
HAL Id: cea-01310367
https://cea.hal.science/cea-01310367

Submitted on 2 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

N = 2 higher-derivative couplings from strings
Stefanos Katmadas, Ruben Minasian

To cite this version:
Stefanos Katmadas, Ruben Minasian. N = 2 higher-derivative couplings from strings. Journal of
High Energy Physics, 2014, 2014 (2), pp.093. �10.1007/JHEP02(2014)093�. �cea-01310367�

https://cea.hal.science/cea-01310367
https://hal.archives-ouvertes.fr


IPhT-t13/250

N =2 higher-derivative couplings
from strings

Stefanos Katmadasa and Ruben Minasianb
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Abstract

We consider the Calabi-Yau reduction of the Type IIA eight derivative one-
loop stringy corrections focusing on the couplings of the four dimensional grav-
ity multiplet with vector multiplets and a tensor multiplet containing the NS
two-form. We obtain a variety of higher derivative invariants generalising the
one-loop topological string coupling, F1, controlled by the lowest order Kähler
potential and two new non-topological quantities built out of the Calabi-Yau
Riemann curvature.

astefanos.katmadas @ unimib.it, bruben.minasian @ cea.fr

ar
X

iv
:1

31
1.

47
97

v1
  [

he
p-

th
] 

 1
9 

N
ov

 2
01

3



Contents

1 Introduction and summary 1

2 Higher derivative terms in Type II theories 6
2.1 The eight-derivative terms in ten dimensions 6
2.2 Reduction on Calabi-Yau manifolds 9

3 The four dimensional action 11
3.1 Two derivatives 12
3.2 Higher derivatives 14

4 Eight derivative couplings 16

5 Six derivative couplings 19

6 Four derivative couplings 21

7 Some open questions 26

A Tensor structures in ten dimensions 27

B Off-shell N=2 supergravity and chiral multiplets 28

C Tensor multiplet as a chiral background 34

D The kinetic multiplet and supersymmetric invariants 36

1 Introduction and summary

The quantum corrections in N =2 theories have received a great deal of attention. These
are of two types: corrections proportional to the inverse tension of the string and cor-
rections proportional to the string coupling constant. The former arise from perturbative
and instantonic world-sheet corrections and are encoded in higher derivative terms in the
ten-dimensional supergravity action, while the latter come from string loops and brane in-
stantons. Perturbative low energy effective actions are expanded in a double perturbation
series in the inverse tension and the coupling constant.

These corrections not only affect the moduli spaces ofN =2 theories, but are manifested
in the higher-derivative couplings. A better control of these couplings is hence essential, as
is demonstrated by the study of terms involving the Weyl chiral (supegravity) super field
W . However most of the other (higher-derivative) couplings in N = 2 theories and their
relation to string theory remain largely unexplored. We make some steps in this directions.
Our study is mostly restricted to string one loop results and Calabi-Yau compactifications,
and will not cover gauged N =2 theories.
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The better-understood structures, involving W holomorphically, are captured by the topo-
logical string theory. In particular, the F-term in the low energy effective action in four
dimensions is related to the scattering amplitude of 2 selfdual gravitons and (2g − 2) self-
dual graviphotons in the zero-momentum limit and is computed by the genus-g contribution
Fg to the topological string partition function [1,2]. Crucially, the genus-g contribution Fg
also determines the partition functions of N =2 global gauge theories.

There exists, however, a continuous deformation of the gauge theory which uses non-
trivially the manifest SU(2) R-symmetry of theory. This is what happens in the so-called
Omega background. [3,4].The two-parameter gauge theory partition function in the Omega
background has been computed recently and reduces to the standard gauge theory par-
tition function only when the two parameters are set equal. It is an outstanding open
problem to find string theory realisation of these backgrounds and understand the exten-
sion of the genus-g function Fg which determines the general N =2 partition function, and
which should involve scattering amplitude among 2 gravitons, (2g − 2) graviphotons, and
2n gauge fields in vector multiplets. Theses considerations have lead to a recent interest
in explicit realisation of couplings Fg,nW

2gV 2n [5–9].
Let us recall that the genus one partition function F1 is special due to the fact that it

is the only perturbative four-dimensional contribution, which survives the five-dimensional
decompactification limit. The ten/eleven dimensional origin of these couplings is related
to M5 brane anomalies and they lift to certain eight-derivative terms in the effective action
[10, 11]. Until very recently only the gravitational part of these couplings was known
(and it was checked that their reduction on CY manifolds does correctly reproduce F1).
At present, we have a much better control of the more general form of the couplings in
general string backgrounds with fluxes turned on, so that an explicit calculation of the
one-loop four-, six- and eight-derivative couplings in N =2 theories, which should lead to
the generalisation of F1, is now within the reach.

