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Abstract: We study D3-instanton corrections to the hypermultiplet moduli space in type

IIB string theory compactified on a Calabi-Yau threefold. In a previous work, consistency of

D3-instantons with S-duality was established at first order in the instanton expansion, using

the modular properties of the M5-brane elliptic genus. We extend this analysis to the two-

instanton level, where wall-crossing phenomena start playing a role. We focus on the contact

potential, an analogue of the Kähler potential which must transform as a modular form under

S-duality. We show that it can be expressed in terms of a suitable modification of the partition

function of D4-D2-D0 BPS black holes, constructed out of the generating function of MSW

invariants (the latter coincide with Donaldson-Thomas invariants in a particular chamber).

Modular invariance of the contact potential then requires that, in case where the D3-brane

wraps a reducible divisor, the generating function of MSW invariants must transform as a

vector-valued mock modular form, with a specific modular completion built from the MSW

invariants of the constituents. Physically, this gives a powerful constraint on the degeneracies

of BPS black holes. Mathematically, our result gives a universal prediction for the modular

properties of Donaldson-Thomas invariants of pure two-dimensional sheaves.
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1. Introduction

The low energy effective action of type II string theory compactified on a Calabi-Yau three-

fold is determined by the metric on the moduli space, which is a direct product of its vector

multiplet and hypermultiplet components. Whereas the former is classically exact, the hy-

permultiplet moduli space MH receives a variety of quantum corrections (see e.g. [1, 2] and

references therein). In type IIB string theory, if the volume of the Calabi-Yau threefold Y is

taken to be large in string units, these quantum corrections can be ordered according to the

following hierarchy: i) one-loop and D(-1) instanton corrections, ii) (p, q) string instantons,
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iii) D3-instantons, iv) (p, q) five-brane instantons. All these corrections are expected to be

governed by topological invariants of Y, including its intersection form κabc, Euler number χY,

Chern classes c2,a, genus zero Gromov-Witten invariants nqa and Donaldson-Thomas (DT)

invariants Ω(γ; za).1 In addition, they are severely constrained by the fact that the exact

metric on MH should be quaternion-Kähler [3] and smooth across walls of marginal stability

[4, 5] in spite of the discontinuities of the DT invariants Ω(γ; za). Most notably, it should

carry an isometric action of the modular group SL(2,Z) [6], originating from the S-duality

symmetry in uncompactified type IIB string theory.

In order to satisfy the first requirement, it is most convenient to use the twistorial for-

mulation of quaternion-Kähler manifolds [7, 8]. In this framework, quantum corrections to

the metric on MH are captured by a set of holomorphic functions on the twistor space Z
of MH , which encode gluing conditions between local Darboux coordinate systems for the

canonical complex contact structure on Z. Furthermore, discrete isometries of MH must

lift to holomorphic coordinate transformations on Z preserving the contact structure, which

constrains the possible gluing conditions. In the presence of a continuous isometry, another

important object, central for this work, is the contact potential eΦ, a real function on MH ,

defined as the norm of the moment map for the corresponding isometry [8, 9]. Its importance

lies in the fact that it provides a Kähler potential on Z, and that it must be invariant under

any further discrete isometry, up to a rescaling dictated by the transformation of the contact

one-form. In the present context, the isometry corresponds to translation along the NS axion,

which is broken only by (p, q) five-brane instantons, while the contact potential determines

the 4-dimensional string coupling.

Since the action of the modular group preserves the large volume limit, modular invari-

ance should hold at each level in the aforementioned hierarchy of quantum corrections. For

the first two levels, modular invariance was used in [6] to infer the D(-1) and (p, q)-string

instanton corrections from the known world-sheet instantons at tree-level and the one-loop

correction. The contributions of D3 and D5 instantons were then deduced by requiring sym-

plectic invariance and smoothness across walls of marginal stability [5, 10]. The consistency

of D3-instantons with S-duality however depends on special properties of the DT invariants

Ω(γ; za), where in this case γ labels the charges (pa, qa, q0) of a D3-D1-D(-1) instanton, or

more mathematically, the Chern character of a coherent sheaf with support on an effective

divisor D in Y.

In order to study this problem, it is useful to express the DT invariants Ω(γ; za), which in

general exhibit wall-crossing behavior with respect to the Kähler moduli za, in terms of the

so-called Maldacena-Strominger-Witten (MSW) invariants ΩMSW(γ), familiar from the study

of the partition function of D4-D2-D0 black holes [11]. Unlike DT invariants, MSW invariants

are independent of the moduli. Moreover, in the case where the divisor D wrapped by the

D4-brane is irreducible (in the sense that D cannot be written as the sum of two effective

divisors)2, the MSW invariants appear as Fourier coefficients of a Jacobi form, namely the

elliptic genus χp(τ, z
a, ca) of the superconformal field theory describing an M5-brane wrapped

1Here the index a runs over 1, . . . , b2(Y), qa labels effective homology classes H+
2 (Y), γ labels vectors in

the homology lattice Heven(Y), and za = ba + ita are complexified Kähler moduli.
2This irreducibility condition has not been fully appreciated in the past, and part of the present work aims

at relaxing it.
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on T 2 ×D [11]. More precisely, the elliptic genus decomposes into3

χp(τ, z
a, ca) =

∑
µ∈Λ⋆/Λ

hp,µ(τ) θp,µ(τ, t
a, ba, ca), (1.1)

where θp,µ is the Siegel theta series (2.22), a vector-valued modular form of weight ( b2−1
2
, 1
2
),

and hp,µ is the generating function (2.21) of MSW invariants. When D is irreducible, hp,µ is a

holomorphic vector-valued modular form of weight (− b2
2
−1, 0), so that χp(τ, z

a, ca) transforms

as a Jacobi form of weight (−3
2
, 1
2
), as expected from the elliptic genus of a standard SCFT

[13, 14, 15].

DT invariants coincide with MSW invariants at the ‘large volume attractor point’, but

in general receive additional contributions proportional to products of MSW invariants with

moduli-dependent coefficients, corresponding to black hole bound states [16, 17]. The D3-

instanton corrections to the metric can thus be organized as an infinite series in powers of

MSW invariants, corresponding to multi-instanton effects. In [12] we considered the one-

instanton approximation (and large volume limit) of the D3-instanton corrected metric on

MH , keeping only the first term of the expansion (2.14) of DT invariants in terms of MSW

invariants. Relying on the modular properties of MSW invariants encoded in the elliptic genus

(1.1), we showed that in this approximation, the metric on MH admits an isometric action of

the modular group. This result was achieved by showing that S-duality acts on the canonical

Darboux coordinates on Z introduced in [5, 10] by a holomorphic contact transformation.

While the transformation properties of Darboux coordinates are, already at the classical

level, quite complicated, S-duality requires that the contact potential eΦ should transform in

a simple way, namely as a modular form of weight (−1
2
,−1

2
). In [12] we proved that this is

the case by showing that the contact potential is directly related to the elliptic genus (1.1)

via the action of a modular covariant derivative.

In this paper, we study the corrections to the metric on MH at the two-instanton level,

i.e. at order (ΩMSW)2 in the expansion in powers of MSW invariants. The analysis of the

transformation properties of Darboux coordinates and a complete proof of the existence of an

isometric action of S-duality on MH is deferred to a subsequent paper [18]. In this paper, we

shall restrict our attention to the contact potential, which is much simpler but yet encodes

all possible quantum corrections.

At two-instanton order, we must take into account both corrections to the contact poten-

tial which are quadratic in the DT invariants, and order (ΩMSW)2 contributions in the relation

between DT and MSW invariants. Our main result is as follows: the contact potential can be

expressed in terms of the modular covariant derivative of the following BPS partition function

Ẑp =
∑

µ∈Λ⋆/Λ

ĥp,µ θp,µ +
1

2

∑
p1+p2=p

∑
µi∈Λ⋆/Λi

ĥp1,µ1
ĥp2,µ2

Ψ̂p1,p2,µ1,µ2
+ · · · , (1.2)

where the dots denote terms of higher order in ĥp,µ. Here two new objects are introduced:

3The notations are explained in detail in section 2. Note that our definition of theta series is complex

conjugate of the usual one used in [12]. This is to avoid the proliferation of complex conjugated theta

functions in our equations and to facilitate comparison with the results of the twistorial formalism.
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• Ψ̂p1,p2,µ1,µ2
is the non-holomorphic theta series constructed in [16] for the lattice of

signature (2, b2 − 2) spanned by the D1-brane charges (q1, q2) of the two constituents.

It transforms as a vector valued modular form of weight (b2 +
1
2
, 1
2
) and captures the

wall-crossing dependence of Ẑp due to two-center black hole solutions (or equivalently

two-centered D3-instantons).

• ĥp,µ = hp,µ − 1
2
Rp,µ, where Rp,µ is a non-holomorphic function of τ constructed out of

the MSW invariants,

Rp,µ(τ) = − 1

4π

∑
p1+p2=p

∑
µi∈Λ⋆/Λi

hp1,µ1
(τ)hp2,µ2

(τ)
∑

ρ∈(Λ1−µ̃)∩(Λ2+µ̃)

(−1)Sp1,p2 (µ1,µ2,ρ)

×
∣∣Sp1,p2

(µ1,µ2,ρ)
∣∣ β 3

2

(
2τ2(Sp1,p2 (µ1,µ2,ρ))

2

(pp1p2)

)
eπiτQp1,p2(ν1,ν2), (1.3)

where β 3
2
is the function defined in (2.29) and the definitions of other notations can be

found in Appendix B.

When the effective divisor D is irreducible, the sum over p1,p2 is empty so that Rp,µ and

the second term in (1.2) vanish and Ẑp reduces to the elliptic genus (1.1). If on the contrary

D can be decomposed into a sum of two effective divisors D1 +D2, then modular invariance

of the contact potential requires that the non-holomorphic function ĥp,µ must transform as

a (vector-valued) modular form of weight (− b2
2
− 1, 0). This shows that the holomorphic

generating function hp,µ is not a modular form, but rather a (mixed) mock modular form

[19, 20].

A similar modular anomaly was in fact observed long ago for the partition function of

topologically twisted N = 4 Yang-Mills theory with gauge group U(2) on a complex surface

in [21] and, more recently, in [22]. This set-up was related to the case of multiple M5-branes

wrapped on a rigid divisor in a non-compact threefold in [23, 24]. For M5-branes wrapped

on non-rigid divisors in an elliptically fibered compact threefold, such an anomaly was also

argued to appear in [25] using the holomorphic anomaly in topological string theory [26] and

T-duality. However in the latter context the anomaly is of quasi-modular type rather then

mock-modular.

Modular or holomorphic anomalies are also known to occur in the context of quantum

gravity partition functions for AdS3/CFT2 [27], non-compact coset conformal field theories

[28], and partition functions for BPS black holes in N = 4 supergravity [29]. In the context

of black hole partition functions, the non-holomorphic completion was related to the spectral

anomaly in the continuum of scattering states in [30]. Our result shows that modular or

holomorphic anomalies generally affect M5-branes or D4-branes wrapped on reducible divisors

in an arbitrary compact Calabi-Yau threefold, and gives a precise prediction for the modular

completion in the case where D is the sum of two irreducible divisors. Physically, this gives

a powerful constraint on the degeneracies of D4-D2-D0 brane black holes composed of two

D4-branes. In particular, the mock modularity of hp,µ affects the asymptotic growth of the

degeneracies [31]. Mathematically, upon re-expressing the MSW invariants in terms of DT-

invariants, our result gives a universal prediction for the modularity of DT invariants for

pure 2-dimensional sheaves, which is receiving increasing attention from the mathematics
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community, see e.g. [32, 33, 34, 35, 36]. Using similar techniques, it should be possible in

principle to determine the modular anomaly in the case where D can split into a sum of more

than two irreducible divisors.

