has appropriate data sources to characterise the daily
mobility of a single city, one needs the knowledge of both parameters. Under this lens, the
variability of TTE is manifest and can be observed in both the ramping part (characterised
by α) and the tail (characterised by β) of the distribution.

3.2 Disaggregate analysis: the case of Milan
Macroscopic statistical laws might depend on the details of the microscopic dynamics.
Their extension down to the interpretation of the individual behaviour is therefore under
debate []. Nevertheless, we believe that the universal character inherent to the concept
of TTB could be an individual property. To support this statement, we consider here a dis-
aggregate analysis of the GPS mobility data suggesting that our results might be extended
to the individual level. A limitation of this analysis comes from the short time considered
in our dataset. Indeed, it refers only to a single month of mobility, a period probably too
short to infer a definitive conclusion on our hypothesis.

We study the case of the city of Milan, the largest city in North Italy with ≈. millions
inhabitants (dash line in Figure (left) and labeled  in Figure ). We start by verifying that
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Figure 3 Disaggregated analysis. (a) Distribution of the normalised individual TTE for the city of Milan: the
distribution of normalised individual TTE can be represented by the analytical distribution (6). The solid line is
obtained by using the parameters α = 0.19 and β = 1.00. (b) Normalised TTE distributions disaggregated
according to home location: the position of the main mobility hub (home) influences the average value of T
but not the distribution scaled by that value. For the ’Zona C’ we have 〈T〉 = 1.520 ± 0.009 h, for the city
center we have 〈T〉 = 1.482 ± 0.004 h while for the periphery we have 〈T〉 = 1.416 ± 0.003 h (errors
correspond to the s.e.m.). (c) Normalised TTE distributions disaggregated according to classification of the
mobility network: the role of home influences only the average value of T : selecting people whose mobility is
characterised by more than one hub in their mobility network (we look for people with a percentage greater
than 25% of round trips not starting and ending at home). Such people have 〈T〉 = 1.72 h, whereas people
with a single mobility hub have only 〈T〉 = 1.24 h. (d) TTE distributions disaggregated according to the
number of mobility days: these disaggregated distributions have a similar decaying in the tails, i.e. they have
similar value of β (as a guide for the eye, the dashed line represents an exponential decay with the
characteristic timescale β for Milan). Differences emerge instead in the behaviour of short TTE: people that
use the car more regularly, have longer TTEs, since they perform more trips.

the shape of TTE distribution p(T) is a property of each single individual. Using the GPS
data, the heterogeneity of the population can be quantified by considering the distribution
of the average individual TTE 〈T〉 empirically computed from the individual daily mobility.
To compare different individuals, we normalise each TTE value by the corresponding in-
dividual average. In Figure (a), we show that the distribution of the normalised individual
TTE p(T/〈T〉) is still very well fitted by the analytical curve (). Therefore we conjecture
that 〈T〉 contains the relevant information to explain the individual heterogeneity and the
distribution () has an universal character that extends up to the individual level.

An individual disaggregation, according to the home location or characteristics of the
mobility network, confirms the previous hypothesis (see Figures (b) and (c), and Ad-
ditional file  for further details). Thus, the heterogeneity is mainly determined by the
average value 〈T〉 evaluated within each class. However, we find that 〈T〉 is longer for:

(i) people living in the city center (≈% longer than for people living in the periphery),
a result consistent with what was found in Ref. [] for the city of Sydney;
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conversely, people in the periphery tend to make ≈. trips more per day and ≈.
days more of mobility in average;

(ii) people performing many round trips (A-B-A patterns) not involving home.
The last criterium points to the existence of a second center of daily activity and allows

to separate individual mobility networks into mono-centric and polycentric ones [].
Our empirical data suggest that people with a polycentric mobility (who have more than

one mobility hub) have greater 〈T〉 than people whose round trips start and end at home.
However, if we classify the individuals according to the number of days in which they used
the car, the TTE distributions differ when we consider small T values (see Figure (d)).
Even if the exponential tail of the distributions does not change significantly, there is a
tendency to under-express the short values of T for users who regularly carry out their
daily mobility by car. Our duration model associates this to a larger value of α and there-
fore the need in average of longer times to accomplish the necessary tasks of the day. In
summary, people who take the car more often also need to drive more, yet maintaining a
similar TTB. This is confirmed by considering the number of trips n that are accomplished
in a day. The average number of daily trips grows from ., for people who drove - days
up to  for the class of users who drove all the  days (see Additional file ). This result
clearly links the value of the accessibility time α to the need of accessing to the desired
destinations by car. Drivers who experience better accessibility do not need to use the car
every day, and when they do they can also drive less. In the following, we show that these
differences can be linked to a different value of time for users performing more trips.

