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Spectral Detection on Sparse Hypergraphs

Maria Chiara Angelini1, Francesco Caltagirone2, Florent Krzakala2,3 and Lenka Zdeborová4

Abstract— We consider the problem of the assignment of
nodes into communities from a set of hyperedges, where every
hyperedge is a noisy observation of the community assignment
of the adjacent nodes. We focus in particular on the sparse
regime where the number of edges is of the same order as
the number of vertices. We propose a spectral method based
on a generalization of the non-backtracking Hashimoto matrix
into hypergraphs. We analyze its performance on a planted
generative model and compare it with other spectral methods
and with Bayesian belief propagation (which was conjectured to
be asymptotically optimal for this model). We conclude that the
proposed spectral method detects communities whenever belief
propagation does, while having the important advantages to
be simpler, entirely nonparametric, and to be able to learn the
rule according to which the hyperedges were generated without
prior information.

I. INTRODUCTION

Detecting information about the vertex properties that is
hidden (or encoded) in the structure of a graph is a central
issue in many problems in physics, biology and computer
science. In fact, many systems of interest are composed
of a large number of variables about which we do not
have any information but the relationships (or part of the
relationships) between them. Starting from this knowledge
we aim at inferring individual properties of the nodes.

In this context, the main approaches are statistical in-
ference, where the detection is based on the assumption
of a generative model for the graph [1], [2], and spec-
tral methods [3]. For some classes of generative models,
statistical inference methods based on belief propagation
were predicted to be optimal in detecting planted hidden
configurations [4], [5], [6]. Spectral methods have the great
advantage of being non-parametric, meaning that they do
not require any knowledge of the generative model (if one
exists) and are completely independent of it. Nonetheless,
standard spectral methods such as the adjacency matrix or
the Laplacian succeed down to the information theoretical
limit when the graph is sufficiently dense or regular [7], [8],
[9], [10], [11] while tend to fail when graphs are sparse due
to their sensitivity to fluctuations in the vertex degree.
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These problems have been well studied in the case of
graphs with simple edges between couples of vertices. How-
ever, many networks have a different structure, and the
relationships between vertex-variables are not established in
couples but in k-uplets, with k > 2. An exemple is given,
for instance, by the network of scientific collaborations, of
skype conference calls, email exchanges or recommendation
systems where we can associate a user with a specific
content and a rating. Translating the hypergraph into pairwise
interaction would inevitably lead to a loss of information, and
therefore some effort has been made to generalize spectral
methods to multi-body interactions [12], [13], [14].

Here we study an extension of the spectral clustering
method proposed in [15] based on a generalization of the
non-backtracking matrix [16], [15] to the case of hyper-
graphs (or factor graphs), that we argue to be effective on
sparse networks. To test the performance of the spectral
method we study it on a generative stochastic block model of
hypergraphs similar to the ones defined in [17], [12] which
is relevant for different problems ranging from community
detection to planted constraint satisfiability. We compare the
results with statistical inference based on belief propagation,
which we also derive, and show the intimate connections
between the latter and the non-backtracking operator. We
also illustrate that on the sparse networks we consider, other
spectral methods based on standard operators fail in the
detection where the method we propose succeeds.

A particularly remarkable point about the method is that
it works without any prior knowledge of the generative
model or its parameters, it is hence a promising tool to
learn the probabilistic rules that were used to create the
hypergraph. We illustrate this on the example of planted
constraint satisfaction problems where information about the
nature of the constraints is not assumed but inferred.

The paper is organized as follows: In Sec. II we give
the form of the generalized non-backtracking matrix and
summarize the algorithm. In Sec. III we present the gen-
erative model. In Sec. IV we then discuss the performance
of the algorithm on hypergraphs generated by the model.
In Sec. V we derive the belief propagation algorithm and
the detectability phase transition by linearization around the
uniform fixed point. In Sec. VI-A and VI-B we apply the
spectral algorithm to two specific cases of the generative
model, namely an assortative stochastic block model and
the planted 2-in-4-sat, comparing its behavior and phase
transitions with the one of belief-propagation. Finally in Sec.
VII we give our conclusions.
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Fig. 1. A graphical representation of one non-zero element B(i→µ)( j→ν)
of the generalized non-backtracking matrix, where grey squares represent
hyper-edges (or factors) and white circles are vertices.