The organization of the paper is as follows. In section 2 we discuss the BPS invariants

counting D3-brane instantons and associated modular forms. In section 3, we review the

twistorial formulation of the D-instanton corrected hypermultiplet moduli space of type IIB

string theory compactified on a Calabi-Yau threefold. Then in section 4 we compute the

D3-instanton contribution to the contact potential in the two-instanton approximation and

express it in terms of Ẑp. Finally, we conclude in section 5. Appendices A, B and C contain

some useful material and details of our calculations.

2. BPS invariants for D3-instantons and mock modularity

In this section, we discuss the modular properties of the BPS invariants which control D3-

brane instanton corrections to the hypermultiplet moduli space MH in type IIB string theory

compactified on a Calabi-Yau threefold Y. The same invariants also control the degeneracies

of D4-D2-D0 black holes in type IIA string theory compactified on the same threefold Y.

When the D3-brane wraps a primitive effective divisor4 D, these invariants are claimed to

be Fourier coefficients of a vector-valued modular form. Instead, we will argue that, when

D =
∑n

i=1Di is the sum of n irreducible divisors, the invariants are the coefficients of the

holomorphic part of a real-analytic modular form. For n = 2, we show that this holomorphic

part is in fact a mixed mock modular form, whose modular anomaly is controlled by the

invariants associated to Di.

2.1 D3-instantons, DT and MSW invariants

Let us first introduce some mathematical objects and notations relevant for D3-instantons.

As in [12], we denote by γa an integer irreducible basis of Λ = H4(Y,Z), ωa their Poincaré

dual 2-forms, γa an integer basis of Λ∗ = H2(Y,Z), ωa their Poincaré dual 4-forms, and ωY

the volume form of Y such that

ωa ∧ ωb = κabc ω
c, ωa ∧ ωb = δba ωY,

∫
γa

ωb =

∫
γb

ωa = δab , (2.1)

where κabc is the intersection form, integer-valued and symmetric in its indices. For brevity

we shall denote (lkp) = κabcl
akbpc and (kp)a = κabck

bpc. We introduce furthermore the Kähler

cone as the set of daωa ∈ H2(Y,R) such that

d3 ≥ 0, (rd2) ≥ 0, kad
a ≥ 0, (2.2)

for all effective divisors raγa ∈ H+
4 (Y,Z) (i.e. ra ≥ 0 for all a, not all of them vanishing

simultaneously) and effective curves kaγ
a ∈ H+

2 (Y,Z).

4We will use the following specifications for a divisor D. See for more details for example [37]. A divisor

γ is irreducible, if γ is an irreducible analytic hypersurface of Y. An effective divisor D is a finite linear

combination D =
∑

a r
aγa of irreducible divisors γa with ra ∈ N0 for all a. We call a divisor primitive if the

gcd({ra})=1.
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A D3-instanton is described by a coherent sheaf E of rank r supported on a divisor D ⊂ Y.

The homology class of the divisor D may be expanded on the basis of 4-cycles as D = daγa.

The D-brane charges are given by the components of the generalized Mukai vector of E on a

basis of Heven(Y,Z),
γ = ch E

√
TdY = paωa − qaω

a + q0 ωY , (2.3)

where pa = rda. The charges pa, qa, q0 satisfy the following quantization conditions5

pa ∈ Z, qa ∈ Z+
1

2
κabcp

bpc, q0 ∈ Z− 1

24
pac2,a. (2.4)

We denote the corresponding charge lattice by Γ, and its intersection with the Kähler cone

(2.2) by Γ+. Upon tensoring the sheaf E with a line bundle L on D, with c1(L) = −ϵaωa, the

magnetic charge pa is invariant, while the electric charges qa, q0 vary by a ‘spectral flow’

qa 7→ qa − κabcp
bϵc, q0 7→ q0 − ϵaqa +

1

2
κabcp

aϵbϵc. (2.5)

This transformation leaves invariant the combination

q̂0 ≡ q0 −
1

2
κabqaqb, (2.6)

where κab is the inverse of κab = κabcp
c, a quadratic form of signature (1, b2−1) on Λ⊗R ≃ Rb2 .

We use this quadratic form to identify Λ⊗R and Λ∗ ⊗R, and use bold-case letters to denote

the corresponding vectors. We also identify Λ with its image in Λ∗. Note however that the

map ϵa 7→ κabϵ
b is in general not surjective: the quotient Λ∗/Λ is a finite group of order

| detκab|. The transformation (2.5) preserves the residue class µa ∈ Λ∗/Λ defined by

qa = µa +
1

2
κabcp

bpc + κabcp
bϵc, ϵ ∈ Λ . (2.7)

We note also that the invariant charge q̂0 is bounded from above by q̂max
0 = 1

24
(p3 + c2,ap

a).

The contribution of a single D3-instanton to the metric on MH is proportional to the

DT invariant Ω(γ;z), which is the (weighted) Euler characteristic of the moduli space of

semi-stable sheaves with fixed Mukai vector γ. The relevant stability condition is Π-stability

[39], which reduces to slope stability in the large volume limit. The latter stability condition

states that for each subsheaf E ′(γ′) ⊂ E(γ) the following inequality is satisfied

(q′a + (bp′)a)t
a

(p′t2)
≤ (qa + (bp)a)t

a

(pt2)
. (2.8)

It is useful to define the rational DT invariant [40, 41, 42],

Ω̄(γ;z) =
∑
d|γ

1

d2
Ω(γ/d; z) , (2.9)

which reduces to the integer-valued DT invariant Ω(γ; z) when γ is a primitive vector, but is in

general rational-valued. Both Ω and Ω̄ are piecewise constant as a function of the complexified

5The electric charges qa and q0 (denoted by q′a, q
′
0 in [38]) are not integer valued. They are related to the

integer charges which appear naturally on the type IIA side by a rational symplectic transformation [38].
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Kähler moduli za = ba + ita, but are discontinuous across walls of marginal stability where

the sheaf becomes unstable, i.e. the codimension-one subspaces of the Kähler cone across

which the inequality (2.8) flips. Ω and Ω̄ are in general not invariant under the spectral flow

(2.5), but they are invariant under the combination of (2.5) with a compensating shift of the

Kalb-Ramond field, ba 7→ ba + ϵa.

A physical way to understand the moduli dependence of Ω(γ; z) is to note that the same

invariant counts D4-D2-D0 brane bound states in type IIA theory compactified on the same

CY threefold Y. The mass of a single-particle BPS state is equal to the modulus of the central

charge function Zγ = qΛz
Λ − pΛFΛ(z) (where Λ = (0, a) = 0, . . . , b2 and FΛ = ∂XΛF (X) is

the derivative of the holomorphic prepotential F ). Some of these single-particle BPS states

may however arise as bound states of more elementary constituents with charge γi such that∑
i γi = γ. Typically, these bound states exist only in some chamber in Kähler moduli space,

and decay across walls of marginal stability where the central charges Z(γi) become aligned,

so that the mass |Zγ| coincides with the sum
∑

i |Zγi| of the masses of the constituents. A

similar picture exists for D3-instantons, where the modulus of the central charge controls the

classical action, but the analogue of the notion of single-particle state is somewhat obscure.

At the special value of the moduli z(γ) = −q + ip given by the attractor mechanism,

no bound states exist, and therefore Ω(γ; z(γ)) counts elementary states, which cannot de-

cay. Since we are only interested in the large volume limit, we define the ‘MSW invariants’

ΩMSW(γ) = Ω(γ;z∞(γ)) as the DT invariants evaluated at the large volume attractor point,

z∞(γ) = lim
λ→+∞

(b(γ) + iλt(γ)) = lim
λ→+∞

(−q + iλp) . (2.10)

The reason for the name MSW (Maldacena-Strominger-Witten) is that when p corresponds

to a very ample primitive divisor, these states are in fact described by the superconformal field

theory discussed in [11]. It is important that, due to the symmetry (2.5), ΩMSW(γ) only depend

on pa, µa and q̂0 defined in (2.6) and (2.7). We shall therefore write ΩMSW(γ) = ΩMSW
p,µ (q̂0).

Away from the large volume attractor point (but still in the large volume limit), the

DT invariant Ω(γ; z) receives additional contributions from bound states with charges γi =

(0, pai , qi,a, qi,0) ∈ Γ+ such that
∑

i γi = γ and pi ̸= 0 for each i. For n = 2, the case of primary

interest in this work, bound states exist if and only if the sign of Im(Zγ1Z̄γ2) is equal to the

sign of ⟨γ1, γ2⟩ = pΛ2 q1,Λ − pΛ1 q2,Λ [43]. In the large volume limit, one has

Im(Zγ1Z̄γ2) = −1

2

√
(p1t2) (p2t2) (pt2) Iγ1γ2 , (2.11)

where

Iγ1γ2 =
(p2t

2) (q1,a + (bp1)a) t
a − (p1t

2) (q2,a + (bp2)a) t
a√

(p1t2) (p2t2) (pt2)
(2.12)

is invariant under rescaling of ta. It is convenient to define the ‘sign factor’

∆t
γ1γ2

=
1

2

(
sgn(Iγ1γ2(t))− sgn(⟨γ1, γ2⟩)

)
, (2.13)

where we indicated explicitly the dependence on the Kähler moduli. This factor takes the

value ±1 when bound states are allowed, or 0 otherwise. The DT invariants are then expressed
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in terms of the MSW invariants by [16]

Ω̄(γ; z) = Ω̄MSW(γ) +
1

2

∑
γ1,γ2∈Γ+
γ1+γ2=γ

(−1)⟨γ1,γ2⟩⟨γ1, γ2⟩∆t
γ1γ2

Ω̄MSW(γ1) Ω̄
MSW(γ2) + · · · , (2.14)

where the dots denote contributions of higher order in the MSW invariants.

2.2 Modularity of the BPS partition function

Let us now consider the partition function of DT invariants with fixed magnetic charge p.

Let τ = τ1 + iτ2 ∈ H, c ∈ Rb2 the RR potentials conjugate to D1-brane charges, and b ∈ Rb2

the Kalb-Ramond field. The BPS partition function is defined as the following generating

function of DT-invariants

Zp(τ, z, c) = eπτ2(pt
2)
∑
qΛ

Ω̄(γ; z) (−1)p·q e−2πτ2|Zγ |−2πiτ1(q0+b·q+ 1
2
b2)+2πic·(q+ 1

2
b), (2.15)

where the sum goes over charges satisfying the quantization conditions (2.4). The DT-

invariants are weighted by the Boltzmann factor exp(−2πτ2|Zγ|) and by a phase factor induced

by the couplings of the charges to the potentials τ1, b and c. The factor (−1)p·q is motivated

by modular properties of Zp, whereas the prefactor eπτ2(pt
2) is included so as to subtract the

leading divergent term in the large volume limit of |Zγ|:

|Zγ| =
1

2
(pt2)− q0 + (q + b)2+ − (q +

1

2
b) · b+ · · · . (2.16)

Here the dots denote terms of order 1/(pt2) and, as in [12], we defined

q+ =
qat

a

(pt2)
t , q− = q − q+ , q+ =

qat
a√

(pt2)
, (2.17)

so that q2+ = (q+)
2 = q2 − (q−)

2. In the following we shall study the behavior of the BPS

partition function (2.15) under modular transformations.