3.3 Evidence of a log-perception of travel-time costs
Finally, we propose a time consumption model linking the duration model with the in-
dividual behaviour. This model permit to shed light on how individuals organise their
mobility and allows for an interpretation of the empirical observations compatible with
a logarithmic perception of the time cost of a trip (see Section .). The individual deci-
sions at the base of TTE are modelled as a stochastic process, which is consistent with
the assumptions of the duration model and with a possible logarithmic perception of the
cost �T of a trip, analogous to the Weber-Fechner psychophysical law []. The same
model does not reproduce the empirical observations, assuming a linear time perception.
This result has been confirmed with a Monte Carlo stochastic decision model, based on
the same premises (see Figure (left) and Additional file ). This model assumes a logit
curve [] in the decision model of the binary choice of interrupting the daily mobility
after a certain trip and we could fit the TTE distributions in all cities with great precision
(R > .).

The existence of simple universal dynamical models for empirical TTE distribution al-
lows to introduce a few observables that point out relevant differences among cities. One
of those parameters can be associated to the (logarithmic) value of time (see Additional
file ). This suggests relations between the presence of mobility infrastructures and/or the
socio-economic characteristics of a city, and the features of the empirical TTE distribu-
tion. These relations could be useful for urban planners to build governance policies for
mobility.

4 Discussion
In our analysis, based on a large GPS database containing information on single vehicle
trajectories in the entire Italian territory, we show that the empirical distributions for the
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Figure 4 Travel-time distribution and stochastic decision model. (Left) The travel-time distribution p(t)
in Milan (dots) compared with an exponential interpolation (solid line). The under-expression for short
travel-times, with t < 4 min could be a consequence of the characteristic GPS measurement time and does
not affect the time scale 〈t〉. The results are consistent with the exponential fit of the tail. (Right) Comparison
between the empirical TTE p(T ) distribution in Turin (dots) and the best fit distribution provided by our
stochastic decision model, using a logistic threshold function (solid line, see Additional file 1, R2 = 0.99).

daily Travel-Time Expenditures in different cities can be modelled by a single distribution.
This distribution is function of two time scales: α and β . The time scale α measures a min-
imal mobility time associated to the use of private cars in a given city, whereas the limit
value /β of the hazard function λ(T) as T �  is associated to the concept of Travel-Time
Budget. In our opinion, α is a good measure of the average accessibility [] of a city. Lower
values of α (i.e. higher accessibility) mean a better proximity to useful locations and less
time and trips needed for carrying out the daily mobility. We remark that if one considers
Italian cities of different size and socio-economical conditions, the shape of the distribu-
tion appears to be endowed by a universal character where the only changes observed are
the values of α and β .

Also the distribution p(T/〈T〉) has a universal character. This suggests the existence of
a behavioural model for the urban mobility that mimics the individual decision mech-
anisms. As a consequence, the statistical properties pointed out by the distribution ()
are traits of the individual behaviour and the aggregated probability distribution for a city
is averaging over the individual heterogeneity in the values of α and β across the pop-
ulation. However, in the disaggregated analysis of GPS data at individual level, we find
significant differences in the average Travel-Time Expenditure for different categories of
drivers. In particular, drivers who use their car more often have higher values of α even if
their β is approximatively the same (see Figure (d)). This is another confirmation of our
interpretation of the parameter α as a measure of accessibility, because who has the worst
accessibility to public transport facilities or to the desired destinations is forced to use the
private vehicle over wider range of travel-times.

To interpret these results, we propose a simple decisional model, which assumes the ex-
istence of a mobility energy (the daily travel-time) and a log-time perception of the travel-
time cost for a single trip. These results are also consistent with the Benford’s empirical
distribution of elapsed time during human activities [] and Weber-Fechner psychophys-
ical law []. Using a Statistical Mechanics point of view, the Travel-Time Expenditure T
plays the role of energy in a model of the individual urban mobility based on a generalised
utility function. However, one cannot simply define the trip duration �T as a mobility
cost, because the data suggest that this perceived cost seems to decreases as the daily
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travel time T grows. A time consumption model that assumes a scaling cost ∝ �T/T (i.e.
a law of relative effect []), corresponding to a logarithmic preference scale [], is able to
reproduce the statistical properties of the empirical observations. As a direct application
of this result, we are able to suggest the use of a nonlinear relationship for the value of time
in the activity-based modeling of human mobility.