II. SPECTRAL DETECTION ALGORITHM

Consider a hypergraph G(V,E), with vertices V with |V |=
N, and hyperedges E, |E|= M. We denote by ∂ µ the set of
vertices included in the hyperedge µ . Each vertex i has an
associated variable ai that can take values in the set A =
{0, · · · ,q− 1}. These variables are hidden from us, but it
is assumed that the hyperedges were chosen in a way that
depends on the values of these variables. The goal is to infer
the variables from the structure of the hypergraph.

The spectral algorithm we propose to detect hidden labels
of the vertices in a sparse hypergraph is based on the
following hypergraph non-backtracking operator

B(i→µ)( j→ν) =

{
1 if j ∈ ∂ µ\i , ν 6= µ ,

0 otherwise ,
(1)

where i, j = 1, · · · ,N are vertex indices and µ,ν = 1, · · · ,M
are hyper-edges (or factors). In Fig. 1 we show a graphical
representation of one non-null element of the matrix. Vertices
are represented by circles and hyperedges by squares. Each
hyper-edge can be seen as a group of kµ edges going from the
participating vertices to the factor µ . The matrix is therefore
of size kM× kM, where M is the number of factors and

k =
1
M ∑

µ

kµ (2)

is the average degree of a factor. This matrix has multiple
advantages with respect to the use of adjacency or incidence
matrix, in particular the fact that it is non-backtracking
inhibits the eigenvalues linked to high degree vertices and the
bulk of the spectrum is confined in a circle in the complex
plane for large random networks.

The algorithm is the following:
• Given the hypergraph, construct the non-backtracking

matrix according to (1).
• Compute the largest norm eigenvalues (and associated

eigenvectors) down to the first that has a non-zero

imaginary part. In this way we obtain q eigenvalue-
eigenvector pairs. Given that the first eigenvector is
associated to the degree of the vertices, we retain the
subsequent q−1 to identify a partition in q groups.

• For each of the q eigenvectors v construct an N com-
ponent vector u as

ui = ∑
µ∈∂ i

vi→µ , (3)

where ∂ i indicates the set of factors to which vertex i
participates.

• Run the preferred clustering algorithm, for example soft
k-means, on the components of the q− 1 eigenvectors
u to obtain a partition of the vertices in q groups.

The algorithm we propose can be applied to any kind
of hypergraphs with any distribution of vertex and factor
degrees.

The other spectral method we consider for comparison is
based on the adjacency matrix A, whose elements ai j are the
number of hyper-edges containing both the vertices i and
j. The adjacency matrix of a hypergraph can be written in
terms of the incidence matrix H as A = HHT −D, where the
incidence matrix is an N×M matrix such that

Hiµ =

{
1 i ∈ ∂ µ ,

0 otherwise.
(4)

In the following we specify a generative model on which
we will analyze the performance of our non-backtracking
algorithm comparing it with the ground truth and other
algorithms.

III. THE MODEL

Consider a set of vertices V with |V | = N, where each
vertex variable ai can take values in the set A = {0, · · · ,q−
1}. Each vertex is independently assigned a value a ∈ A
with a probability na such that ∑a na = 1.