Substituting (2.14) into (2.15), one obtains an expansion in powers of the MSW invariants

Zp(τ, z, c) =
∑
n≥1

Z(n)
p (τ, z, c), (2.18)

where Z(n)
p corresponds to the terms of degree n in Ω̄MSW(γi). Due to the symmetry of the

MSW invariants under the spectral flow (2.5), all terms in this expansion have a theta series

decomposition. Indeed, decomposing the vectors qi according to (2.7), we find, for the first

[13, 14, 15] and second [16] terms

Z(1)
p (τ, z, c) = χp(τ, z, c) =

∑
µ∈Λ⋆/Λ

hp,µ(τ) θp,µ(τ, t, b, c), (2.19)

Z(2)
p (τ, z, c) =

1

2

∑
p1+p2=p

∑
µi∈Λ⋆/Λi

hp1,µ1
(τ)hp2,µ2

(τ)Ψp1,p2,µ1,µ2
(τ, t, b, c). (2.20)

Here, we denote by Λi the image of Λ inside Λ∗ under the map ϵa 7→ κabcϵ
bpci and introduce

the following objects (we denote E(x) = e2πix):
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• a holomorphic function of the modular parameter τ built from the MSW invariants

hp,µ(τ) =
∑

q̂0≤q̂max
0

Ω̄MSW
p,µ (q̂0)E(−q̂0τ) ; (2.21)

• the Siegel-Narain theta series

θp,µ(τ, t, b, c) =
∑

k∈Λ+µ+ 1
2
p

(−1)k·p X (θ)
p,k , (2.22)

where

X (θ)
p,k = E

(
−τ
2
(k + b)2− − τ̄

2
(k + b)2+ + c · (k + 1

2
b)
)
; (2.23)

• the ‘double theta series’ [16]

Ψp1,p2,µ1,µ2
(τ, t, b, c) =

∑
ki∈Λi+µi+

1
2
pi

(−1)p1·k1+p2·k2+(p21p2)⟨γ1, γ2⟩∆t
γ1γ2

e2πτ2I
2
γ1γ2X (θ)

p1,k1
X (θ)

p2,k2
,

(2.24)

where Iγ1γ2 and ∆t
γ1γ2

are defined in (2.12) and (2.13).

The theta series decompositions (2.19) and (2.20) provide the starting point to discuss the

modular properties of the BPS partition function. The modular group acts by the following

transformations

τ 7→ aτ + b

cτ + d
, t 7→ |cτ + d| t,

(
c

b

)
7→
(
a b

c d

)(
c

b

)
, (2.25)

with ad − bc = 1. Under this action, the theta series θp,µ is well-known to transform as

a vector-valued Jacobi form of weight ( b2−1
2
, 1
2
) and multiplier system Mθ. In contrast, the

double theta series (2.24) does not transform as a vector-valued Jacobi form under SL(2,Z).
However, it was shown in [16], using similar techniques as in [19], that it can be completed

into a vector-valued modular form Ψ̂ = Ψ+Ψ(+) +Ψ(−) of weight (b2 +
1
2
, 1
2
), at the expense

of adding two double theta series of the form

Ψ(±)
p1,p2,µ1,µ2

(τ, t, b, c) =
∑

ki∈Λi+µi+
1
2
pi

(−1)p1·k1+p2·k2+(p21p2)Π(±)
γ1γ2

e2πτ2I
2
γ1γ2X (θ)

p1,k1
X (θ)

p2,k2
, (2.26)

where the insertions are given by the following expressions

Π(+)
γ1γ2

=

√
(pt2) (p1p2t)2

8π2τ2 (p1t2) (p2t2)
e−2πτ2I2

γ1,γ2 − 1

2
⟨γ1, γ2⟩ sgn(Iγ1γ2) β 1

2

(
2τ2I2

γ1γ2

)
, (2.27)

Π(−)
γ1γ2

= − 1

4π
|⟨γ1, γ2⟩| β 3

2

(
2τ2⟨γ1, γ2⟩2

(pp1p2)

)
. (2.28)

Here we used the function βν(y) =
∫ +∞
y

duu−νe−πu, so that for x ∈ R

β 1
2
(x2) = Erfc(

√
π|x|), β 3

2
(x2) = 2|x|−1e−πx2 − 2πβ 1

2
(x2). (2.29)
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In Appendix A we provide a simple proof of the modular invariance of Ψ̂ based on Vignéras’

theorem [44]. For the proof, it is important that the insertions Π
(±)
γ1γ2 cancel the discontinuities

of the sign factor ∆t
γ1γ2

in (2.24) on the loci Iγ1,γ2 = 0 or ⟨γ1, γ2⟩ = 0 in the 2b2-dimensional

space spanned by the vectors (k1,k2), so that the summand in the completed theta series Ψ̂ is

a smooth function. It is also important to remark that both functions (2.26) are exponentially

suppressed as τ2 → +∞, and that Π
(−)
γ1γ2 is independent of the Kähler moduli, whereas Π

(+)
γ1γ2

does depend on ta through Iγ1,γ2 defined in (2.12).

In [13, 14, 15, 16, 12], it was argued that the first term (2.19) transforms as a modular

form of weight (−3
2
, 1
2
). As a consequence, the generating function hp,µ had to transform as a

vector-valued modular form of weight (− b2
2
− 1, 0) and multiplier system M(g) =MZ ×M−1

θ ,

where MZ = e2πiϵ(g)p
ac2,a and ϵ(g) is the multiplier system of the Dedekind eta function. This

proposal has been confirmed in examples where the effective divisor D wrapped by the D3-

brane is irreducible [13, 45], but its validity for a general non-primitive or reducible divisor

remained to be assessed.

In fact, the example of N D4-branes in non-compact Calabi-Yau manifolds (or equiva-

lently topologically twistedN = 4 U(N) Yang-Mills theory [21]) indicates that hp,µ is unlikely

to be modular in general. In the context of N = 4 Yang-Mills, examples are known with p

reducible (more precisely, with the gauge group U(2) [21, 23, 22]), where hp,µ is not modular,

but becomes so after adding to it a suitable non-holomorphic function Rp,µ. In other words,

ĥp,µ(τ) = hp,µ(τ)−
1

2
Rp,µ(τ) (2.30)

is a vector-valued modular form at the cost of being non-holomorphic, while hp,µ is a vector-

valued (mixed) mock modular form [19, 20]. Given that additional non-holomorphic terms

were also required to turn the double theta series (2.24) into a modular form Ψ̂, we expect

that for a general divisor, the holomorphic generating function of MSW invariants hp,µ will

only become modular after the addition of a suitable non-holomorphic function.

Assuming then that Rp,µ exists such that (2.30) is a vector-valued modular form, the

modular completion of the BPS partition function (2.15) becomes

Ẑp(τ, z, c) =
∑
n≥1

Ẑ(n)
p (τ, z, c), (2.31)

where

Ẑ(1)
p =

∑
µ∈Λ⋆/Λ

ĥp,µ θp,µ,

Ẑ(2)
p =

1

2

∑
p1+p2=p

∑
µi∈Λ⋆/Λi

ĥp1,µ1
ĥp2,µ2

Ψ̂p1,p2,µ1,µ2
.

(2.32)

Since the modular anomaly of hp,µ is expected to arise when the divisor D can split into several

components, we expect that Rp,µ should be controlled by the product of the corresponding

MSW invariants. At this point, however, the function Rp,µ remains still undetermined. We

shall now fix it by comparing the above construction with the analysis of the D3-instantons

corrections to the hypermultiplet metric.
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2.3 Comparison with the contact potential

In our study of instanton effects on the hypermultiplet moduli space MH in the twistor

formalism, we shall find in section 4 that D3-instanton contributions to the contact potential

in the two-instanton approximation can be expressed in terms of the following function:∑
µ∈Λ⋆/Λ

hp,µ θp,µ +
1

2

∑
p1+p2=p

∑
µi∈Λ⋆/Λi

hp1,µ1
hp2,µ2

(
Ψp1,p2,µ1,µ2

+Ψ(+)
p1,p2,µ1,µ2

)
. (2.33)

In order for the metric on MH to carry an isometric action of the modular group, it is

necessary that (2.33) be a modular form of weight (−3
2
, 1
2
).

On the other hand, the completed BPS partition function (2.31) differs from (2.33) in two

ways: the modular forms ĥ are replaced by their non-completed version h, and in the second

term the contribution of Ψ(−) is missing. Remarkably, these two differences cancel amongst

each other provided∑
µ∈Λ⋆/Λ

Rp,µ θp,µ =
∑

p1+p2=p

∑
µi∈Λ⋆/Λi

hp1,µ1
hp2,µ2

Ψ(−)
p1,p2,µ1,µ2

. (2.34)

In more detail, this condition ensures that the complementary terms, appearing due to the

completion of h to ĥ in Ẑ(1)
p , cancel a part of the additional terms in Ẑ(2)

p , while the remaining

discrepancy due to the difference between h and ĥ in Ẑ(2)
p is of higher order in the expansion in

MSW invariants. In Appendix B, we show that the condition (2.34) is solved by choosing Rp,µ

as in (1.3), where the functions Sp1,p2
, Qp1,p2

and the variables µ̃, νi are defined in (B.11),

(B.13), (B.8) and (B.14), respectively. This shows that in order for the contact potential

to have the right modular property, the generating function hp,µ of MSW invariants must

have an anomalous modular transformation. Its modular completion is provided by the non-

holomorphic function (1.3), constructed out of the generating functions hp1,µ1
and hp2,µ2

of

MSW invariants associated to all possible decompositions p = p1+p2. In the next subsection

we demonstrate that hp,µ is actually a vector-valued mixed mock modular form.

It is worth stressing that the result above is valid if D can be written as a sum D = D1+D2

for at most two effective divisors D1 and D2. In particular, hpi,µi
are modular forms, since

pi cannot be further decomposed as a sum of effective charges pi = pi,1 + pi,2. If p can be

written as a sum of more than two effective pi, then (1.3) will involve further corrections of

higher order in MSW invariants. It is reassuring to note that (1.3) is consistent with explicit

expressions which are available for various non-compact Calabi-Yau’s, given by canonical

bundles over a rational surface S. For instance, setting p1 = p2 in (1.3), it reproduces the

result of [21, Eq. (4.30)] and [22, Section 3.2] for t = −KS, where KS is the canonical class

of the surface S.

2.4 Mock modularity and the MSW elliptic genus

Having deduced the modular completion of the generating function of MSW invariants hp,µ,

which appears as a building block of the contact potential, we shall now compare its properties

with mock modular forms and consider its implications for the elliptic genus of the MSW

conformal field theory.
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First we recall a few relevant aspects of mock modular forms [20, 29]. Let g(τ) be a

holomorphic modular form of weight 2−k. The “shadow map” maps g to the non-holomorphic

function g∗ defined by

g∗(τ) = (i/2)k−1

∫ ∞

−τ̄

(z + τ)−k g(−z̄) dz. (2.35)

A mock modular form of weight k and with shadow g, is a holomorphic function h(τ) such

that its non-holomorphic completion

ĥ = h+ g∗ (2.36)

transforms as a modular form of weight k. Acting with the shadow operator τ 22∂τ̄ on ĥ gives

τ 22∂τ̄ ĥ = τ 2−k
2 g , (2.37)

from which the shadow g is easily obtained by multiplication with τ k−2
2 and complex conju-

gation. Note that the r.h.s. transforms as a modular form of weight k − 2.