In the four dimensional setting, recent developments in going beyond chiral couplings
described by integrals over half of superpace [12], allow us to extend the list of higher
derivative terms in several ways. The new couplings are constrained by N = 2 supersym-
metry to be governed by real functions of the four dimensional chiral fields. The latter
naturally include vector multiplets and two types of chiral backgrounds, one of which is
the Weyl background, W 2, introduced above. The second chiral background we consider is
constructed out of the components of a tensor multiplet containing the NS two-form, the
so called universal tensor multiplet1 and contains four derivative terms on its components,
such as (∇H)2, where H = dB and B is the NS two-form. These ingredients then allow us
to describe couplings which are characterised by polynomials of the type [F 2+R2+(∇H)2]n,
generalising the purely gravitational R2 couplings discussed above. The function of the vec-
tor multiplet scalars and Weyl background controlling these couplings directly corresponds

1While there is no obstacle in considering a background of an arbitrary number of tensor multiplets in
principle, we restrict our considerations to the universal tensor multiplet. We therefore ignore here all the
complex deformations of the internal Calabi-Yau; including these in the reduction should yield couplings
for generic hyper- matter.
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to the extended couplings Fg,nW
2gV 2n, when the tensor multiplet is ignored. Inclusion

of the latter results to more general couplings that have not yet been discussed in the
literature.

From a quantum gravity point of view, higher-derivative corrections serve as a means
of probing string theory at a fundamental level. Even though the complete expansion
involves all fields of the theory, so far the attention has been mostly concentrated on
the gravitational action. In particular, the one-loop eight derivative R4 (O(α′3)) terms
stand out among the stringy quantum corrections. Due to being connected to anomaly
cancellation, they are not renormalised at higher loops and survive the eleven-dimensional
strong coupling limit. These couplings also play a special role in Calabi-Yau reductions
to four-dimensional N =2 theories. Firstly, they have been instrumental in understanding
the perturbative corrections to the metrics on moduli spaces. In addition, they give rise
to the four-derivative R2 couplings, and as mentioned above agree with F1W

2.
In order to understand the stringy origin of more general higher derivative couplings in

N =2 theories, one needs to go beyond the purely gravitational couplings in ten dimensions.
In the NS-NS sector of string theory, H2R3 couplings are specified by a five-point function
[13]. Direct amplitude calculations beyond this order are exceedingly difficult, but recent
progress in classification of string backgrounds using the generalised complex geometry and
T-duality covariance provide rather powerful constrains on the structure of the quantum
corrections in the effective actions. A partial result for the six-point function, obtained
recently, together with T-duality constraints and the heterotic/type II duality beyond
leading order, allows to recover the ten-dimensional perturbative action almost entirely [14]
(the few yet unfixed terms mostly vanish in CY backgrounds and hence are not relevant
for the current project). The eleven-dimensional lift of the modified coupling leads to the
inclusion of the M-theory four-form field strength; the subsequent reduction on a non-
trivial KK monopole background allows to incorporate the full set of RR fields in the one-
loop eight-derivative couplings. This knowledge will be crucially used for obtaining the
relevant four-dimensional N =2 couplings.

The goal of this paper is to bring together some of these recent developments. In the
process, we shall:

Confirm and specify some of the predictions of general N = 2 considerations and
fix the a priori arbitrary quantities constrained solely by supersymmetry in terms of
Calabi-Yau data

Discover new terms and couplings that have not been previously considered

Provide some tests and justification for the proposed lift of type IIA R4 terms to
eleven dimensions

A brief comment on the last point. Since the lift from ten to eleven dimensions involves a
strong coupling limit, ones is normally suspicious of simple-minded arguments associated
with just replacing the string theory NS three-form H by a four-form G. In N =2 theories
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however the three- and four-form give rise to fields in the same super multiplet, namely
the (real part of the) scalars uI and the vectors AI in the vector matter respectively (here
the index I spans the vector multiplets). Hence verifying that the respective couplings
involving uI ad AI are supersymmetric completions of each other provided a test of the
lifting procedure.