Consider now a kernel function P : A k → IR[0,1] that
is symmetric under any permutation of the arguments and
represented by the symmetric k-tensor p (although gener-
alization to non-symmetric kernels should not present any
particular difficulty). Let E (k) be the set of all the possible
hyper-edges of degree k between the N vertices, the kernel
tensor gives the probability of existence, independently, for
any hyper-edge in E (k). To every hyper-edge in E (k) is
associated an indicator variable eµ with µ = 1, · · · ,

(N
k

)
, with

probability
Prob

(
eµ = 1|aµ

)
= paµ

, (5)

where aµ ∈ A k is the set of labels planted on the vertices
participating to the hyper-edge µ . The hypergraph is fully
specified by the vector e. The expected number of edges in
the hypergraph is given by

M = E

[
∑
µ

eµ

]
. (6)



We are interested in the sparse case, i.e. M =O(N), therefore
the elements of the tensor must scale as

pa =
ca

Nk−1 , (7)

where ca = O(1). In the following, with a slight abuse of
notation, a will indicate a variable in A k, A k−1 or A k−2,
which one of the three will be clear in the context.

In the large N limit at leading order the expected degree
of a node with a label a is

ca =
1

(k−1)! ∑
b∈A k−1

ca,b

k−1

∏
l=1

nbl . (8)

It will also be useful in the following to define the two-
vertices average degree, namely

cab =
1

(k−2)! ∑
s∈A k−2

cab,s

k−2

∏
l=1

nsl . (9)

Given the planted assignment {ai}, the conditional probabil-
ity of generating a certain hypergraph G specified by the set
of indicator variables {eµ} is

P(G|{ai}i=1,...,N) = ∏
µ∈E (k)

[( caµ

Nk−1

)eµ
(

1−
caµ

Nk−1

)1−eµ

]
.

(10)
As anticipated in the introduction, this generative model

covers a wide range of problems of which we give some
examples below.
• Planted Constraint Satisfaction Problems. Constraint

satisfaction problems play a crucial role in theoretical
and applied computer science as well as in engineering
and physics due to their very general nature. In a CSP
we consider a set of N discrete variables, typically
Boolean, subject to a set of M constraints. In many of
the usually considered cases like k-SAT or k-XORSAT
or k-in-2k-SAT these constraints are all of the same
type. In k-SAT, for example, the OR between M k-
uples of variables (or their negations) must result to
TRUE. In a random CSP the constraints are thrown at
random between groups of variables, giving raise to a
random graph. The question is if we can find a satisfying
assignment. In a planted CSP [18], [19], [20], [21] we
throw at random an assignment of the variables and
then a series of constraints (factors or hyper-edges) that
are satisfied by the assignment itself. The question is if
and how, given the graph, we can recover the planted
assignment. Planted CSPs are covered by the above
generative model.

• Hypergraph Stochastic Block Models. The stochastic
block model is a popular way of generating graphs with
a community structure. An ensemble of N vertices is
labeled with values from 1 to q depending on which
of the q communities they belong to. Given this as-
signment, edges between couples of nodes are thrown
at random with a probability (kernel) that depends
on the labeling of the two nodes that participate to

the edge. Two typical choices are the assortative case
where nodes belonging to the same community are more
likely to be connected or disassortative if the case is
the opposite. Again, the objective is, given the graph,
recover the underlying community structure. Our model
is the natural generalization of the stochastic block
model to the case of hypergraphs, which is relevant
in many applications, from recommendation systems to
co-authoring networks.

• Coding. If we allow, in the planted CSP scenario, the
constraints to be soft, meaning that they can be violated
with a certain finite probability, the hypergraph can
be seen as a noisy observation of the data, where the
data consist in the planted assignment. In many cases
encoding is performed by summing a random set of
variables and transmitting the sum through a noisy
channel. The choice of the sets results in a random
hyper-graph with a structure that is determined by the
code construction and the transmission gives a noisy
version of this hypergraph. Our generative model can
also be seen as a representation of this kind of setting.

For the analysis of this paper we will consider the case
where the average degree of the vertices is independent of
the labeling, namely ca = c. This is the statistically hardest
case, because simply observing the degree of a node does
not give any information about its planted variable. In doing
so we obtain a random sparse hypergraph with structure
but in which degrees of all the vertices come from Poisson
distribution with average c.