More generally, a mixed mock modular form of weight k [29] is a holomorphic function

h(τ) such that there exists (half) integer numbers rj and modular forms fj and gj, respectively

with weights k + rj and 2 + rj, such that the completion

ĥ = h+
∑
j

fj g
∗
j (2.38)

transforms as a modular form of weight k. Acting with the shadow operator on ĥ one obtains

τ 22∂τ̄ ĥ =
∑
j

τ
2+rj
2 fj gj. (2.39)

Let us now return to the function hp,µ and its completion ĥp,µ (2.30). Applying the

shadow operator τ 22∂τ̄ to ĥp,µ, one finds

τ 22∂τ̄ ĥp,µ(τ) =

√
2τ2

32πi

∑
p1+p2=p

∑
µi∈Λ⋆/Λi

hp1,µ1
(τ)hp2,µ2

(τ)
√
(pp1p2)

×
∑

ρ∈(Λ1−µ̃)∩(Λ2+µ̃)

(−1)Sp1,p2 (µ1,µ2,ρ)e
−2πτ2

(Sp1,p2 (µ1,µ2,ρ))
2

(pp1p2)
+πiτQp1,p2(ν1,ν2) ,

(2.40)

where the various symbols are defined in Appendix B. To see that the modular weights match

on the two sides of the equation, we observe from (B.13) and (B.14) that the sum over ρ runs

over a lattice with signature (b2 − 1, 1), therefore the second line of (2.40) is a theta series of

weight 1
2
(b2 − 1, 1). Combining this with the weights of

√
τ2 and hpi,µi

, the total weight of

the right hand side evaluates to −(1
2
b2 + 3, 0), consistently with the left-hand side.

Furthermore, the theta series on the second line of (2.40) can be expressed as a sum of

holomorphic theta series of weight 1
2
(b2 − 1) times anti-holomorphic theta series of weight 1

2
,

such that (2.40) can be brought to the form (2.38). This shows that hp,µ is a (vector-valued)

mixed mock modular form with rj = −3
2
for all j.
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To get more insight into this anomaly, we now consider the completed elliptic genus,

defined by the first term in the completed BPS partition function (2.31),

χ̂p(τ, z, c) ≡ Ẑ(1)
p =

∑
µ∈Λ∗/Λ

ĥp,µ(τ) θp,µ(τ, t, b, c). (2.41)

The analogue of the shadow operator for χ̂p is

D = τ 22

(
∂τ̄ −

i

4π
∂2c+ +

b+
2
∂c+ +

πi

4
b2+

)
, (2.42)

where + indicates the projection to t. This differential operator annihilates θp,µ in (2.41),

such that its action on χ̂p is only non-vanishing if ĥp,µ is non-holomorphic or, equivalently, p

is reducible.

We shall now show that in the special case where p = 2p0 with p0 irreducible, the mock

modularity of hp,µ is such that the “holomorphic anomaly” D χ̂2p0
is proportional to (χp0

)2.

Note that since we restrict to p which can be written as a sum of at most two effective divisors,

this implies that p1 = p2 = p0. We furthermore specialize the (real) Kähler modulus t to

the large volume attractor point limλ→∞ λp0 (2.10), which is the attractor point of t at the

horizon geometry AdS3 × S2 ×Y of the M5-brane [46]. In χ̂p the magnitude of t is actually

irrelevant, and we could just as well set t = p0. The scale invariance also implies that the

attractor points for the MSW field theories corresponding to magnetic charges p0 and 2p0 are

equal.

Using these specializations in (2.34) and the expressions (2.26) and (2.28), we find that

the completion of χ̂2p0
is obtained by adding to χ2p0

the following term

1

8π

∑
µi∈Λ∗/Λi

hp0,µ1
(τ)hp0,µ2

(τ)
∑

ki∈Λi+µi+
1
2
p0

(−1)p0·(k1+k2)+p30 |p0 · (k1 − k2)|

× β 3
2

(
τ2
p30

(p0 · (k1 − k2))
2

)
e

πτ2
p30

(p0·(k1−k2))
2

X (θ)
p0,k1

X (θ)
p0,k2

.

(2.43)

Computing the action of D on this term, we obtain that the holomorphic anomaly of χ̂2p0
is

proportional to the square of χp0
,

D χ̂2p0
= (−1)p

3
0

√
τ2p30

16πi
χ2
p0
. (2.44)

This extends the holomorphic anomaly of N = 4 U(2) gauge theory on (local) surfaces

[21, 22] to divisors in compact threefolds of the form 2p0 with p0 irreducible. When the

divisor p = p1 + p2 is primitive, and therefore p1 ̸= p2, the shadow does not seem to take

such a factorized form. A possible explanation is that, whereas for p1 = p2 the large volume

attractor points agree for magnetic charges p1, p2 and p1+p2, this is not the case if p1 ̸= p2.

3. D3-instantons in the twistor formalism

In this section, we briefly review the twistorial construction of the D-instanton corrected

metric on the hypermultiplet space MH , with emphasis on D3-instanton corrections in the

large volume limit. More details can be found in the reviews [1, 2] and in the original works

[8, 5, 10, 12, 47].
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3.1 Hypermultiplet moduli space in type IIB string theory on a CY threefold

The hypermultiplet moduli space MH is a quaternion-Kähler manifold of dimension 4b2 + 4,

which describes the dynamics of the ten-dimensional axio-dilaton τ = c0 + i/gs, the Kähler

moduli za = ba + ita, the Ramond-Ramond (RR) scalars ca, c̃a, c̃0, corresponding to periods

of the RR 2-form, 4-form and 6-form on a basis of Heven(Y,Z), and finally, the NS axion

ψ, dual to the Kalb-Ramond two-form B in four dimensions. At tree-level, the metric on

MH is obtained from the moduli space MSK of complexified Kähler deformations via the

c-map construction [48, 49]. The special Kähler manifold MSK is characterized by the holo-

morphic prepotential F (X) where XΛ are homogeneous complex coordinates on MSK such

that XΛ/X0 = zΛ (with z0 = 1). Classically, the prepotential is determined by the in-

tersection numbers F cl(X) = −κabc X
aXbXc

6X0 , whereas quantum mechanically it is affected by

α′-corrections, which are however suppressed in the large volume limit.

As mentioned in the introduction, beyond the tree-level the metric on MH receives quan-

tum gs-corrections. At the perturbative level there is only a one-loop correction, proportional

to the Euler characteristics χY. The corresponding metric is a one-parameter deformation of

the c-map found explicitly in a series of works [50, 51, 52, 53, 54]. At the non-perturbative

level, there are corrections from D-branes wrapped on complex cycles in Y (described by

coherent sheaves on Y), and from NS5-branes wrapped on Y, which we ignore in this paper.

Before recalling how D-brane instantons affect the metric, a few words are in order about

the symmetries of MH . In the classical, large volume limit, the metric is invariant under the

semi-direct product of SL(2,R) times the graded nilpotent algebra N = N (1) ⊕N (2) ⊕N (3),

where the generators in N (1), N (2), N (3) transform as b2 doublets, b2 singlets and one doublet

under SL(2,R), respectively. Quantum corrections break this continuous symmetry, but are

expected to preserve an isometric action of the discrete subgroup SL(2,Z) n N(Z), where
SL(2,Z) descends from S-duality group of type IIB supergravity, while the nilpotent factor

corresponds to monodromies around the large volume point and large gauge transformations

of the RR and Kalb-Ramond fields. Under an element g =
(
a b

c d

)
∈ SL(2,Z), the type IIB

fields transforms as in (2.25), supplemented by the following action on c̃a, c̃0, ψ,

c̃a 7→ c̃a − c2,aε(g) ,

(
c̃0
ψ

)
7→
(
d −c
−b a

)(
c̃0
ψ

)
, (3.1)

where ε(g) is the logarithm of the multiplier system of the Dedekind eta function [38, 12].

In the absence of D5 and NS5-brane instantons, the metric admits two additional continuous

isometries, acting by shifts of c̃0 and ψ.

3.2 Twistorial construction of D-instantons

Quantum corrections to MH are most easily described using the language of twistors. The

twistor space Z of MH is a CP 1-bundle over MH endowed with a complex contact structure.

This contact structure is represented by a (twisted) holomorphic one-form X , which locally

can always be expressed in terms of complex Darboux coordinates as

X [i] = dα[i] + ξ̃
[i]
Λ dξΛ[i] , (3.2)
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where the index [i] labels the patches Ui of an open covering of CP 1. The global contact

structure on Z (hence, the metric on M) is then encoded in contact transformations between

Darboux coordinate systems on the overlaps Ui ∩ Uj. It is convenient to parametrize these

transformations by holomorphic functions H [ij](ξΛ, ξ̃Λ, α), known as contact hamiltonians6

[55], which generate the contact transformations by exponentiating the action of the vector

field

XH =
(
−∂ξ̃ΛH + ξΛ∂αH

)
∂ξΛ + ∂ξΛH ∂ξ̃Λ +

(
H − ξΛ∂ξΛH

)
∂α. (3.3)

Thus, a set of such holomorphic functions associated to a covering of CP 1 (satisfying obvious

consistency conditions on triple overlaps) uniquely defines a quaternion-Kähler manifold.

To extract the metric from these data, the first step is to express the Darboux coordinates

in terms of coordinates on MH and the stereographic coordinate t on CP 1. They are fixed

by regularity properties and the gluing conditions

(ξΛ[j], ξ̃
[j]
Λ , α

[j]) = eXH[ij] · (ξΛ[i], ξ̃
[i]
Λ , α

[i]), (3.4)

which typically can be rewritten as a system of integral equations. Once the Darboux co-

ordinates are found, it is sufficient to plug them into the contact one-form (3.2), expand

around any point t ∈ CP 1 and read off the components of the SU(2) part of the Levi-Civita

connection p⃗. E.g. around the point t = 0, the expansion reads

X [i] = −4i eΦ
[i]

(
dt

t
+
p+
t

− i p3 + p−t

)
. (3.5)

The scale factor eΦ
[i]

is known as the contact potential [8]. In the case when MH has a

continuous isometry and the Darboux coordinates are chosen such that this isometry lifts to

the vector field ∂α, Φ is globally well-defined (i.e. independent of the patch index [i]) and is

independent of the fiber coordinate t. Thus, it becomes a function on MH which, in fact,

coincides with the norm of the moment map associated to the isometry [9].

In this formalism the D-instanton corrected hypermultiplet moduli space, with NS5-brane

instantons being ignored, was constructed in [5, 10]. We omit the details of this construction

and present only those elements which are relevant for the analysis of the contact potential.