At city-aggregate level, we observe that for every city the average Travel-Time Expen-
diture 〈T〉 is greater than the Travel-Time Budget β , because short values of T are statis-
tically under-expressed []. This could reflect both the fact that the individual mobility
demand is hardly satisfied after short travel-times, and the disadvantage using a private car
for short times. Both α and β are needed to fully understand the Travel-Time Expenditures
in a city. A direct application of the approach proposed permits to highlight the differences
in the travel-time expenditures among cities and classes of individuals. In particular, we
clearly observe a variability in the Travel-Time Budget β among cities. The dependency
upon population density and the differences observed in the disaggregate analysis explic-
itly clash with the idea of the existence of a fixed Travel-Time Budget.

Our results intend to nourish the discussion against this old paradigm of a constant
Travel-Time Budget, which dangerously suggests that is not possible to reduce travel
times, and therefore CO emissions, with improvements to the transportation infrastruc-
tures. The idea that travel time savings are not beneficial, because improving road infras-
tructures in cities will attract even more traffic, is not corroborated by the empirical data.
Understanding the decision mechanisms underlying the individual mobility demand and
the use of private vehicles in a city is a fundamental task to forecast the impact of new
transportation infrastructures or of traffic restriction policies. In our opinion, we clearly
need to replace the assumptions of a constant travel time budget and an induced travel de-
mand, with new models, which should necessarily encompass both individual behaviour
and city development.

5 Methods
5.1 GPS database
This work is based on the analysis of a large database of GPS measures sampling the tra-
jectories of private vehicles in the whole Italy during May . This database refers, on
average, to % of the vehicles registered in Italy, containing traces of ,, trips per-
formed by , vehicles. Records are always registered at engine starts and stops and
every ≈ km during the trips (or alternatively every  seconds in the highways). Each da-
tum contains time, latitude-longitude coordinates, current velocity and covered distance
from the previous datum directly measured by the GPS system using data recorded (but
not registered) each second. We define a trip as the transfer between two locations where
the engine has been turned off. If the engine’s downtime following a stop is shorter than 
seconds, the subsequent trajectory is considered as a continuation of the same trip if it is
not going back towards the origin of the first trajectory. We have performed filtering pro-
cedures to exclude from our analysis the data affected by systematic errors (≈% of data
were discarded). The problems due to signal loss is critical when the engine is switched
on or when the vehicle is parked inside a building. In those cases we have used the in-
formation redundancy to correct % of the data by identifying the starting position of
one trip with the ending position of the previous one. When the signal quality is good the
average space precision is of the order of  m, but in some cases it can reach values up to
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 meters or more []. Due to the Italian law on privacy, we have no direct information
on the owners or any specific knowledge about the social characters of the drivers sample.

The GPS data base is collected for insurance reasons using black boxes installed on ve-
hicles, whose owners agreed with a special insurance contract. As a matter of fact, these
contracts are more attractive for young people or are used on fleet of vehicles. This is a bias
in our sample to study human mobility, since young people may use the private vehicle in
a different way with respect to elder people. However our point of view is that the univer-
sal statistical properties of human mobility discussed in the paper are not affected, due to
the large number trajectories and the different urban contexts. Some vehicles present in
the database belong to private companies’ fleets. In this case, employers who use the car
for professional reasons might show a different behaviour, but they contribute to a small
percentage of all vehicles and therefore their statistical weight is small.

As the drivers’s city of residence is unknown, it has been necessary to associate each
car to an urban area using the available information. We have established that one driver
lives in a certain city if the most part of its parking time is spent in the corresponding
municipality area. For each driver, we have considered all the mobility performed in a day
(inside and outside the urban area) to measure daily TTE T . In this way, it is possible
to measure the average value of T for over , different municipalities, where we have
at least  vehicles. Moreover, for a smaller number of cities we have sufficient data to
analyse the shape of the probability density p(T) or of the cumulative distribution P(T) =
∫ T

 p(T ′)dT ′, as done in [] on a similar dataset.

5.2 A duration model for Travel-Time Expenditures
An application of duration model to travel-time analysis has recently been proposed [].
This type of model allows a mesoscopic description of the empirical data for a large range
of human and animal temporal behaviours [].