The performance of a detection algorithm can be evaluated
through a measure of the normalized overlap between the
planted assignment and the inferred one, namely

Q = max
π

1
N ∑i δai,π(âi)−maxa na

1−maxa na
(11)

where a is the planted assignment, â is the inferred assign-
ment and π is any permutation of the labels.

IV. PROPERTIES OF B ON THE PLANTED MODEL

In this section we present the properties of the non-
backtracking matrix for a hypergraph generated with the
above planted model.

First we remark that the hypergraph can be seen as a bi-
partite graph between the variable nodes and the hyperedges.
In the case this bipartite graph is random (non-planted, but
fixed degree sequence), results derived for the spectrum of
the non-backtracking operator of this bipartite graph in [15],
[22] translate directly to the present case.

The largest eigenvalue of B is, asymptotically in the large
N limit, equal to the average branching factor of the locally
tree-like hypergraph. For a k-regular hypergraph this reads

µ1 = (k−1)EQ [d] , (12)

where Qd = (d +1)pd+1/c is the excess degree distribution
and pd is the degree distribution. Since we are considering
Poissonian degree, for the first eigenvalue we find

µ1 = c(k−1) . (13)



The bulk of the spectrum is confined in the circle of radius

ρ =
√

c(k−1) . (14)

This can be seen by considering that for any matrix B with
eigenvalue µ

kM

∑
i=1
|µ|2r < Tr(Br)(Br)T . (15)

Moreover, for any fixed r and in the limit N → ∞, the hy-
pergraph is locally tree-like, therefore the diagonal elements
(i → µ)(i → µ) of (Br)(Br)T count the exact number of
factor nodes at r steps from µ through paths not including
i, which in expectation is (k−1)rcr. Therefore for the trace
we obtain

E
[
Tr(Br)(Br)T ]= kM(k−1)rcr , (16)

which gives
E
[
|µ|2r]≤ (k−1)rcr . (17)

Since this relation is true for any fixed value of r, we con-
clude that almost all the eigenvalues of the non-backtracking
matrix lie in the circle of radius (14). More refined analysis
of [22] leads to the result that for a random hypergraph all
but one eigenvalue lie in that circle.

The planted model can be seen as a perturbed rank-r
matrix. If the rescaled eigenvalues of the non-perturbed rank
r matrix fall outside of the circle confining the bulk then
they are also visible on the real axes in the spectrum of the
non-backtracking operator. Hence, in analogy with [15], [22]
the second q−1 eigenvalues, when exceeding the bulk, are
associated to eigenvectors that are correlated with the planted
configuration and take values

µ2 = c(k−1)λ , (18)

where λ is one of the largest q−1 eigenvalues of the matrix

Tab = na

[
cab

c(k−1)
−1
]
, (19)

which, as we will see, are degenerate under appropriate
conditions.

Inference of the planted assignment can be performed
through a standard clustering algorithm like k-means applied
to these eigenvectors when the informative eigenvalues ex-
ceed the bulk, namely

|µ2|>
√

c(k−1) . (20)

The vectors that we cluster are constructed from the eigen-
vectors of B by summing all the outgoing edges for each
vertex.

The algorithm hence requires to find the leading eigen-
values of a kM× kM matrix, which can be very large if
the average degree of the nodes is high. Nonetheless, if the
hypergraph is k-regular as we are considering, we can reduce
the size of the problem. The eigenvalue equation we are
solving is the following

∑
ν∈∂ i\µ

∑
k∈∂ν\i

vk→ν = µvi→µ . (21)

Let us consider the sums of incoming and outgoing mes-
sages, respectively

vin
i = ∑

ν∈∂ i
∑

k∈∂ν\i
vk→ν ,

vout
i = ∑

ν∈∂ i
vi→ν ,

(22)

for which the eigenvalue equation (21) translates into

(di−1)vin
i = λvout

i ,

∑
µ∈∂ i

∑
j∈∂ µ\i

vin
j − (k−2)vin

i − (k−1)vout
i = λvin

i . (23)