We conclude this section by a summary of our results. A variety of four dimensional higher
derivative terms of the type [F 2 + R2 + (∇H)2]n are characterised by giving the relevant
functions of four dimensional chiral superfields that control them. From the point of view
of the CY reduction, the order of derivatives of all terms in four dimensions is controlled
solely by the power of the CY Riemann tensor appearing in the internal integrals. We
therefore find that the eight, six and four derivative terms are controlled by the possible
integrals involving none, one or two powers of the internal Riemann tensor, respectively.

We find, in particular, that only the lowest order Kähler potential is relevant for the
eight derivative terms, since this is the natural real function of vector multiplet moduli aris-
ing in Calabi-Yau compactifications, describing the total volume of the internal manifold.
At lower orders in derivatives, the Kähler potential still appears as part of the functions
describing the various invariants, combined with the Riemann tensor on the CY manifold
X, denoted by Rmnpq. Given that all traces of the latter vanish, the relevant internal
integrals must necessarily contain the harmonic forms on the CY manifold. In the case at
hand, the relevant forms are the h(1,1) two-forms ωI ∈ H2(X,Z), where I, J = 1, . . . , h(1,1),
since we ignore the hypermultiplets arising from the (2, 1) cohomology. We then obtain
the following tensorial objects

RIJ =

∫
X

Rmnpq ωI
mnωJ

pq ,

XIJ =

∫
X

εmnm1...m4εpqn1...n4R
m1m2n1n2Rm3m4n3n4 ωI

mn ωJ
pq , (1.1)

which control all the couplings that we were able to describe within N =2 supergravity at
six- and four-derivative order respectively. Similar to the standard derivation of the lowest
order Kähler potential, one can deduce the existence of corresponding real functions whose
derivatives lead to the the couplings (1.1). Finally, the inclusion of the Weyl and tensor
superfields through additional multiplicative factors leads to the functions that characterise
the corresponding couplings involving R2 and (∇H)2 respectively. For example, the R2F 4

and R2F 2 couplings lead to the functions

R2(∇F )2 ⇒ Aw e2K(Y,Ȳ ) ,

R2F 2 ⇒ − i
Āw

(Ȳ 0)2
RIJ

(
Y I

Y 0
− Ȳ I

Ȳ 0

) (
Y J

Y 0
+
Ȳ J

Ȳ 0

)
, (1.2)

where Aw is the scalar in the Weyl multiplet and the Y I , Y 0 are standard vector multi-
plet projective coordinates, so that zI = Y I/Y 0, and K(Y, Ȳ ) is the lowest order Kähler
potential.
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``````````````̀invariants
derivatives

4 6 8

F (X,Aw, At) R2, (∇H)2 – –[
F 2 +R2 + (∇H)2

]2
(∇F )2 R2F 2, (∇H)2 F 2 R4, R2(∇H)2, (∇H)4[

F 2 +R2 + (∇H)2
]3

– F 2(∇F )2 R2(∇F )2, (∇H)2(∇F )2[
F 2 +R2 + (∇H)2

]4
– – (∇F )4

Unknown H2F 2 H2F 4 R4, H6F 2, H2F 6

Table 1: A summary of higher-derivative couplings discussed here. The first row corre-
sponds to chiral couplings involving the Weyl and tensor multiplets. The next three rows
display the known non-chiral N = 2 invariants at each order of derivatives, while the last
row summarises the currently unknown invariants that can arise. The double appearance
of R4 at the eight-derivative level corresponds to two different invariants (see (4.2) below).

There are further invariants arising from the reduction, that cannot be currently de-
scribed in components2 within supergravity, and are associated to terms involving H2n

with n odd, such as H2F 2, H2R2 etc. We comment on some of these terms, either giving
the leading terms that characterise them, or pointing out their apparent absence.