• The contact hamiltonians enforcing D-instanton corrections to the metric are given by

Hγ(ξ, ξ̃) =
Ω̄(γ)

(2π)2
σγXγ , (3.6)

where Xγ = E
(
pΛξ̃Λ − qΛξ

Λ
)
, Ω̄(γ) are rational DT invariants (2.9), and σγ is a

quadratic refinement of the intersection pairing on Heven(Y), a sign factor which we

fix below. They generate contact transformations connecting Darboux coordinates on

the two sides of the BPS rays ℓγ on CP 1 extending from t = 0 to t = ∞, along the

direction fixed by the central charge

ℓγ = {t ∈ CP 1 : Zγ/t ∈ iR−}. (3.7)

6The contact hamiltonians coincide with the generating functions introduced in [8] in the special case

where H [ij] is independent of ξ̃Λ and α.
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• The Darboux coordinates are obtained by solving the following integral equations

Xγ(t) = X sf
γ (t)E

(
1

8π2

∑
γ′

σγ′Ω̄(γ′) ⟨γ, γ′⟩
∫
ℓγ′

dt′

t′
t+ t′

t− t′
Xγ′(t′)

)
, (3.8)

where

X sf
γ (t) = E

(
τ2
2

(
Z̄γ(ū) t−

Zγ(u)

t

)
+ pΛζ̃Λ − qΛζ

Λ

)
(3.9)

are the Fourier modes of the tree-level (or ‘semi-flat’) Darboux coordinates valid in the

absence of D-instantons.7 In the weak coupling limit, these equations can be solved

iteratively, leading to a (formal) multi-instanton series. This gives ξΛ and ξ̃Λ in each

angular sector, which can then be used to compute the Darboux coordinate α, whose

explicit expression can be found in [10] and will not be needed in this paper. These

equations provide Darboux coordinates as functions of the fiber coordinate t and vari-

ables (τ2, u
a, ζΛ, ζ̃Λ, σ) which play the role of coordinates on MH . They are adapted to

the symmetries of the type IIA formulation and therefore can be considered as natural

coordinates on the moduli space of type IIA string theory compactified on the mirror

Calabi-Yau threefold. Their relation to the type IIB fields will be explained in the next

subsection.

• Given the Darboux coordinates Xγ, the contact potential eΦ is obtained from the

Penrose-type integrals

eΦ =
iτ 22
16

(
ūΛFΛ − uΛF̄Λ

)
− χY

192π
+

iτ2
64π2

∑
γ

σγΩ(γ)

∫
ℓγ

dt

t

(
t−1Zγ(u)− tZ̄γ(ū)

)
Xγ.

(3.10)

3.3 S-duality and mirror map

The D3-instanton corrected metric is obtained from the construction above by assuming that

the only non-vanishing DT invariants Ω(pΛ, qΛ; z
a) are those where the D5-brane charge p0

vanishes. While we expect that this metric should carry an isometric action of SL(2,Z),
this symmetry is far from being manifest. Indeed, the construction above is adapted to

symplectic invariance, which is manifest in type IIA formulation, rather than to S-duality,

which is explicit on the type IIB side. In particular, the Darboux coordinates are defined by

(3.8) in terms of type IIA variables. In order to understand their behavior under S-duality,

they should be rewritten instead in terms of type IIB variables, which we define by their

transformation properties (2.25), (3.1). We refer to the change of coordinates from IIA to IIB

variables as the mirror map.

In the classical approximation (i.e. tree-level, large volume limit), the mirror map was

found in [56] and is given by

ua = ba + ita , ζ0 = τ1 ,

ζ̃a = c̃a +
1

2
κabc b

b(cc − τ1b
c) , ζ̃0 = c̃0 −

1

6
κabc b

abb(cc − τ1b
c) ,

σ = −(2ψ + τ1c̃0) + c̃a(c
a − τ1b

a)− 1

6
κabc b

acb(cc − τ1b
c) .

(3.11)

7The argument ua of the central charge Zγ can be understood as the complex structure moduli in the

mirror threefold and will be related to the Kähler moduli za of the threefold Y by the mirror map.
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One can check that, if one substitutes these expressions into the classical Darboux coordi-

nates, obtained by dropping all integrals and retaining only the classical part the holomorphic

prepotential F (X), and supplement the SL(2,Z) transformations of the type IIB fields by

the following fractional transformation of the fiber coordinate

t 7→ cτ2 + t(cτ1 + d) + t|cτ + d|
(cτ1 + d) + |cτ + d| − tcτ2

, (3.12)

the resulting Darboux coordinates transform holomorphically as in [12, Eq.(2.20)]. Moreover,

it is straightforward to check that this transformation preserves the contact structure since it

rescales the contact one-form by a holomorphic factor,

X 7→ X
cξ0 + d

. (3.13)

This demonstrates that SL(2,Z) acts isometrically on MH in the classical approximation.

To go beyond this approximation, one must ensure that, even after inclusion of quantum

corrections into the Darboux coordinates, SL(2,Z) still acts on them by a holomorphic contact

transformation. The main complication comes from the fact that the mirror map itself gets

corrected. Thus, the key problem is to find corrections to (3.11) such that the resulting

Darboux coordinates transform holomorphically and the contact one-form satisfies (3.13).

For the pure D1-D(-1)-instantons this problem was solved in [57]. Furthermore, it was

shown that after a local contact transformation, the instanton corrected Darboux coordinates

transform exactly as the classical ones, and the description of the twistor space in terms of a

covering of CP 1 and contact hamiltonians takes a manifestly modular invariant form. Then

in [58] it was understood how to derive the mirror map for generic QK manifolds obtained

by a deformation of the c-map and preserving two-continuous isometries, of which MH cor-

rected by D3-instantons is a particular case.8 The idea is that the mirror map is induced

by converting the kernel dt′

t′
t′+t
t′−t

, appearing in the integral equations for Darboux coordinates

and transforming non-trivially under S-duality, into a modular invariant kernel. In [12] these

results were applied to D3-instantons in the one-instanton, large volume approximation. We

summarize them in the next subsection. But before that we make two comments.

First, it is convenient to redefine the coordinate t by a Cayley transformation:

z =
t+ i

t− i
. (3.14)

The transformation (3.12), lifting the SL(2,Z) action on MH to a holomorphic contact trans-

formation in twistor space, then takes the simpler form

z 7→ cτ̄ + d

|cτ + d|
z . (3.15)

In particular, the two points t = ∓i on CP 1, which stay invariant under the SL(2,Z) action,
are mapped to z = 0 and z = ∞, which makes it easier to do a Fourier expansion around

them. Secondly, the fact that dt
t
transforms into |cτ+d|

cξ0+d
dt
t
under (3.12), along with (3.5) and

8In this class of geometries the action of SL(2,Z) on the fiber coordinate (3.12) remains uncorrected, unlike

in the case without any continuous isometries considered in [59].
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(3.13), shows that the contact potential eΦ must transform as a modular form of weight

(−1
2
,−1

2
) [5],

eΦ 7→ eΦ

|cτ + d|
. (3.16)

3.4 D3-instantons in the one-instanton approximation: a summary

Here we summarize the results obtained in [12] which are relevant for the evaluation of the

contact potential in the next section. First, we recall that they are derived in the one-

instanton, large volume approximation, which means that one restricts to the first order in

the expansion in the DT or MSW invariants and takes the limit ta → ∞. In this limit, the

integrals along BPS rays ℓγ are dominated by a saddle point at

z′γ ≈ −i
(q + b)+√

(pt2)
(3.17)

for (pt2) > 0 and z′−γ = 1/z′γ in the opposite case. This shows that in all integrands we can

send z′ either to zero or infinity keeping constant taz′ or ta/z′, respectively.

Next, we should fix the quadratic refinement appearing in (3.6). We choose it to be

σγ = E
(
1
2
paqa

)
σp where σp = E

(
1
2
Aabp

apb
)
and Aab is the matrix satisfying

Aabp
p − 1

2
κabcp

bpc ∈ Z for ∀pa ∈ Z, (3.18)

and performing the symplectic rotation making the charges integer valued (see footnote 5).

It is easy to check that such quadratic refinement satisfies the defining relation

σγ1σγ2 = (−1)⟨γ1,γ2⟩σγ1+γ2 . (3.19)

With these definitions one has the following results:

• Quantum mirror map. The following expression

ua = ba + ita − i

8π2τ2

∑
γ∈Γ+

σγΩ̄(γ)p
a

[∫
ℓγ

dz (1− z)Xγ +

∫
ℓ−γ

dz

z3
(1− z)X−γ

]
(3.20)

replaces the simple relation (3.11) between the complex structure moduli and the type

IIB fields. The other relations of the classical mirror map also get corrections due to

D3-instantons, but are not needed for the purposes of this paper.

• Darboux coordinates. If one defines the instanton expansion of the Fourier modes Xγ as

Xγ = X cl
γ

(
1 + X (1)

γ + · · ·
)
, (3.21)

then for γ ∈ Γ+ one finds9

X cl
γ = e−2πScl

p E(−q̂0τ + iQγ(z))X (θ)
p,q, (3.22)

X (1)
γ =

1

2π

∑
γ′∈Γ+

σγ′Ω(γ′)

∫
ℓγ′

dz′
(
(tpp′)− i⟨γ, γ′⟩

z′ − z

)
X cl

γ′ , (3.23)

9Although (3.23) did not appear explicitly in [12], it can be easily obtained from Eqs. (4.5) and (4.7) of

that paper.
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where X (θ)
p,q was defined in (2.23) and gives rise to the usual Siegel theta series, Scl

p is

the leading part of the Euclidean D3-brane action in the large volume limit, and Qγ(z)

is the only part of X cl
γ depending on z,

Scl
p =

τ2
2
(pt2)− ipac̃a, Qγ(z) = τ2(pt

2)

(
z + i

(q + b)+√
(pt2)

)2

. (3.24)

Note that X cl
γ is the part of X sf

γ (3.9) obtained by using the classical mirror map (3.11),

whereas X (1)
γ has two contributions: one from the integral term in the equation (3.8)

and another from quantum corrections to the mirror map. For the opposite charge, the

results can be obtained via the complex conjugation and the antipodal map, X−γ(z) =

Xγ(−z̄−1).

• Contact potential. The D3 one-instanton contribution to the contact potential takes the

simple form

δ(1)eΦ =
τ2
2
Re
∑
p

D− 3
2
F (1)

p , (3.25)

where

Dh =
1

2πi

(
∂τ +

h

2iτ2
+

ita

4τ2
∂ta

)
, (3.26)

is the modular covariant derivative operator mapping modular functions of weight (h, h̄)

to modular functions of weight (h+ 2, h̄), whereas the function F (1)
p is given by

F (1)
p =

1

4π2

∑
qΛ

σγΩ̄(γ)

∫
ℓγ

dzX cl
γ =

σp e
−πτ2(pt2)+2πipac̃a

4π2
√
2τ2(pt2)

Z(1)
p (3.27)

and is proportional to the MSW elliptic genus (2.19). Since in this approximation,

Z(1)
p transforms as a modular form of weight (−3

2
, 1
2
), the contact potential satisfies the

required modular properties.

4. Contact potential

Although the complete proof that the D3-instanton corrected hypermultiplet moduli space

carries an isometric action of SL(2,Z) requires analyzing the modular transformations of the

full system of Darboux coordinates, in this paper we restrict our attention to the modular

properties of the contact potential. This provides a highly non-trivial test of S-duality and,

as was explained in section 2.4, already has important implications for understanding the

modular properties of the elliptic genus and the partition function of DT invariants. The

analysis of Darboux coordinates will be presented in [18].

