R. Nandkishore and D. A. Huse, Many-Body Localization and Thermalization in Quantum Statistical Mechanics, Annual Review of Condensed Matter Physics, vol.6, issue.1, p.15, 2015.
DOI : 10.1146/annurev-conmatphys-031214-014726

E. Altman and R. Vosk, Universal Dynamics and Renormalization in Many-Body-Localized Systems, Annual Review of Condensed Matter Physics, vol.6, issue.1, p.383, 2015.
DOI : 10.1146/annurev-conmatphys-031214-014701

S. R. White, Numerical canonical transformation approach to quantum many-body problems, The Journal of Chemical Physics, vol.117, issue.16, p.7472, 2002.
DOI : 10.1063/1.1508370

L. Rademaker and M. Ortuno, Explicit Local Integrals of Motion for the Many-Body Localized State, Physical Review Letters, vol.116, issue.1, p.10404, 2016.
DOI : 10.1103/PhysRevLett.116.010404

F. Wegner, Flow equations and normal ordering: a survey, Journal of Physics A: Mathematical and General, vol.39, issue.25, p.8221, 2006.
DOI : 10.1088/0305-4470/39/25/S29

S. Kehrein, The flow equation approach to many-particle systems, 2006.

S. D. Glazek and K. G. Wilson, Renormalization of Hamiltonians, Physical Review D, vol.48, issue.12, p.5863, 1993.
DOI : 10.1103/PhysRevD.48.5863

S. D. Glazek and K. G. Wilson, Perturbative renormalization group for Hamiltonians, Physical Review D, vol.49, issue.8, p.4214, 1994.
DOI : 10.1103/PhysRevD.49.4214

S. D. Glazek, Renormalization group approach to quantum Hamiltonian dynamics, International Journal of Modern Physics A, vol.30, issue.09, p.1530023, 2015.
DOI : 10.1142/S0217751X15300239

R. W. Brockett and L. , Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems, Linear Algebra and its Applications, vol.146, p.79, 1991.
DOI : 10.1016/0024-3795(91)90021-N

Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
DOI : 10.1137/1.9780898718003

D. S. Watkins and S. J. , On Rutishauser???s Approach to Self-Similar Flows, SIAM Journal on Matrix Analysis and Applications, vol.11, issue.2, p.301, 1990.
DOI : 10.1137/0611020

M. Toda, Theory of nonlinear lattices, 1989.

Y. Y. Atas and E. Bogomolny, Spectral density of a one-dimensional quantum Ising model: Gaussian and multi-Gaussian approximations, Journal of Physics A: Mathematical and Theoretical, vol.47, issue.33, p.335201, 2014.
DOI : 10.1088/1751-8113/47/33/335201

J. P. Keating, N. Linden, and H. J. Wells, Spectra and Eigenstates of Spin Chain Hamiltonians, Communications in Mathematical Physics, vol.119, issue.1, p.81, 2015.
DOI : 10.1007/s00220-015-2366-0

M. Serbyn, Z. Papic, and D. A. Abanin, Local Conservation Laws and the Structure of the Many-Body Localized States, Physical Review Letters, vol.111, issue.12, p.127201, 2013.
DOI : 10.1103/PhysRevLett.111.127201

D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenology of fully many-body-localized systems, Physical Review B, vol.90, issue.17, p.174202, 2014.
DOI : 10.1103/PhysRevB.90.174202

A. Nanduri, H. Kim, and D. A. Huse, Entanglement spreading in a many-body localized system, Physical Review B, vol.90, issue.6, p.64201, 2014.
DOI : 10.1103/PhysRevB.90.064201

M. Serbyn, Z. Papic, and D. A. Abanin, Quantum quenches in the many-body localized phase, Physical Review B, vol.90, issue.17, p.174302, 2014.
DOI : 10.1103/PhysRevB.90.174302

A. Chandran, I. H. Kim, G. Vidal, and D. A. Abanin, Constructing local integrals of motion in the many-body localized phase, Physical Review B, vol.91, issue.8, p.85425, 2015.
DOI : 10.1103/PhysRevB.91.085425

V. Ros, M. Müller, and A. Scardicchio, Integrals of motion in the many-body localized phase, Nuclear Physics B, vol.891, p.420, 2015.
DOI : 10.1016/j.nuclphysb.2014.12.014

Y. Huang and J. E. Moore, Excited-state entanglement and thermal mutual information in random spin chains, Physical Review B, vol.90, issue.22, p.220202, 2014.
DOI : 10.1103/PhysRevB.90.220202

R. Vasseur, A. C. Potter, and S. A. Parameswaran, Quantum Criticality of Hot Random Spin Chains, Physical Review Letters, vol.114, issue.21, p.217201, 2015.
DOI : 10.1103/PhysRevLett.114.217201

S. K. Ma, C. Dasgupta, and C. K. Hu, Random Antiferromagnetic Chain, Physical Review Letters, vol.43, issue.19, p.1434, 1979.
DOI : 10.1103/PhysRevLett.43.1434

C. Dasgupta and S. K. Ma, Low-temperature properties of the random Heisenberg antiferromagnetic chain, Physical Review B, vol.22, issue.3, p.1305, 1980.
DOI : 10.1103/PhysRevB.22.1305

G. Refael and E. Altman, Strong disorder renormalization group primer and the superfluid???insulator transition, Comptes Rendus Physique, vol.14, issue.8, p.725, 2013.
DOI : 10.1016/j.crhy.2013.09.005

D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization edge in the random-field Heisenberg chain, Physical Review B, vol.91, issue.8, p.81103, 2015.
DOI : 10.1103/PhysRevB.91.081103

URL : https://hal.archives-ouvertes.fr/hal-01153243

S. Braavyi, D. P. Divincenzo, and D. Loss, Schrieffer???Wolff transformation for quantum many-body systems, Annals of Physics, vol.326, issue.10, p.2793, 2011.
DOI : 10.1016/j.aop.2011.06.004

G. Refael and D. S. Fisher, Energy correlations in random transverse field Ising spin chains, Physical Review B, vol.70, issue.6, p.64409, 2004.
DOI : 10.1103/PhysRevB.70.064409

P. Hauke and M. Heyl, Many-body localization and quantum ergodicity in disordered long-range Ising models, Physical Review B, vol.92, issue.13, p.134204, 2015.
DOI : 10.1103/PhysRevB.92.134204

T. D. Morris, N. M. Parzuchowski, and S. K. Bogner, Magnus expansion and in-medium similarity renormalization group, Physical Review C, vol.92, issue.3, p.34331, 2015.
DOI : 10.1103/PhysRevC.92.034331