Dynamics of Polymers: a Mean-Field Theory
Abstract
We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose form has been speculated and widely applied, but not heretofore derived. Our approach involves a functional integral representation of a Martin-Siggia-Rose type description of the exact many-chain dynamics. A saddle point approximation to the generating functional, involving conditions where the MSR action is stationary with respect to a collective density field $\rho$ and a conjugate MSR response field $\phi$, produces the desired dynamical mean-field theory. Besides clarifying the proper structure of mean-field theory out of equilibrium, our results have implications for numerical studies of polymer dynamics involving hybrid particle-field simulation techniques such as the single-chain in mean-field method (SCMF).
Origin : Files produced by the author(s)
Loading...