Let us evaluate the D3-instanton contribution to the contact potential (3.10) up to second

order in the expansion in DT invariants. This requires the knowledge of the mirror map for

ua to the same order. We assume that it is given by the same relation (3.20) as above where,

however, the Fourier modes Xγ should now be substituted by their expressions (3.21) including
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one-instanton contributions. In appendix C.1 we provide the details of the calculation. To

present the final result, we first introduce the obvious generalization of the function (3.27),

F =
1

4π2

∑
γ∈Γ+

σγΩ̄(γ)

∫
ℓγ

dzXγ. (4.1)

Expanding it to the second order, one finds

F =
∑
p

F (1)
p +

∑
p1,p2

F (2)
p1p2

+ · · · , (4.2)

where F (1)
p is given in (3.27), whereas the second order term reads

F (2)
p1p2

=
1

8π3

∑
q1,Λ,q2,Λ

σγ1σγ2Ω̄(γ1)Ω̄(γ2)

∫
ℓγ1

dz1

∫
ℓγ2

dz2

[
(tp1p2)−

i⟨γ1, γ2⟩
z2 − z1

]
X cl

γ1
(z1)X cl

γ2
(z2),

(4.3)

where we used (3.23). The function encoding the contact potential is obtained by halving the

coefficient of the second order term in the simple twistor integral (4.1),

F̃p = F (1)
p +

1

2

∑
p1+p2=p

F (2)
p1p2

, (4.4)

While this prescription may seem surprising at first sight, it follows from the indistinguisha-

bility of the constituents with charges p1,p2.

In terms of the function (4.4), the D3-instanton contribution to the contact potential has

a simple representation which generalizes (3.25),

δeΦ =
τ2
2
Re
∑
p

D− 3
2
F̃p −

1

8

∑
p1,p2

(tp1p2)F (1)
p1

F (1)
p2
. (4.5)

Since F (1)
p1

transforms under S-duality with modular weight (−3
2
, 1
2
)10, it is immediate to see

that the last term in (4.5) transforms as a modular form of weight (−1
2
,−1

2
), as required for the

contact potential. Hence the same should be true for the first term. Since D− 3
2
is a modular

covariant operator, raising the weight by (2,0), one concludes that modular invariance requires

that the full function F̃p must be a modular form of weight (−3
2
, 1
2
).

Let us rewrite this function in terms of MSW invariants and perform its theta series

decomposition. To this end, we plug in the expansion of DT invariants given by (2.14),

keeping only terms of second order in Ω̄MSW, and then substitute (3.22). The result is

F̃p =
e−2πScl

p

4π2

{ ∑
µ∈Λ⋆/Λ

hp,µ
∑

k∈Λi+µ+ 1
2
p

σγYγ X (θ)
p,k

+
1

2

∑
p1+p2=p

∑
µi∈Λ⋆/Λi

hp1,µ1
hp2,µ2

∑
ki∈Λi+µi+

1
2
pi

σγ1σγ2

[
⟨γ1, γ2⟩∆t

γ1γ2
YγE

(τ
2
Qp1,p2

(k1,k2)
)
X (θ)

p,k

+
1

2π

(
(tp1p2)Yγ1Yγ2 − i⟨γ1, γ2⟩ Yγ1γ2

)]
X (θ)

p1,k1
X (θ)

p2,k2

}
, (4.6)

10The modular anomaly of F (1)
p1

discussed in section 2 is of second order in the instanton expansion and

therefore can be ignored in our approximation in the discussion of the last term in (4.5).
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where we defined

Yγ =

∫
ℓγ

dz e−2πQγ1 (z), Yγ1γ2 =

∫
ℓγ1

dz1

∫
ℓγ2

dz2
e−2π(Qγ1 (z1)+Qγ2 (z2))

z2 − z1
. (4.7)

The first integral is Gaussian and is easily evaluated, whereas the second integral is more

involved and computed in appendix C.2. The two results are

Yγ =
1√

2τ2(pt2)
, Yγ1γ2 = −πi e

2πτ2I2
γ1γ2√

2τ2(pt2)
sgn(Iγ1γ2) β 1

2
(2τ2I2

γ1γ2
). (4.8)

Plugging them into (4.6) and taking into account that due to (3.18)

σp1
σp2

σ−1
p1+p2

= E
(
Aabp

a
1p

b
2

)
= (−1)(p

2
1p2), (4.9)

one finds that F̃p coincides, up to a modular invariant factor, with the function given in

(2.33). As was shown in section 2, this function is indeed a modular form of weight (−3
2
, 1
2
)

provided hp,µ is mock modular and its modular completion is given by (2.30) and (1.3). In

this case, in the second order approximation, it can be identified with the partition function

(2.31) so that we arrive at

F̃p =
σp e

−2πScl
p

4π2
√
2τ2(pt2)

Ẑp . (4.10)

This result generalizes (3.27) and ensures the right transformation properties of the contact

potential.

5. Discussion

In this paper we studied the invariance of the D3-instanton corrected metric on the hyper-

multiplet moduli space in type IIB Calabi-Yau string vacua under S-duality. We restricted

ourselves to the two-instanton, large volume approximation and concentrated on the contact

potential eΦ, which is sensitive to all quantum corrections to the metric. S-duality requires

that it must transform as a modular form of fixed weight. We showed that in our approxima-

tion, D3-instanton contributions to eΦ can be expressed in terms of the modular derivative

of a function Ẑp constructed, on the one hand, from a non-holomorphic modification ĥp,µ
(2.30) of the generating function of the MSW invariants hp,µ, and on the other hand, from

the double theta series Ψ̂ constructed in [16]. The modular invariance of eΦ then requires

that Ẑp should transform as a Jacobi form (of fixed weight and multiplier system), which in

turn implies that ĥp,µ should transform as a vector-valued modular form. Thus, when the

divisor D wrapped by the D3-brane is reducible, hp,µ is only mock modular. In the case when

D can split into at most two effective divisors D1 +D2, the modular anomaly is dictated by

the non-holomorphic completion Rp,µ given in (1.3). Clearly, it would be desirable to find

independent checks of this conjecture. Beyond this, our work opens several avenues for future

research:

• The modular function Ẑp (1.2) can be viewed as the BPS partition function of D4-

D2-D0 black holes in N = 2 supergravity in R3,1. The non-holomorphic terms which
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are necessary for modularity, can be understood as a consequence of the continuum of

scattering states in R3,1. It would be interesting to derive these non-holomorphic terms

from the space-time perspective along the lines of [30, 60].

• As was done in (2.41), the first term Ẑ(1)
p in (1.2) should be interpreted as the completed

elliptic genus χ̂p of the MSW SCFT obtained by wrapping an M5-brane on D. The

holomorphic anomaly is expected to arise from a spectral asymmetry in a continuum of

states, corresponding to configurations where the M5-brane on D splits into two M5-

branes wrapping D1 and D2. It would be interesting to derive the modular anomaly

of the generating function hp,µ using this interpretation, which would require a better

understanding of the M5-brane CFT [11, 61].

• Another challenging approach is to determine the DT invariants Ω(γ;z) for specific

Calabi-Yau manifolds using enumerative algebraic geometry. Since our results give an

explicit constraint on DT invariants for pure codimension 2 sheaves, the knowledge of

Ω(γ;z) will allow to verify the necessity of the non-holomorphic modification Rp,µ. One

could, for example, try to extend the approach of [13] to two D4-branes on the quintic,

or to Calabi-Yau threefolds with b2 > 1.

• Returning to the subject of hypermultiplet moduli spaces, the fact that the contact

potential is modular is only a necessary condition for the existence of an isometric action

of S-duality on MH . A complete proof requires analyzing the Darboux coordinates and

showing that they transform by a holomorphic contact transformation, as was done in

the one-instanton approximation in [12]. A similar analysis at two-instanton level will

be the subject of the subsequent work [18].

• It would also be interesting to go beyond the large volume approximation and to arbi-

trary order in the multi-instanton expansion. An important step in this direction would

be to obtain a twistorial formulation of D3-instantons which is manifestly invariant

under S-duality, along the lines outlined in [58].

• Finally, a far-reaching goal is to get a complete non-perturbative description of the

exact hypermultiplet moduli space including, in particular, five-brane instantons. Their

modularity can be enforced by covariantizing the known results on D5-instantons under

S-duality. This was realized at a linearized level in [38] and attempted beyond the

linear approximation in [55, 47], but it is not clear whether a simple covariantization is

sufficient to get the complete picture.
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A. Indefinite theta series

In this section, we provide an alternative proof to the fact that Ψ̂ = Ψ+Ψ(+)+Ψ(−) transforms

as a vector valued Jacobi form of weight (b2 +
1
2
, 1
2
). The original alternative proof, which

can be found in Proposition 4 of [16], invokes the standard Poisson resummation technique

to establish the modular transformation property of the theta series. Instead, our proof is

based on the use of Vignéras’ theorem [44]. This theorem can be used to prove modularity

for a quite general class of theta series, and will play a crucial role in the study of Darboux

coordinates relegated to [18].

A.1 Vignéras’ theorem

Let us start by stating Vignéras’ theorem in a general fashion. Let Λ be an n-dimensional

lattice equipped with a bilinear form B(x,y) ≡ x · y, where x,y ∈ Λ ⊗ R, such that its

associated quadratic form has signature (n+, n−) and is integer valued, i.e. k2 ∈ Z for k ∈ Λ.

Furthermore, let p ∈ Λ be a characteristic vector (such that k2 + k · p ∈ 2Z, ∀k ∈ Λ),

µ ∈ Λ∗/Λ a glue vector, and λ an arbitrary integer. With the usual notation q = E(τ), we

consider the following family of theta series

ϑp,µ(Φ, λ; τ, b, c) = τ
−λ/2
2

∑
k∈Λ+µ+ 1

2
p

(−1)k·p Φ(
√
2τ2(k + b)) q−

1
2
(k+b)2 E

(
c · (k + 1

2
b)
)

(A.1)

defined by the kernel Φ(x). Irrespective of the choice of this kernel and the parameter λ, any

such theta series satisfies the following elliptic properties

ϑp,µ (Φ, λ; τ, b+ k, c) =(−1)k·p E
(
−1

2
c · k

)
ϑp,µ (Φ, λ; τ, b, c) ,

ϑp,µ (Φ, λ; τ, b, c+ k) =(−1)k·p E
(
1
2
b · k

)
ϑp,µ (Φ, λ; τ, b, c) .

(A.2)

Now let us require that in addition the kernel satisfies the following two conditions:

1. Let D(x) be any differential operator of order ≤ 2, and R(x) any polynomial of degree

≤ 2. Then f(x) = Φ(x) eπx
2/2 must be such that f(x), D(x)f(x) and R(x)f(x) ∈

L2(Λ⊗ R)
∩
L1(Λ⊗ R).