The preceding equation can be written in a compact form as

B′v = λv , (24)

with

v =

(
vout

vin

)
, (25)

and

B′ =
(

0 D−1
−(k−1)1 A− (k−2)1

)
, (26)

where B′ is a 2N × 2N matrix, D is the diagonal degree
matrix A is the symmetric adjacency matrix. Given this, we
see that all the eigenvalues of the complete non-backtracking
operator B are also eigenvalues of the reduced one B′ except
for those kM−2N associated to the subspace defined by

∑
ν∈∂ i

∑
k∈∂ν\i

vk→ν = 0 ∀i ,

∑
ν∈∂ i

vi→ν = 0 ∀i ,
(27)

for which we cannot assure the correspondence. Moreover,
by a further transformation of the eigenvalue eq. (21), we
can obtain the following non-linear equation describing the
eigenvalues of the reduced operator

vi =
1

1− λ (p−2+λ )
p−1

[
divi−

λ

p−1 ∑
µ∈∂ i

∑
k∈∂ µ\i

vk

]
(28)

telling us that the differences between the B and B′ spectra
will be located in λ = 1 and λ = −(p− 1) due to the
singularities that appear in the formula.

V. BELIEF PROPAGATION AND PHASE TRANSITIONS

In this section we derive the asymptotic properties of
the generative model through belief propagation and, as
a byproduct, we highlight the connection between belief
propagation and the generalized non-backtracking operator.

Given the conditional probability of a graph (10), accord-
ing to the Bayes rule the posterior probability of the planted
assignment ai given the hypergraph G reads

P({ai}i=1,...,N |G) =
1

Z(G)

N

∏
i=1

nai×

× ∏
µ∈E (k)

[
ceµ

aµ

(
1−

caµ

Nk−1

)1−eµ

]
,

(29)
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Fig. 2. The spectrum of the hypergraph non-backtracking matrix (1) for an hypergraph of size N = 1800 generated through the assortative HSBM with
k = 3, q = 3 and c = 4 for (a) ε̃ = 0.22 and (b) ε̃ = 0.14. In (b) the informative eigenvalues lie outside the bulk and are degenerate. (c) The spectrum of
the adjacency matrix for ε̃ = 0.14. Despite being in the detectable phase the informative eigenvalue of the adjacency matrix is hidden in the bulk.

where Z(G) is the proper normalization constant. This poste-
rior probability is associated to a graphical model for which
we can write 2k|E (k)| coupled message-passing equations
[23]

ψ
µ→i
a =

1
Zµ→i ∑

b

(
∏

j∈∂ µ\i
χ

j→µ

b j

)
× ,

×
[

ceµ

a,b

(
1−

ca,b

Nk−1

)1−eµ

]
,

χ
i→µ
a =

1
Θi→µ

na ∏
ν∈∂̃ i\µ

ψ
ν→i
a ,

(30)

where ∂̃ i indicates all the hyperedges in E (k) that contain
vertex i, Zµ→i and Θi→µ are normalization constants. The
estimated marginal probability that a vertex was planted in
the group a is given by the associated belief, namely

χ
i
a =

1
Θi na ∏

ν∈∂̃ i

ψ
ν→i
a . (31)

By plugging the first equation of (30) into the second, we
obtain a closed set of k|E (k)| equations for the χ messages:

χ
i→µ
a =

1
Ki→µ

na ∏
ν∈∂̃ i\µ

∑
b

(
∏

j∈∂ν\i
χ

j→ν

b j

)
×

×
[

ceν

a,b

(
1−

ca,b

Nk−1

)1−eν

]
.