An inventory of the four- and six-derivative couplings studied in this paper is given
in Table 1. The first line in this table describes the terms based only on holomorphic
functions of vector moduli and the two chiral backgrounds. These are the only couplings
that are controlled by a topological quantity, namely the vector of second Chern classes of
the Calabi-Yau four-cycles. The gravitational R2 coupling is the first nontrivial coupling
FgW

2g above, related to the topological string partition function [1, 2]. The second, third
and fourth lines correspond to the non-holomorphic couplings of [12], where the tensor
multiplet background is included. Note the diagonal of underlined invariants of the type
R2F 2n, which correspond to the first nontrivial couplings Fg,nW

2gV 2n, for g = 1, recently
discussed in [6,8,9]. The diagonal of the blue boxed invariants gives the one-loop copings of
vector multiplets only, controlled by the tensors (1.1) and are the ones defining the structure
of all other invariants in each line. To the best of our knowledge, the string original of
such couplings have not been discussed in the literature. The remaining invariants in the
last line can arise a priori and their description remains unknown within supergravity. We
comment on the expected structure of some of these below3.

The structure of the paper is as follows: In the next section we shall review briefly the
one-loop R4 couplings as well as some of our conventions and the reduction ansatze. The

2Note, however the final comments in section 6, which may lead to more general couplings.
3In fact, we find that some of these couplings involving the tensor multiplet seem to be missing in

the specific compactification we consider, but cannot be excluded if more tensor/hyper multiplets are
considered.
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structure of known higher derivative couplings in four-dimensional N = 2 theories is pre-
sented in sec. 3. We then proceed to consider the various higher derivative terms arising
from the Calabi-Yau compactification of the one-loop term, organised by the order of
derivatives. Hence, in section 4 we consider the eight derivative terms, while in sections
5 and 6 we discuss the six and four derivative invariants respectively. Some open ques-
tions are listed in section 7. The extended appendices contain further technical details of
the structures appearing in the main text. In particular, appendix A contains the fully
explicit expressions for the quartic one-loop terms in 10D. Appendices B and C deal with
chiral couplings of general chiral multiplets and the composite chiral background of the
tensor multiplet respectively. Finally, appendix D reviews the structure of the kinetic chiral
multiplet and the various invariants that can be constructed based on it, up to the eight
derivative level.

2 Higher derivative terms in Type II theories

The starting point for our considerations is the ten-dimensional eight-derivative terms that
arise in Type II string theories. The structure of the gravitational part of these couplings
has been known for a long time, but the coupling to the remaining Type II massless
fields was not explicitly known. Recently, a more concrete understanding of the terms
involving the NS three-form field strength, H, has been achieved [14]. The structure of
the corresponding terms involving RR gauge fields is constrained to a large extend, using
arguments based on the eleven dimensional uplift to M-theory.

Upon reduction on a Calabi-Yau manifold without turning on any internal fluxes, the
NS three form leads to two types of objects in the four dimensional effective theory, namely
a lower dimensional three-form field strength and h1,1 scalars. The former is naturally part
of a tensor multiplet4, while the latter are part of vector multiplets in Type IIA and
tensor/hyper multiplets in Type IIB.

In this section, we start by giving an overview of the ten-dimensional eight-derivative
terms in section 2.1, from which all the lower dimensional higher-derivative terms arise.
In section 2.2 we then turn to a discussion of the reduction procedure on Calabi-Yau
three-folds, which is central to the derivation of four dimensional couplings.

2.1 The eight-derivative terms in ten dimensions

In summarising the structure of R4 with the NS three-form H included, it is most conve-
nient to start by introducing the connection with torsion which reads in components

Ω±µ1
ν1ν2 = Ωµ1

ν1ν2 ± 1
2
Hµ1

ν1ν2 . (2.1)

The curvature computed out of Ω± is then

R(Ω±) = R± 1
2
dH + 1

4
H ∧H, Hν1ν2 = Hµ1

ν1ν2dxµ. (2.2)

4Upon of the two-form gauge field to a scalar, this leads to the so called universal hypermultiplet, but
we will not consider this operation here.
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Denoting the Riemann tensor by Rµν
ν1ν2 , we may write in components

R(Ω±)µ1µ2
ν1ν2 = Rµ1µ2

ν1ν2 ±∇[µ1Hµ2]
ν1ν2 + 1

2
H[µ1

ν1ν3Hµ2]ν3
β. (2.3)

Note that the first and last term in this expression satisfy the pair exchange property, while
the second term is antisymmetric under pair exchange due to the Bianchi identity on the
three-form.

