D. L. Stein and C. M. Newman, Spin Glasses and Complexity, 2013.
DOI : 10.1515/9781400845637

S. F. Edwards and P. W. Anderson, Theory of spin glasses, Journal of Physics F: Metal Physics, vol.5, issue.5, p.965, 1975.
DOI : 10.1088/0305-4608/5/5/017

P. W. Anderson, Ill-condensed Matter, Les Houches, 1979.

C. W. Gardiner, Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences, 1985.

H. Risken, The Fokker-Planck Equation: Methods of Solution and Application, 2nd ed., Journal of Applied Mechanics, vol.58, issue.3, 1989.
DOI : 10.1115/1.2897281

R. J. Glauber, Time???Dependent Statistics of the Ising Model, Journal of Mathematical Physics, vol.4, issue.2, p.294, 1963.
DOI : 10.1063/1.1703954

E. D. Siggia, Pseudospin formulation of kinetic Ising models, Physical Review B, vol.16, issue.5, p.2319, 1977.
DOI : 10.1103/PhysRevB.16.2319

C. Castelnovo, C. Chamon, and D. Sherrington, Quantum mechanical and information theoretic view on classical glass transitions, Physical Review B, vol.81, issue.18, p.184303, 2012.
DOI : 10.1103/PhysRevB.81.184303

C. Monthus and T. Garel, Scaling of the largest dynamical barrier in the one-dimensional long-range Ising spin glass, Physical Review B, vol.89, issue.1, p.14408, 2014.
DOI : 10.1103/PhysRevB.89.014408

URL : https://hal.archives-ouvertes.fr/cea-01323412

F. J. Dyson, Existence of a phase-transition in a one-dimensional Ising ferromagnet, Communications in Mathematical Physics, vol.25, issue.2, pp.91-269, 1969.
DOI : 10.1007/BF01645907

P. M. Bleher and Y. G. Sinai, Investigation of the critical point in models of the type of Dyson's hierarchical models, Communications in Mathematical Physics, vol.39, issue.4, pp.23-247, 1975.
DOI : 10.1007/BF01645604

P. Collet and J. P. Eckmann, A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics, Lecture Notes in Physics, 1978.

G. A. Baker, Ising Model with a Scaling Interaction, Physical Review B, vol.5, issue.7, p.2622, 1972.
DOI : 10.1103/PhysRevB.5.2622

G. A. Baker and G. R. Golner, Spin-Spin Correlations in an Ising Model for Which Scaling is Exact, Physical Review Letters, vol.31, issue.1, p.22, 1973.
DOI : 10.1103/PhysRevLett.31.22

G. A. Baker and G. R. Golner, Critical and tricritical behavior in the hierarchical model, Physical Review B, vol.16, issue.5, p.2081, 1977.
DOI : 10.1103/PhysRevB.16.2081

G. A. Baker, M. E. Fisher, and P. Moussa, Yang-Lee Edge Singularity in the Hierarchical Model, Physical Review Letters, vol.42, issue.10, p.615, 1979.
DOI : 10.1103/PhysRevLett.42.615

J. B. Mcguire, The spherical hierarchical model, Communications in Mathematical Physics, vol.86, issue.3, p.215, 1973.
DOI : 10.1007/BF01645593

D. Kim, C. Thompson, and J. Phys, Critical properties of Dyson's hierarchical model. II. Essential singularities of the borderline Ising case, Journal of Physics A: Mathematical and General, vol.11, issue.2, p.375, 1978.
DOI : 10.1088/0305-4470/11/2/014

D. Kim, C. Thompson, and J. Phys, Critical properties of Dyson's hierarchical model. III. The n-vector and Heisenberg models, Journal of Physics A: Mathematical and General, vol.11, issue.2, p.385, 1978.
DOI : 10.1088/0305-4470/11/2/015

D. Kim and J. Phys, Fixed points of the hierarchical Potts model, Journal of Physics A: Mathematical and General, vol.13, issue.9, p.3049, 1980.
DOI : 10.1088/0305-4470/13/9/032

D. Kim, C. Thompson, and J. Phys, Critical properties of Dyson's hierarchical model, Journal of Physics A: Mathematical and General, vol.10, issue.9, p.1579, 1977.
DOI : 10.1088/0305-4470/10/9/015

E. Agliari, Retrieval Capabilities of Hierarchical Networks: From Dyson to Hopfield, Physical Review Letters, vol.114, issue.2, p.28103, 2015.
DOI : 10.1103/PhysRevLett.114.028103

E. Agliari, Metastable states in the hierarchical Dyson model drive parallel processing in the hierarchical Hopfield network, Journal of Physics A: Mathematical and Theoretical, vol.48, issue.1, p.15001, 2015.
DOI : 10.1088/1751-8113/48/1/015001

M. Castellana, A. Decelle, S. Franz, M. Mézard, and G. Parisi, Hierarchical Random Energy Model of a Spin Glass, Physical Review Letters, vol.104, issue.12, p.127206, 2010.
DOI : 10.1103/PhysRevLett.104.127206

M. Castellana and G. Parisi, Renormalization group computation of the critical exponents of hierarchical spin glasses, Physical Review E, vol.82, issue.4, p.40105, 2010.
DOI : 10.1103/PhysRevE.82.040105