(32)

In order to reduce the number of equations we note that there
are two different types of messages i→ µ , namely the ones
living on the kM edges that actually exist in G, for which
i ∈ ∂ µ and eµ = 1, and the “ghost” edges for which i /∈ ∂ µ

and eµ = 0.
It can be shown that, up to corrections that vanish when

N → ∞, for the “ghost” hyper-edges we have χ
i→µ
a ' χ i

a,
while for the messages living on the real edges

χ
i→µ
a =

e−ha

Ki→µ
na ∏

ν∈∂ i\µ
∑
b

(
∏

j∈∂ν\i
χ

j→ν

b j

)
ca,b , (33)

with

ha =
1

Nk−1 ∑
γ∈E (k−1)

∑
b

ca,b

(
∏
j∈∂γ

χ
j

b j

)
, (34)

which reduces the number of messages to kM. Still, the
computation of the effective field ha requires the summation
of order Nk−1 terms which for large hypergraphs becomes
problematic as soon as k > 2. We will show in Sec. VI that
the computation of the field can be largely simplified when
a specific choice of the connectivity tensor c is made.

It can be easily verified that, if the condition ca = c ∀a
holds, then the so-called factorized solution χ

i→µ
a = na is

a fixed point of eq. (33). In order for the inference of
the planted assignment to be easy, the above mentioned
factorized fixed point must be unstable, guaranteeing that
belief propagation does not remain trapped in it.

To analyze the linear stability of the factorized fixed point
under random perturbation of the messages. Let us consider
messages of the form

χ
i→µ
a = na + ε

i→µ
a . (35)

Plugging (35) into (33) and developing to first order we
obtain

ε
i→µ
a = ∑

b
Tab ∑

j∈∂ν\i
BT
(i→µ)( j→ν)ε

j→ν

b , (36)

where Tab is the matrix from (19) and B is the hypergraph
non-backtracking matrix.

The hypergraphs generated by the model in the regime we
are considering are sparse and locally tree-like, meaning that
on average loops start to be observed at a distance O(logN).
Let us then consider a tree of depth d and observe how a
perturbation on a leaf propagates through the (unique) path
connecting it to the root

δ χ
0
a0
= ∑

a1,··· ,ad

[
d−1

∏
i=0

Taiai+1

]
δ χ

d
ad

= ∑
ad

(T d)a0ad δ χ
d
ad
. (37)

Now, taking independent random perturbations, summing up
the contributions of all the leaves and considering that in
the limit d → ∞ the matrix T d is dominated by its largest
eigenvalue λ , we have

δ χ
0 ' ∑

k∈leaves
λ

d
δ χ

k
|| , (38)

where δ χk
|| is the perturbation along the direction of the

dominating eigenvector. Therefore, in terms of expectation



we obtain
E
[
δ χ

0]= 0 , (39)

and
E
[(

δ χ
0)2
]
' cd(k−1)d

λ
2dE
[(

δ χ||
)2
]
. (40)

The instability threshold is finally given by

c(k−1)λ 2 = 1 . (41)

When c(k− 1)λ 2 < 1 the factorized fixed point is stable
and belief propagation will hence not be able to infer the
planted assignment, and for c(k−1)λ 2 > 1 belief propagation
succeeds.

Moreover, if we restrict ourselves to the case na = 1/q
with cab from (9) being

cab =

{
cin if a = b ,
cout if a 6= b .

(42)

and consequently

Tab =

{
Tin if a = b ,
Tout if a 6= b ,

(43)

then we find the two following eigenvalues

λ1 = Tin +(q−1)Tout = 0 , (44)

λ2 = Tin−Tout =
cin− cout

q(k−1)c
, (45)

with multiplicities of 1 and q−1 respectively. Therefore the
instability has a closed expression, namely

|cin− cout|
q

=
√

c(k−1) , (46)

with the expected degree given by

c =
cin +(q−1)cout

q(k−1)
. (47)