The Type II eight-derivative terms can be written in terms of two standard ”N = 1
superinvariants”, defined as

J0(Ω) =
(
t8t8 + 1

8
ε10ε10

)
R4 ≡

(
t8t8 + 1

8
ε10ε10

)ν1...ν8
µ1...µ8

Rµ1µ2
ν1ν2 . . . R

µ7µ8
ν7ν8 ,

J1(Ω) = t8t8R
4 − 1

4
ε10t8BR

4 ≡ t8t8R
4 − 1

4
t8µ1...µ8B ∧Rµ1µ2 ∧ · · · ∧Rµ7µ8 , (2.4)

which provide a convenient way of encoding the kinematic structure of R4 terms. The
tensor t8 and the associated tensorial structures appearing here are spelled out in appendix
A. Note that at this stage the terms (2.4) are build from Levi-Civita connections only, and
the three-from H is not included.

It has been argued in [14] that these will be completed with the B-field as follows:

J0(Ω) −→ J0(Ω+) + ∆J0(Ω+, H) (2.5a)

=

(
t8t8 +

1

8
ε10ε10

)
R4(Ω+) +

1

3
ε10ε10H

2R3(Ω+) + ...

J1(Ω) −→ J1(Ω+) = t8t8R
4(Ω+)− 1

8
ε10t8B

(
R4(Ω+) +R4(Ω−)

)
. (2.5b)

Note that J0(Ω+) + ∆J0(Ω+, H) appears at tree level both in IIA and IIB and at one loop
in IIB, while J0(Ω+)− 2J1(Ω+) + ∆J0(Ω+, H) appears at one loop in IIA. The structure of
∆J0(Ω+, H) is more elaborate and kinematically different form the standard 1

8
ε10ε10R

4(Ω)
terms, and in fact it is the only part of the eight-derivative action that is not written purely
in terms of R(Ω±).5 Here we should also use the full six-index un-contracted combination
of H2. These structures receive contributions starting form five-point odd-odd amplitudes:

∆J0(Ω+, H) = − 1

3
εαµ0µ1···µ8ε

αν0ν1···ν8 Rµ7µ8
ν7ν8(Ω+)

×
[
Hµ1µ2

ν0Hν1ν2
µ0 Rµ3µ4

ν3ν4(Ω+)Rµ5µ6
ν5ν6(Ω+)

− 3

16
(9Hµ1µ2

ν0Hν1ν2
µ0 + 1

9
Hµ1µ2µ0Hν1ν2ν0)∇µ3Hµ4

ν3ν4∇µ5Hµ6
ν5ν6

]
+ . . . . (2.6)

5Incidentally, using the connection with torsion Ω± and R(Ω±) is not sufficient for writing the two-
derivative effective action. For this one also needs the Dirac operator that appears in supersymmetry
variations. Note that the Dirac operator, the covariant derivative with respect to Ω± and the effective
action are related via generalisation of the Lichnerowicz formula.
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The order H4R2 contribution is known up to some ambiguities, while the terms with higher
powers of H remain a conjecture. Luckily these terms play little role in N =2 reductions
and we comment on the cases where they are relevant below.

The last term in (2.5b), coming form the worldsheet odd-even and even-odd structures
corresponds to the gravitational anomaly-canceling term. The relative sign between the
two terms is fixed by the IIA GSO projection, so that the coupling contains only odd
powers of B-field. The explicit contribution to the effective action is

−(2π)6α′3B ∧X8 = −(2π)2

192
α′3B ∧

(
trR4 − 1

4
(trR2)2 + exact

)
, (2.7)

X8 =
1

2

[
t8R

4(Ω+) + t8R
4(Ω−)

]
.

Since t8R
4 ∼ 1

4
p2

1− p2 is made of characteristic classes and H enters in (2.7) like a torsion
in the connection, its contribution amounts to a shift by exact terms. For completeness,
we record the complete expression,