2. Φ(x) must satisfy [
∂2x + 2πx · ∂x

]
Φ(x) = 2πλΦ(x). (A.3)

Then the theta series (A.1) transforms as a Jacobi form of weight (λ+n/2, 0). Explicitly the

modular transformation properties are given by

ϑp,µ (Φ, λ;−1/τ, c,−b) =
(−iτ)λ+

n
2√

|Λ∗/Λ|
E
(
1
4
p2
) ∑
ν∈Λ∗/Λ

E(µ · ν)ϑp,µ (Φ, λ; τ, b, c) ,

ϑp,µ (Φ, λ; τ + 1, b, c+ b)) = E
(
−1

2
(µ+ 1

2
p)2
)
ϑp,µ (Φ, λ; τ, b, c) . (A.4)

For a positive definite lattice (with n− = 0), the theta series ϑp,µ is related to the standard

one with complex elliptic variables v ∈ Cn+ under the change of variables

ϑp,µ (τ, b, c) = eiπ(τb
2−b·c)ϑ̃p,µ (τ,v = bτ − c) . (A.5)
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One can check that the covariant derivatives preserve the form of the theta series (A.1)

changing the kernel and parameter λ according to

τ 22∂τ̄ : (Φ, λ) 7→
(
i

4
(x∂xΦ− λΦ) , λ− 2

)
,

∂τ −
i(λ+ n

2
)

2τ2
: (Φ, λ) 7→

(
− i

4

(
x∂xΦ + (λ+ n+ 2πx2)Φ

)
, λ+ 2

)
.

(A.6)

A.2 Examples: Siegel-Narain and Zwegers’ theta series

Let us now restrict to the case of signature (1, n− 1). A useful class of solutions of (A.3) are

functions of one variable, the projection of x on a fixed time-like vector t with t2 > 0,

Φ(x) = f(x
(t)
+ ), x

(t)
+ =

x · t√
t2
, f ′′ + 2π(x

(t)
+ f ′ − λf) = 0. (A.7)

The solution f = e−π(x
(t)
+ )2 with λ = −1 gives, up to a factor of τ

1/2
2 , the standard Siegel-Narain

theta series (2.22), a Jacobi form of weight (n−1
2
, 1
2
).

Another solution of (A.3) with λ = 0 is provided by the function f = E(x
(t)
+ ) with

E(x) = Erf(
√
πx). However, since E(x) → sgn(x) as x → ∞, it does not satisfy the decay

conditions. For two time-like vectors t, t′, however, the difference f = E(x
(t)
+ )−E(x

(t′)
+ ) does.

This leads to Zwegers indefinite theta series [19] of weight (n
2
, 0),

Θ̂p,µ(τ, t, t
′, b, c) =

∑
k∈Λ+µ+

1
2
p

(−1)k·p
[
Erf

(√
2πτ2(k + b)

(t)
+

)
− Erf

(√
2πτ2(k + b)

(t′)
+

)]

×q−
1
2
(k+b)2 E

(
c · (k + 1

2
b)
)
, (A.8)

which provides the modular completion of the holomorphic indefinite theta series

Θp,µ(τ, t, t
′, b, c) =

∑
k∈Λ+µ+

1
2
p

(−1)k·p
[
sgn((k + b)

(t)
+ )− sgn((k + b)

(t′)
+ )
]

×q−
1
2
(k+b)2 E

(
c · (k + 1

2
b)
)
. (A.9)

A.3 Construction of Ψ̂

Let us now consider a variant of (A.9), with an extra insertion of (k + b)
(t)
+ in the sum:

Θ′
p,µ(τ, t, t

′, b, c) =
∑

k∈Λ+µ+
1
2
p

(−1)k·p
[
sgn((k + b)

(t)
+ )− sgn((k + b)

(t′)
+ )
]
(k + b)

(t)
+

× q−
1
2
(k+b)2 E

(
c · (k + 1

2
b)
)
.

(A.10)

To find the modular completion of (A.10), we need to find a solution of (A.3) which asymptotes

to

x
(t)
+

[
sgn(x

(t)
+ )− sgn(x

(t′)
+ )
]
. (A.11)

The first term |x(t)+ | can be promoted to F (x
(t)
+ ) where

F (x) = xErf(
√
πx) +

1

π
e−πx2

, (A.12)

– 24 –



which is a solution of (A.7) with λ = 1. To deal with the second term, we decompose t into

its projection on t′ and its orthogonal complement:

t =
t · t′

t′ · t′
t′ +

[
t− t · t′

t′ · t′
t′
]
. (A.13)

Contracting with x/
√
t2 and multiplying by sgn(x

(t′)
+ ), one obtains

x
(t)
+ sgn(x

(t′)
+ ) =

t · t′√
t2t′2

|x(t
′)

+ |+
[
x
(t)
+ − t · t′√

t2t′2
x
(t′)
+

]
sgn(x

(t′)
+ ). (A.14)

The first term can be promoted to F (x
(t′)
+ ), while in the second term, sgn(x

(t′)
+ ) can be pro-

moted to E(x
(t′)
+ ). Thus, a solution of the Vignéras’ equation with the required decay prop-

erties can be obtained by promoting (A.11) to

Φ(x) =F (x
(t)
+ )− t · t′√

t2t′2
F (x

(t′)
+ )−

[
x
(t)
+ − t · t′√

t2t′2
x
(t′)
+

]
E(x

(t′)
+ )

=x
(t)
+

[
E(x

(t)
+ )− E(x

(t′)
+ )
]
+

1

π
e−π(x

(t)
+ )2 − t · t′

π
√
t2t′2

e−π(x
(t′)
+ )2 .

(A.15)

By construction, this is a solution of (A.3) with λ = 1 and thus, using this kernel in (A.1),

one obtains a modular completion of (A.10) with weight (n
2
+1, 0). Note that unlike the case

of Zwegers’ theta series, the difference between (A.15) and (A.11) is not the difference of a

function of t and a function of t′.

We now apply this construction to produce the double theta series constructed in [16].

We start with a lattice Λ⊕ Λ which carries the quadratic form K2 = κabck
a
1k

b
1p

c
1 + κabck

a
2k

b
2p

c
2

of signature (2, 2b2 − 2), where K = (k1,k2) and p1,p2 are two vectors in Λ with p31, p
3
2 > 0.

Let p = p1 + p2 and t ∈ Λ ⊗ R, such that t3, (p1t
2), (p2t

2), (p1p2t) are all positive. Then it

is easy to check that the vectors

T =
(ta, ta)√
(pt2)

, P =
(pa2,−pa1)√
(pp1p2)

, P ′ =
((p2t

2)ta,−(p1t
2)ta)√

(p1t2)(p2t2)(pt2)
(A.16)

satisfy

T 2 = P2 = P ′2 = 1, T · P = T · P ′ = 0, P · P ′ =

√
(pt2)(p1p2t)2

(p1t2)(p2t2)(pp1p2)
,

K · P =
⟨γ1, γ2⟩√
(pp1p2)

, K · P ′ = Iγ1γ2(t, b = 0),

(A.17)

where in the last two relations, as usual, we took the charge vectors as γi = (0, pai , κabck
b
ip

c
i , qi,0).

Now we want to use the kernel (A.15) with the above quadratic form and vectors t, t′

identified with P ,P ′, respectively. However, the two cases differ by the signature of the

quadratic form: due to the additional positive direction, the naive use of (A.15) with the

above data leads to a kernel which does not decay in the direction described by the vector T .

Fortunately, the situation can be cured by multiplying by an additional exponential factor
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where the charge vector is projected on T , as in the Siegel-Narain theta series. In this way

we arrive to the following kernel

Φ(K) = e−π(K·T )2

[
(K · P)

(
E(K · P)− E(K · P ′)

)
+
e−π(K·P)2

π
− (P · P ′) e−π(K·P ′)2

π

]
. (A.18)

This is a solution of Vignéras’ equation with λ = 0, which follows from the fact that the two

factors separately satisfy this equation with λ = −1 and λ = 1, respectively, and that T is

orthogonal to both P and P ′. Furthermore, Φ(K) satisfies the required decay condition and

thus it generates a Jacobi form of weight (b2, 0),

Θ̂p1,p2,µ1,µ2
=

∑
ki∈Λi+µi+

1
2
pi

(−1)k1·p1+k2·p2 Φ(
√
2τ2(K+B)) q−

1
2
(K+B)2 E

(
C · (K + 1

2
B)
)
, (A.19)

where B = (b, b) and C = (c, c). Using (A.17), it is straightforward to check that this

double theta series reproduces Ψ̂p1,p2,µ1,µ2
introduced in section 2.2, up to an overall factor of

−(−1)(p
2
1p2)
√
8τ2/(pp1p2). This completes the alternative proof that this function is a modular

form.

B. Computing Rp,µ

In this appendix we derive the explicit expression for the non-holomorphic completion Rp,µ

of the holomorphic mock modular form hp,µ. Our starting point is (2.34), where Ψ
(−)
p1,p2,µ1,µ2

is defined in (2.26), (2.28). First, we note the identity

I2
γ1γ2

= (q1 + b)21+ + (q2 + b)22+ − (q1 + q2 + b)2+ (B.1)

where the index 1 or 2 denotes the charge used to define the quadratic form, while the index

+ denotes as usual the projection on the Kähler modulus t. For instance, (k)2i+ = (ktpi)
2

(pit2)
.

This identity can be used to rewrite the r.h.s. of (2.34) as

− 1

4π

∑
γ1,γ2∈Γ+
p1+p2=p

(−1)p1·q1+p2·q2+(p21p2)|⟨γ1, γ2⟩| Ω̄p1,µ1
(q̂0,1)Ω̄p2,µ2

(q̂0,2) β 3
2

(
2τ2

(pp1p2)
⟨γ1, γ2⟩2

)
× E

(
−τ(q̂1,0 + q̂2,0) +

τ

2

[
(q1 + q2 + b)2 − (q1 + b)21 − (q2 + b)22

])
X (θ)

p,q1+q2
. (B.2)

Next, we decompose each of the charges q1, q2 and q = q1 + q2 according to (2.7),

q1,a =µ1,a +
1

2
κabcp

b
1p

c
1 + κabcp

b
1ϵ

c
1,

q2,a =µ2,a +
1

2
κabcp

b
2p

c
2 + κabcp

b
2ϵ

c
2,

qa =µa +
1

2
κabcp

bpc + κabcp
bϵc,

(B.3)

where ϵi, ϵ ∈ Λ and µ̃i ∈ Λ⋆/Λi, µ̃ ∈ Λ⋆/Λ. The sum over charges in (B.2) is then∑
γ1,γ2∈Γ+
p1+p2=p

=
∑

p1+p2=p

∑
q̂i,0

∑
µi∈Λ⋆/Λi

∑
ϵi∈Λi

. (B.4)
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Our goal is to exchange the sum over ϵ1, ϵ2 for a sum over ϵ,µ and the variable ρ defined by

κabcp
b
1ϵ

c
1 = κabcp

b
1ϵ̃

c + ρa , κabcp
b
2ϵ

c
2 = κabcp

b
2ϵ̃

c − ρa . (B.5)

Here ϵ̃ is a non-integer vector which will be related to ϵ momentarily. The equations (B.5)

uniquely determine the pair (ϵ̃,ρ) for each pair (ϵ1, ϵ2). Next, we apply the standard decom-

position to the sum of these two equations,

κabcp
b
1ϵ

c
1 + κabcp

b
2ϵ

c
2 = κabcp

bϵ̃c = µ̃a + κabcp
bϵc , (B.6)

where µ̃ ∈ Λ⋆/Λ. Thus ϵ̃ is related to ϵ by

ϵ̃a = ϵa + κabµ̃b ≡ ϵa + µ̃a . (B.7)

Using (B.6) in (B.3), we find that µ̃ is related to µ by

µ̃a = µa − µ1,a − µ2,a + κabcp
b
1p

c
2. (B.8)