URL : https://hal.archives-ouvertes.fr/hal-00547513

M. Castellana and G. Parisi, Renormalization-group computation of the critical exponents of hierarchical spin glasses: Large-scale behavior and divergence of the correlation length, Physical Review E, vol.83, issue.4, p.41134, 2011.
DOI : 10.1103/PhysRevE.83.041134

M. C. Angelini, G. Parisi, and F. Ricci-tersenghi, Ensemble renormalization group for disordered systems, Physical Review B, vol.87, issue.13, p.134201, 2013.
DOI : 10.1103/PhysRevB.87.134201

M. Castellana, A. Barra, and F. Guerra, Free-Energy Bounds for Hierarchical Spin Models, Journal of Statistical Physics, vol.5, issue.5, p.211, 2014.
DOI : 10.1007/s10955-014-0951-9

M. Castellana and C. Barbieri, Hierarchical spin glasses in a magnetic field: A renormalization-group study, Physical Review B, vol.91, issue.2, p.24202, 2015.
DOI : 10.1103/PhysRevB.91.024202

E. Luijten and W. J. Blöte, Boundary between Long-Range and Short-Range Critical Behavior in Systems with Algebraic Interactions, Physical Review Letters, vol.89, issue.2, p.25703, 2002.
DOI : 10.1103/PhysRevLett.89.025703

G. Kotliar, P. W. Anderson, and D. L. Stein, One-dimensional spin-glass model with long-range random interactions, Physical Review B, vol.27, issue.1, p.602, 1983.
DOI : 10.1103/PhysRevB.27.602

A. J. Bray, M. A. Moore, and A. P. Young, Lower Critical Dimension of Metallic Vector Spin-Glasses, Physical Review Letters, vol.56, issue.24, p.2641, 1986.
DOI : 10.1103/PhysRevLett.56.2641

D. S. Fisher and D. A. Huse, Equilibrium behavior of the spin-glass ordered phase, Physical Review B, vol.38, issue.1, p.386, 1988.
DOI : 10.1103/PhysRevB.38.386

H. G. Katzgraber and A. P. Young, Monte Carlo studies of the one-dimensional Ising spin glass with power-law interactions, Physical Review B, vol.67, issue.13, p.134410, 2003.
DOI : 10.1103/PhysRevB.67.134410

H. G. Katzgraber and A. P. Young, Geometry of large-scale low-energy excitations in the one-dimensional Ising spin glass with power-law interactions, Physical Review B, vol.68, issue.22, p.224408, 2003.
DOI : 10.1103/PhysRevB.68.224408

H. G. Katzgraber, M. Korner, F. Liers, M. Junger, and A. K. Hartmann, Universality-class dependence of energy distributions in spin glasses, Physical Review B, vol.72, issue.9, p.94421, 2005.
DOI : 10.1103/PhysRevB.72.094421

H. G. Katzgraber, Spin glasses and algorithm benchmarks: A one-dimensional view, Journal of Physics: Conference Series, vol.95, p.12004, 2008.
DOI : 10.1088/1742-6596/95/1/012004

H. G. Katzgraber and A. P. Young, Probing the Almeida-Thouless line away from the mean-field model, Physical Review B, vol.72, issue.18, p.184416, 2005.
DOI : 10.1103/PhysRevB.72.184416

H. G. Katzgraber, D. Larson, and A. P. Young, Study of the de Almeida???Thouless Line Using Power-Law Diluted One-Dimensional Ising Spin Glasses, Physical Review Letters, vol.102, issue.17, p.177205, 2009.
DOI : 10.1103/PhysRevLett.102.177205

M. A. Moore, Ordered phase of the one-dimensional Ising spin glass with long-range interactions, Physical Review B, vol.82, issue.1, p.14417, 2010.
DOI : 10.1103/PhysRevB.82.014417

H. G. Katzgraber, A. K. Hartmann, and A. P. Young, New insights from one-dimensional spin glasses, Physics Procedia, vol.6, p.35, 2010.
DOI : 10.1016/j.phpro.2010.09.026

H. G. Katzgraber and A. K. Hartmann, Ultrametricity and Clustering of States in Spin Glasses: A One-Dimensional View, Physical Review Letters, vol.102, issue.3, p.37207, 2009.
DOI : 10.1103/PhysRevLett.102.037207

H. G. Katzgraber, T. Jorg, F. Krzakala, and A. K. Hartmann, Ultrametric probe of the spin-glass state in a field, Physical Review B, vol.86, issue.18, p.184405, 2012.
DOI : 10.1103/PhysRevB.86.184405

T. Mori, Instability of the mean-field states and generalization of phase separation in long-range interacting systems, Physical Review E, vol.84, issue.3, p.31128, 2011.
DOI : 10.1103/PhysRevE.84.031128

M. Wittmann and A. P. Young, Spin glasses in the nonextensive regime, Physical Review E, vol.85, issue.4, p.41104, 2012.
DOI : 10.1103/PhysRevE.85.041104

C. Monthus and T. Garel, Typical versus averaged overlap distribution in spin glasses: Evidence for droplet scaling theory, Physical Review B, vol.88, issue.13, p.134204, 2013.
DOI : 10.1103/PhysRevB.88.134204

URL : https://hal.archives-ouvertes.fr/cea-01323422