VI. EXAMPLES

A. Hypergraph Stochastic Block Model

Restricting ourselves to the case (42) and by analogy with
the k = 2 case [5], [15], we define the hypergraph stochastic
block model (HSBM) as assortative if cin > cout and disas-
sortative otherwise. A sensible choice for the parametrization
of the problem is by ε = cout/cin and the expected degree c.
With this notation the transition is located at

εc =

√
c(k−1)−1√

c(k−1)+(q−1)
. (48)

In this section we consider the specific case

ca1···ak =

{
c̃in if a1 = a2 = · · ·= ak ,

c̃out otherwise ,
(49)

for which we can define the specific parameter

ε̃ = c̃out/c̃in =
ε

qk−2 +(qk−2−1)ε
. (50)

As anticipated, with this setting the computation of the
effective field in the belief propagation iteration takes linear

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2

Q

~

NBO
A

BP

✏̃

Fig. 3. Performance, in terms of the overlap Q (11), of the spectral
detection on the assortative HSBM through the non-backtracking matrix
(NBO) compared to spectral detection with the adjacency matrix (A) and
Bayesian belief propagation (BP). The size of the graph is N = 300000 for
the three curves and averages are taken over 5 samples. The vertical dashed
line marks the detectability transition.

time and simplifies in the following way up to O(1/N)
corrections

ha = c̃out +
(c̃in− c̃out)

(k−1)!Nk−1

(
N

∑
i=1

χ
i
a

)k−1

+O
(

1
N

)
. (51)

We take as an example a HSBM with k = 3, q = 3 and
c = 4 which gives the detectability transition located at
ε̃c = 0.1688. In Fig. 2 we show the spectrum of the non-
backtracking operator (a) in the undetectable phase (where
the factorized belief propagation fixed point is stable) and
(b) in the detectable phase (where belief propagation gives
an informative fixed point). While in the undetectable phase
we find only the leading eigenvalue associated to the average
excess degree, in the detectable phase two more eigenvalues
stick out of the bulk and the correspondent eigenvectors are
correlated with the community structure.

In Fig. 3 we show the performance of the spectral clus-
tering through the non-backtracking operator combined with
a standard k-means. Despite a slightly worse performance,
it displays the same phase transition as belief-propagation,
which we conjectured to be an optimal algorithm [5]. By
contrast, spectral clustering through the adjacency matrix has
a comparable performance deep in the detectable phase but
it breaks down well before the phase transition due to the
sparsity of the hypergraph.

B. Planted 2-in-4-sat

In the planted 2-in-4-sat problem, after giving a random
binary assignment to the vertices of the network, hyperedges
are thrown at random between groups of k = 4 vertices with a
certain non-zero probability only if in the k-uplet there is an
equal number of zeros and ones. At fixed expected degree c,
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Fig. 4. (a,b) The spectrum of the hypergraph non-backtracking matrix (1) for a hypergraph of size N = 2000 generated through the planted 2-in-4-sat
(k = 4, q = 2) for (a) c = 2.5 and (b) c = 4. In (b) the informative eigenvalue lie outside the bulk on the left because the model is disassortative. In (c) the
spectrum of the adjacency matrix for c = 4. The informative eigenvalue is hidden in the bulk.

this generative process fits into our general formulation with

c0011 = 16c ,

cin = 2c ,

cout = 4c .
(52)

This problem has been studied through the cavity method in
the so called “locked” case in [24]. Here we are interested
in the problem of finding a configuration correlated to the
planted one. The scenario is quite different with respect to
the preceding case. In fact here we find two phase transitions
in the average degree, namely one from an impossible to
hard detection [6], [24], and a second one from hard to easy
detection that is our main focus. In the hard phase we conjec-
ture that no known algorithm is able to retrieve the planted
assignment due to the presence of the stable factorized fixed
point, despite the fact that the global fixed point would be the
one at high overlap. In this case the hard/easy phase transition
in belief propagation is discontinuous and the transition is
located at

cc = 3 , (53)

which is obtained by plugging (52) into (46). In this case the
computation of the effective field in the belief propagation
equations is reduced to linear time with

ha '
8c
N3

(
N

∑
i=1

χ
i
a

)(
N

∑
i=1

χ
i
1−a

)2

+O
(

1
N

)
. (54)

Since this planted problem is essentially disassortative, as
shown in Fig. 4 the informative eigenvalue sticks out at the
left of the spectrum.