As a result, we can now exchange the two vectors ϵi ∈ Λi for three variables: ϵ ∈ Λ, µ ∈ Λ⋆/Λ

and ρ. As can be seen from (B.5) and (B.7), the latter is such that

ρa + κabcp
b
1µ̃

c ∈ Λ1, ρa − κabcp
b
2µ̃

a ∈ Λ2. (B.9)

Thus, one has ∑
ϵi∈Λi

=
∑

µ∈Λ⋆/Λ

∑
k∈Λ+µ+ 1

2
p

∑
ρ∈(Λ1−µ̃)∩(Λ2+µ̃)

. (B.10)

Furthermore, let us substitute the decomposition of qi in terms of the new variables into

the combinations of charges appearing in (B.2). There are three such combinations:

• the symplectic product of two charges

Sp1,p2
(µ1,µ2,ρ) ≡ ⟨γ1, γ2⟩ = pa2µ1,a − pa1µ2,a +

1

2
κabcp

a
1p

b
2(p

c
2 − pc1) + paρa; (B.11)

• the square bracket in the exponential

(q1 + q2 + b)2 − (q1 + b)21 − (q2 + b)22 = Qp1,p2
(ν1,ν2) , (B.12)

where the quadratic form Qp1,p2
: Λ∗ ⊕ Λ∗ → Q is defined by

Qp1,p2
(q1, q2) = (q1 + q2)

2 − (q1)
2
1 − (q2)

2
2 (B.13)

and

ν1,a =µ1,a +
1

2
κabcp

b
1(p

c
1 + µ̃c) + ρa,

ν2,a =µ2,a +
1

2
κabcp

b
2(p

c
2 + µ̃c)− ρa;

(B.14)

• the sign factor

(−1)p1·q1+p2·q2+(p21p2) = (−1)k·p(−1)Sp1,p2 (µ1,µ2,ρ). (B.15)
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Note that the only dependence on k appears in the sign factor and in X (θ)
p,k. Thus, the

corresponding sum produces the theta series (2.22) and one obtains∑
µ∈Λ⋆/Λ

Rp,µ(τ) θp,µ(τ, t, b, c) (B.16)

with Rp,µ(τ) given in (1.3).

It is important to check that the sum (1.3) is convergent. To this aim, note that for large

x, β 3
2
(x) < e−πx. Thus, we need to show that

(ρ)21 + (ρ)22 −
2(p · ρ)2

(pp1p2)
< 0. (B.17)

Defining k1,k2 via ρa = κabcp
b
1k

c
1 = −κabcpb2kc2, (B.17) is equivalent to[

(k21p1)−
(k1p1p)

2

(pp1p2)

]
+

[
(k22p2)−

(k2p2p)
2

(pp1p2)

]
< 0. (B.18)

Using (pp1p2) < (p2p1), one has

(k21p1)−
(k1p1p)

2

(pp1p2)
< (k21p1)−

(k1p1p)
2

(p2p1)
≤ 0, (B.19)

where the last inequality follows from (k21p1) −
(k1p1p)2

(p2p1)
= (k1)

2
− for t = p. The first bracket

in (B.18) is thus negative. Similarly, the second bracket is negative. Thus, (B.17) holds, and

the sum (1.3) is indeed absolutely convergent.

C. Details on the contact potential

C.1 Calculation of δeΦ

There are four sources of two-instanton terms in (3.10):

• one-instanton contribution to Xγ plugged in the integral term;

• one-instanton contribution to the mirror map for ua plugged in the central charge ap-

pearing in the same integral term;

• quadratic terms in the one-instanton contribution to the mirror map for ua coming from

first ‘tree-level’ term;

• two-instanton contribution to the mirror map for ua plugged in the first term.

Collecting all these contributions together and taking the large volume limit ta → ∞, one

arrives at the following result

δeΦ = − τ2
16π2

∑
γ∈Γ+

σγΩ̄(γ)

∫
ℓγ

dz

[
q0 + qab

a +
(bbp)

2
− 2iz(qat

a + (pbt))− 3z2(pt2)

2

]
X cl

γ

(
1 + X (1)

γ

)
+ c.c.

− 1

64π4

∑
γ1,γ2∈Γ+

σγ1σγ2Ω̄(γ1)Ω̄(γ2)(tp1p2)

(
Re

∫
ℓγ1

dz1X cl
γ1

)(
Re

∫
ℓγ2

dz2 X cl
γ2

)
. (C.1)
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To further simplify this expression, we note the following identities∑
γ∈Γ+

σγΩ̄(γ)

∫
ℓγ

dz

(
1

4πτ2
− iz (qat

a + (pbt))− z2(pt2)

)
X cl

γ = 0, (C.2)

∑
γ1,γ2∈Γ+

σγ1σγ2Ω̄(γ1)Ω̄(γ2)

∫
ℓγ1

dz1

∫
ℓγ2

dz2
i⟨γ1, γ2⟩
z2 − z1

(
1

8πτ2
− iz1 (q1,at

a + (p1bt))− z21(p1t
2)

)
X cl

γ1
X cl

γ2
= 0.

The first one holds because the integrand appears to be a total derivative, while the second

identity can be proven by symmetrizing in charges and integrating by parts. Then, substi-

tuting (3.23) into (C.1) and using these identities, the instanton contribution to the contact

potential can be rewritten as

δeΦ = − τ2
16π2

∑
γ∈Γ+

σγΩ̄(γ)

∫
ℓγ

dzX cl
γ

(
q̂0 +

1

2
(q + b)2 − iz

2
(qat

a + (pbt))− 3

8πτ2

)
+

τ2
32π3

∑
γ1,γ2∈Γ+

σγ1σγ2Ω̄(γ1)Ω̄(γ2)

∫
ℓγ1

dz1 X cl
γ1

∫
ℓγ2

dz2X cl
γ2

[
(tp1p2)

16πτ2

−
(
(tp1p2)−

i⟨γ1, γ2⟩
z2 − z1

)(
q̂1,0 +

1

2
(q1 + b)2 − iz1

2
(q1,at

a + (p1bt))−
3

16πτ2

)]
+ c.c.

−1

8

∑
p1,p2

(tp1p2)F (1)
p1

F (1)
p2
, (C.3)

where the function F (1)
p is defined in (3.27). Using

DhX cl
γ = −

(
q̂0 +

1

2
(q + b)2 − iz

2
(qat

a + (pbt)) +
h

4πτ2

)
X cl

γ , (C.4)

it is straightforward to check that this result is equivalent to the representation (4.5).

C.2 Calculation of the double integral

Here, we provide the details of computation of the double integral Yγ1γ2 defined in (4.7). We

write it in the following general form

Yγ1γ2 =

∫
ℓγ1

dz1

∫
ℓγ2

dz2
e
−2πτ2

(
a1

(
z1+

ib1
a1

)2
+a2

(
z2+

ib2
a2

)2
)

z2 − z1
, (C.5)

where the contours ℓγi in the z-plane are arcs running from −1 to 1 and passing through

−ibi/ai. We are interested in the limit ai ≫ 1, which corresponds to the large volume limit

on MH . Then one can deform the contours into straight lines R − ibi/ai since this changes

the integral by an exponentially small contribution and, importantly, we do not pick up any

residue while doing this. Performing the change of integration variables

z1 = − ib1
a1

+ v − a2u

a1 + a2
, z2 = − ib2

a2
+ v +

a1u

a1 + a2
, (C.6)

one finds that the integral becomes

Yγ1γ2 =

∫
R
dv e−2πτ2(a1+a2)v2

∫
R
du

e
−2πτ2

a1a2
a1+a2

u2

u+ i
(

b1
a1

− b2
a2

) . (C.7)
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The first factor is Gaussian, whereas the second can be evaluated using the formula∫
R

dx

x− iα
e−β2x2

= iπ sgn(Re(α)) eα
2β2

Erfc(sgn(Re(αβ))αβ) . (C.8)

For (C.7), this gives

Yγ1γ2 = − iπ sgn(a2b1 − a1b2)√
2τ2(a1 + a2)

e
2πτ2

(a2b1−a1b2)
2

a1a2(a1+a2) β 1
2

(
2τ2

(a2b1 − a1b2)
2

a1a2(a1 + a2)

)
. (C.9)

Substituting now ai = (pit
2) and bi = (qi,a + (pib)a)t

a, and noting that a2b1−a1b2√
a1a2(a1+a2)

= Iγ1γ2 ,

one reproduces the result (4.8).
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(1977) 227 – 239.

[45] D. Gaiotto and X. Yin, “Examples of M5-Brane Elliptic Genera,” JHEP 11 (2007) 004,

hep-th/0702012.

[46] J. de Boer, F. Denef, S. El-Showk, I. Messamah, and D. Van den Bleeken, “Black hole bound

states in AdS3 × S2,” JHEP 0811 (2008) 050, 0802.2257.

[47] S. Alexandrov and S. Banerjee, “Dualities and fivebrane instantons,” JHEP 1411 (2014) 040,

1405.0291.

[48] S. Cecotti, S. Ferrara, and L. Girardello, “Geometry of type II superstrings and the moduli of

superconformal field theories,” Int. J. Mod. Phys. A4 (1989) 2475.

– 32 –

http://www.arXiv.org/abs/1006.0915
http://www.arXiv.org/abs/1311.7476
http://www.arXiv.org/abs/1405.3366
http://www.arXiv.org/abs/1309.0050
http://www.arXiv.org/abs/1509.07749
http://www.arXiv.org/abs/1601.04030
http://www.arXiv.org/abs/1010.5792
http://www.arXiv.org/abs/hep-th/0011017
http://www.arXiv.org/abs/0811.2435
http://www.arXiv.org/abs/0810.5645
http://www.arXiv.org/abs/1011.1258
http://www.arXiv.org/abs/hep-th/0005049
http://www.arXiv.org/abs/hep-th/0702012
http://www.arXiv.org/abs/0802.2257
http://www.arXiv.org/abs/1405.0291


[49] S. Ferrara and S. Sabharwal, “Quaternionic manifolds for type II superstring vacua of

Calabi-Yau spaces,” Nucl. Phys. B332 (1990) 317.

[50] I. Antoniadis, S. Ferrara, R. Minasian, and K. S. Narain, “R4 couplings in M- and type II

theories on Calabi-Yau spaces,” Nucl. Phys. B507 (1997) 571–588, hep-th/9707013.

[51] H. Günther, C. Herrmann, and J. Louis, “Quantum corrections in the hypermultiplet moduli

space,” Fortsch. Phys. 48 (2000) 119–123, hep-th/9901137.

[52] I. Antoniadis, R. Minasian, S. Theisen, and P. Vanhove, “String loop corrections to the

universal hypermultiplet,” Class. Quant. Grav. 20 (2003) 5079–5102, hep-th/0307268.

[53] D. Robles-Llana, F. Saueressig, and S. Vandoren, “String loop corrected hypermultiplet

moduli spaces,” JHEP 03 (2006) 081, hep-th/0602164.

[54] S. Alexandrov, “Quantum covariant c-map,” JHEP 05 (2007) 094, hep-th/0702203.

[55] S. Alexandrov and S. Banerjee, “Fivebrane instantons in Calabi-Yau compactifications,”

Phys.Rev. D90 (2014) 041902, 1403.1265.
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