X8 =
1

192(2π)4

[(
trR4 − 1

4
(trR2)2

)
+ d

(
1

2
tr
(
H∇HR2 +HR∇HR +HR2∇H

)
− 1

8

(
trR2 trH∇H + 2 trHR trR∇H

)
+

1

16
tr
(
2H3(∇HR +R∇H) +HRH2∇H +H∇HH2R

)
− 1

16

(
trH∇H trRH2 + trR∇H trH3 − tr∇HH2 trHR

)
+

1

32
tr∇HH5 +

1

16
trH(∇H)3

+
1

192
tr∇HH2 trH3 − 1

64
trH∇H tr (∇H)2

)]
. (2.8)

since its reduction will be useful in the following.
The eight-derivative (tree level and one-loop) terms are the origin of the only pertur-

bative corrections to the metrics on the N =2 moduli spaces. The corrections respect the
factorisation of the moduli spaces, and the classical metrics on moduli space of vectors and
hypers receive respectively tree-level and one-loop corrections, both of which are propor-
tional of the Euler number of the internal Calabi-Yau manifold [11, 15]. Needless to say,
our discussion is consistent with these corrections, and from now on we shall concentrate
only on the higher-derivatives terms. Recent progress in understanding the hyper-multiplet
quantum corrections is reviewed in [16].

As already mentioned, the reduction of type IIA super invariant J0(Ω) − 2J1(Ω) on
Calabi-Yau manifolds yields the one loop R2 terms in N =2 four-dimensional theory, and
this is the only known product of the reduction so far that leads to higher derivative terms
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in 4D. We shall return to the four-dimensional R2 terms in section 6. Clearly, the inclusion
of the B field leads to further couplings to matter upon dimensional reduction, to which
we now turn.

2.2 Reduction on Calabi-Yau manifolds

We now consider the reduction of the ten-dimensional eight-derivative action on a Calabi-
Yau threefold X, and its relation to the N = 2 action. The metric can be reduced in the
standard way, as6

gµ1µ2 =

(
gµν 0
0 gmn

)
, (2.9)

where gmn is the metric on the Calabi-Yau manifold, X, which we will not need explicitly.
The three-form H reduces as

H3 = H + f I ∧ ωI , (2.10)

where the four-dimensional H is part of the tensor multiplet, and the one-forms f I can be
locally written as f I = duI , with uI being a part of the vector multiplet scalars. The index
I spans over h1,1(X), and ωI ∈ H2(X,Z).

Hence reducing the terms built out of R(Ω±) and H3 (where Ω± = Ω± 1
2
H), one expects

at a given order of derivatives various couplings involving the Riemann tensor, R, as well
as the tensor multiplet and vector multiplets. For example, at the four-derivative level one
recovers the four-dimensional R2 couplings and expects to obtain further couplings quartic
in tensor multiplet and vector multiplets, as well as mixed terms. We use the symbolic
computer algebra system Cadabra [17, 18] to systematically derive the structure of these
terms.

The vector moduli shall be denoted zI = uI + itI , where tI are the Kähler moduli,
defined through the decomposition of the Calabi-Yau Kähler form, J , as J = tIωI . The
total volume, V , of the CY manifold is given by the standard volume form, cubic in J as

V =
1

3!

∫
X

J ∧ J ∧ J = log[−K] , (2.11)

where we defined the 4D Kähler potential. We shall not need the vector fields themselves,
but only their field strengths, denoted as FA, where the index A = 0, I runs over the
h1,1(X) + 1 vector fields (in places where the shorthand notation is used, F will stand for
the entire multiplet).

Reducing the NS eight-derivative couplings we obtain couplings that contain uI and
tI . The couplings to F I can be recovered by thinking of the (one-loop) couplings as being

6We use numbered Greek letters for 10D curved indices, while ordinary Greek letters denote 4D curved
indices. We use Latin letters from the beginning of the alphabet for 4D flat indices, and Latin letters
from the middle to the end of the alphabet, m,n, . . . are reserved for CY indices. We reserve the letters
i, j, k, l for SU(2) R-symmetry indices. Capital Latin indices I, J = 1, ..., h1,1(X) span the matter vector
multiplets.
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reduced from five (or eleven) dimensions. In practical terms, one has to add an extra
index on f Iµ 7→ F I

µν . Since (the affected parts of) the expressions are even in powers
of F I , the extra index will always be contracted with a similar counterpart. Moreover
most of the expressions are only quadratic in F , hence the lifting is unique. A little
combinatorial imagination is needed for F 4 terms. This procedure follows the lifting of
one-loop NS couplings to eleven dimensions, outlined in [14] and is analogous to the way
one can recover graviphoton couplings from the R2 term - one just has to think of the
lifting of the couplings to five dimensions and their consequent reduction. As already
mentioned, here we can benefit from the explicit N = 2 formalism in verifying that the
couplings involving tI and F I complete each other sypersymmetrically and hence provide
a verification of the lifting of the complete one-loop eight-derivative terms from type IIA
strings to M-theory.