Using the GPS data base on single vehicle trajectories, it is possible to study the empirical
TTE distribution for all cities that had at least a sample of  monitored vehicles (see
Table S). As example, in Figure  we show the TTE empirical distributions for Naples,
the largest cities in the South of Italy (≈ million inhabitants) and Grosseto, a small city
in the center of Italy (≈, inhabitants). This behaviour of the TTE distribution is
observed in all the considered cities. The parameter β , computed by interpolating the
empirical curves (see Eq. ()), defines the average time scale of individual daily mobility
and it is a characteristic of each city. The distribution of the average TTE 〈T〉 for those
cities is reported in Figure  together with a normally distribution with mean . h, and
standard deviation . h. Those values are thus significantly larger than the expected TTB
of . h [].

From the comparison of definitions of TTB for different modes of transportation, bodily
energy consumption rates have to be taken into account to define a universal travel-energy
budget []. The TTB β can be therefore interpreted as a physiological limit to daily mo-
bility: it is the stress and fatigue accumulated during traveling that restricts the time an
individual is willing to spend on mobility in a day. Let T the TTE of an individual, then we
can introduce the survival function S(T) as the probability that the TTE is greater than T .
Assuming the Markov properties for the evolution of T , we have the relation

S(T + �T) =
[
 – λ(T)�T

]
S(T) + o(�T), ()
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Figure 5 Variability of the Travel-Time Expenditures among cities. (Left) Different behaviours of the
empirical hazard functions to model the mobility in a city. Hazard functions λ(T ) for the cities of Milan in
Northern Italy with 1.3 millions inhabitants (dash line), Rome, the capital, in Central Italy with 2.7 millions
inhabitants (solid line), Naples in Southern Italy 1 million inhabitants (dot line) and Palermo in Sicily 700
thousand inhabitants (dot-dash line). We have significant differences, particularly in the height of the plateau
(1/β ) that is related to the TTB. (Right) Average TTE in Italian cities. The distribution of the average TTE for
1,233 Italian municipalities where we have at least 100 GPS equipped vehicles (dots and lines) can be
interpolated with a Gaussian with mean 1.43 h and standard deviation 0.15 h (solid line).

where λ(T) is the hazard function, which is related to the conditional probability
π (T + �T |T) to realise a TTE T + �T if one has spent a TTE T . The hazard function
can be theoretically defined as

λ(T) = lim
�T→

 – π (T + �T |T)
�T

. ()

If we consider an ensemble of individuals, the hazard function has to be empirically
defined as an average value

λ(T) =
〈
 – π̂ (T + �T |T)

�T

〉

�T
, ()

where π̂ (T + �T |T) refers to the conditional probability to observe a TTE T + �T of
the individual dynamics and the average value is computed over the distribution of the
possible increments �T in the considered population. S(T) is related to the probability
distribution p(T) with p(T) = –dS(T)/dT . When the hazard function is constant, the un-
derlying stochastic process is a stationary Poisson distribution. But the empirical hazard
function, evaluated from GPS data (see Figure (left)), shows an exponential decay from
the asymptotic uniform behaviour (see Figure S and Additional file ), which can be an-
alytically interpolated by

λ(T) = β–[ – exp(–T/α)
]
. ()

We identify the parameter β with the TTB, whereas α may represent the typical aver-
age time associated the private car mobility, since the hazard function λ(T) is small when
T ≤ α. As a matter of fact, both quantities are characteristic of a city. The timescale α

is associated to the accessibility of desired destinations in the city []. Indeed, it is in-
terpreted as the average time necessary to satisfy the mobility demand using private cars.
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Larger values of α mean lower accessibility. Given λ(T), we can compute the analytic form
of the TTE probability distribution by explicitly solving Eq. () (see Additional file )

p(T) = β– exp
(
αβ–)( – exp(–T/α)

)
exp

(
–αβ– exp(–T/α) – T/β

)
. ()

According to Eq. (), for T � α the dominant term is exp(–T/β) and we recover the expo-
nential tail of the empirical TTE distributions. In Figure , we show two interpolations of
the empirical distributions by using of the function (). The associated fits for the hazard
functions are displayed in Figure S. We have found a very good agreement considering
cities of different size, importance, position and infrastructure development (see Table S).