In Fig. 5 we show the performance of the spectral al-
gorithm based on the generalized non-backtracking matrix
compared with spectral clustering on the adjacency matrix
and with belief propagation. The adjacency matrix displays
a terrible behavior up to very large average degree. The non-
backtracking matrix instead undergoes a phase transition,
located at the same value of the one we encounter in belief-
propagation but the transition is continuous. Despite the fact
that the non-backtracking operator performs considerably
worse than belief propagation, the important point to under-
line is that the spectral method is completely non-parametric
and we do not even need to know what the kernel is. In fact,
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Fig. 5. Performance, in terms of the overlap Q (11), of the spectral
detection on the planted 2-in-4-sat through the non-backtracking matrix
(NBO) compared to spectral detection with the adjacency matrix (A) and
Bayesian belief propagation (BP). The size of the graph is N = 200000 for
belief propagation and N = 400000 for the spectral algorithms. In both cases
a single sample was taken. The vertical dashed line marks the hard/easy
transition. The adjacency matrix starts giving a non-zero overlap only at
very high average degree, namely around c ≈ 9 which is out of the plot
range.

we can think of the spectral method also as a way to learn the
kernel, in order to feed it as a starting condition for the hyper-
parameters in belief propagation with parameter learning. Let
us take as an example a graph generated with c = 3.4 and
N = 40000, after running the spectral detection we have an
inferred labeling of each vertex. Then let us take the list of
M = 34000 factors and look at their composition (according
to the inferred labels). The result is shown in Table I, telling
us that we are likely observing a planted 2-in-4-sat model or
something very close to it.

TABLE I
2-IN-4 KERNEL ESTIMATION

0000 1/34000
0001 5764/34000
0011 21758/34000
0111 6477/34000
1111 0/34000



VII. CONCLUSION

In this paper we have proposed a spectral algorithm to
detect hidden planted configurations in very sparse hyper-
graphs, based on a generalization of the non-backtracking
Hashimoto matrix. To test the performance of the algorithm
we have focused on a generative probabilistic model for
hypergraphs in which the hyperedges depend on the incident
variables via a fixed probability kernel. Given the generative
model, we have also derived an asymptotically (conjectured)
optimal belief propagation algorithm and presented a deriva-
tion of the non-backtracking matrix as a linearization of be-
lief propagation equations around the factorized fixed point.
In addition we have used belief propagation to compute the
location of the detectability phase-transition.

The generative model that we consider includes a broad
class of problems. Among them we have studied the as-
sortative stochastic block model and the planted 2-in-4-
sat. In the first case we obtained that the spectral non-
backtracking clustering has a performance that is very close
to the optimal belief propagation and displays a detectability
phase transition at the same point. It also performed much
better than the spectral clustering based on the adjacency
matrix that breaks down way before the phase transition due
to the sparsity of the graph. In the second case of the planted
2-in-4-sat we observed a different phenomenon, reminiscent
of a first order phase transition. While for belief propagation
the phase transition is discontinuous from a hard inference
phase to an easy inference phase with the overlap that jumps
from zero to a value close to one, in the spectral detection
algorithm we observe a continuous transition at the very
same point. Spectral detection with the adjacency matrix,
again, performs badly up to even higher degree. In both
cases, the gain provided by the non-backtracking approach
was clear.

We also showed that despite the fact that the accuracy
of the spectral method is significantly worse w.r.t. belief
propagation (although they start to detect assignments at
the same values of the parameters), the spectral approach
has many important advantages: not only it is entirely non-
parametric, but it is also a powerful instrument to learn the
parameters, such as the kernel, when they are unknown.
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