5.3 A time consumption model
To interpret the empirical results on an individual level, we formulate a time consumption
model where each individual progressively accumulates travel-time according to a well
defined strategy. This interpretation is based on three key aspects:

(i) the TTE is effectively a measure of the consumed Energy [] during mobility;
(ii) there is a log-time perception of the trip durations as the TTE increases [];
(iii) the trip durations are exponentially distributed [].
The first item refers to a Statistical Mechanics interpretation of the TTE distribution

function according to a Maxwell-Boltzmann distribution. The second item means that af-
ter a TTE of T , the perceived additional cost of a new trip by a driver is proportional to
�T/T , where �T is the new additional trip duration. The logarithmic scaling is a reflec-
tion of Weber-Fechner psychophysical law []. It is possible that the individual percep-
tion of weariness is at the origin of this logarithmic weighting of time, which has been also
proposed to explain the statistical properties of the duration of individual activities [].
The third item is supported by empirical evidence: our data suggest that the travel-times
cost t for a single trip has also predominantly an exponential probability density within
the range  ≤ t ≤  minutes (see Figure (left))

p(t) ≈ 〈t〉– exp
(
–t/〈t〉). ()

This result has been shown to be universal across different cities, with the characteristic
decaying time 〈t〉 growing with city population []. In Additional file , we show that 〈t〉
also varies among the considered cities and might depend upon house prices, city surface
and average travel speeds (see Figure S). In our model, each individual progressively ac-
cumulates travel-time to determine his TTE. According to our first assumption, a driver
will accept a TTE of T with a probability

P(T) = exp

(

–
T
β̄

)

, ()

where β̄ is the characteristic TTB of the population. Then the individual conditioned
probability to accept a new trip of duration �T after a TTE of T is written

π̂ (T + �T |T) =
P(T + �T)

P(T)
. ()
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However the �T distribution for the new trip is not independent from the elapsed TTE
T since users are reluctant to accept long trips when the TTE exceeds β̄ . Then we de-
fine a conditional �T distribution, which takes into account the elapsed TTE, by using a
threshold function θa(x)

θa(x) =

⎧
⎨

⎩

 if x < a,

 otherwise.

According to our assumptions, the distribution () is substituted by the conditional dis-
tribution

p(�T |T) ≈ 〈t〉– exp
(
–�T/〈t〉)θa(�T/γ ), ()

where the threshold a and the time scale γ depend on T or on other individual features.
The parameter a is the acceptability threshold for a new trips, whereas γ defines the per-
ceived measure unit of the cost of the new trip. The empirical observations suggest that
the threshold a depends on the average number of activities 〈n〉 of an individual. This is
illustrated by the correlation between the mobility timescale α (see Eq. ()) divided by 〈n〉
and 〈t〉 (see Figure (left)). To define γ , we assume a logarithmic perception of the trip
time cost so that γ ∝ T . Then we set the threshold a = xmax/〈n〉 and γ = T , so that the
threshold function is written in the form

θxmax/〈n〉
(

�T
T

)

=

⎧
⎨

⎩

 if �T
T < xmax/〈n〉,

 otherwise,

where xmax turns out to be an universal threshold. Therefore Eq. () is based on the as-
sumption that the propensity of a driver to accept a further trip of duration �T after
having performed a TTE of T , scales as 〈n〉/T , where 〈n〉 is the average number of daily

Figure 6 Validation of the time consumption model. (Left) Correlation between the time of a single trip
duration 〈t〉 and the ratio between the short travel-time expenditures and the average number of activities
α/〈n〉: each dot refers to a different city (r = 0.57); the straight line has a slope xmax = 〈t〉〈n〉/α = 2.1 ± 0.1 (error
is s.e.m.). (Left) Comparison between the hazard function (5) inferred from our empirical data and the hazard
function computed using the decision model: the hazard function derived from the decision model (solid
blue line), using realistic parameters values 〈t〉 
 0.2 h, β̄ = 1 h, 〈n〉 = 5 and xmax = 2 is compared with the
empirical hazard function (5) (dashed red line) with β = 1.08 × β̄ and α 
 0.5 h.
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activities. In other words the individuals that perform more trips using private vehicles
have a greater TTB: this could be also a consequence of the multi-modal mobility, which
is not included in our database, and that allows individuals to divide their TTB according
the different transportation means used. Moreover, an individual seems to organise the
mobility using the TTB as a mobility energy (with the constraint of performing the com-
pulsory daily activities), but keeping the percentage of TTE fluctuations constant. Using
empirical values for the different quantities in the relation () we can estimate xmax 
 
(see Figure (left)).

We compute the empirical hazard function for a population of drivers according to the
definition ()

λ(T) = 〈t〉–
∫ ∞



 – exp(–�T/β)
�T

θxmax/〈n〉
(

�T
T

)

exp
(
–�T/〈t〉) d�T .

An explicit calculation (see Additional file ) shows that the hazard function of the model
has the same analytic form as the empirical interpolation (), where the timescale of the
short TTE under-expression is

α 
 〈n〉〈t〉/xmax, ()

as one can see in Figure (right).

Additional material

Additional file 1: Supplementary information (pdf )
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