Since we are focusing on Calabi-Yau compactifications without flux, different pieces
in the reduction will involve integrating over X expressions containing some power of the
internal curvature and ωI ∈ H2(X,Z).7 We shall start with the familiar integrals.

At the four derivative level, one needs to consider terms with exactly two powers of the
Riemann tensor in the internal Calabi-Yau manifold. In the purely gravitational sector,
one then finds an R2 term in four dimensions, originating from the R4 couplings in ten
dimensions. In this case, one obtains

t8t8R
4 = −1

8
ε10ε10R

4 = 12F1R
µνρλRµνρλ , (2.12)

where we note that only terms completely factorised in internal and external objects con-
tribute. The function F1 is an integral over the internal directions that takes the form

F1 =

∫
X

RmnpqRmnpq =
1

8

∫
X

εmnm1...m4ε
mnn1...n4Rm1m2

n1n2R
m3m4

n3n4 = αIt
I , (2.13)

where the first equality holds up to Ricci terms and in the second equality we evaluated
the integral.

The fine balance between the two a priori different terms in (2.13) can be extended to
more complicated integrals, that are relevant in the reduction of the non-purely gravita-
tional terms. In this case, we have checked explicitly the identity

t8µmνnm1...m4t8
ρpσqn1...n4ωI

m
pωJ

n
q R

m1m2
n1n2R

m3m4
n3n4 =

− 1

8
δµ
σ δν

ρεmnm1...m4ε
pqn1...n4ωI

m
pωJ

n
q R

m1m2
n1n2R

m3m4
n3n4 ,

(2.14)

up to Ricci terms. Note that the structure of spacetime indices is different in the two sides,
while the remaining terms are purely internal. Upon contraction with the Kähler moduli,
each side of (2.14) reduces to the expression in (2.13).

7Since the four-dimensional three-form H in (2.10) is in the hyper matter, some of the couplings
involving hyper multiplets will be discussed here. However we mostly concentrate on the vector multiplets
here, and do not consider any internal expressions involving forms in H2,1(X).
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Even further, the identity in (2.15) can be generalised to an identity involving eight
indices, as follows.

t8m1...m4p1...p4t8
n1...n4q1...q4ωI

m1
n1ωJ

m2
n2 ωK

m3
n3ωL

m4
n4 R

p1p2
q1q2R

p3p4
q3q4 =

− 1

8
εp0q0m1...m4p1...p4ε

p0q0n1...n4q1...q4ωI
m1

n1ωJ
m2

n2 ωK
m3

n3ωL
m4

n4 R
p1p2

q1q2R
p3p4

q3q4 ,

(2.15)

again up to Ricci-like terms. These two expressions are relevant for the terms in R(Ω+)
that are odd or even under pair exchange, respectively.

The reduction to six- and eight-derivative couplings will require integration over ex-
pressions linear or zeroth order in the Riemann tensor of the internal Calabi-Yau manifold.
In view of the vanishing of the Calabi-Yau Ricci tensor, these are essentially unique, and
given by

GIJ = 1
2

∫
X

ωmnI ωJmn ,

RIJ =

∫
X

Rmnpq ωI
mnωJ

pq , (2.16)

where GIJ ultimately leads to the vector multiplet Kähler metric andRIJ is a new coupling
to be discussed in due time.

3 The four dimensional action

We now describe the structure of the effective N = 2 supergravity action in four dimen-
sions, that arises from the reduction of the one-loop Type IIA Lagrangian. Given that the
original ten dimensional action contains eight derivatives, one obtains a variety of higher
derivative couplings, next to the lowest order two derivative action. In order to describe
these in a systematic way, we will consider the off-shell formulation of the theory, which
allows to construct infinite classes of higher derivative invariants without modifying the su-
persymmetry transformation rules. However, since the higher dimensional one-loop action
and the reduction scheme are on-shell, one has to deduce the off-shell invariants from the
desired terms that result upon gauge fixing to the on-shell theory. In the following, we take
the pragmatic approach of matching the leading, characteristic terms in each invariant and
promoting to off-shell variables by standard formulae for special coordinates for the vector
multiplet scalars. In practice, these choices are essentially unique, and below we comment
on this issue in the examples where this is relevant.

The defining multiplet of off-shell N = 2 supergravity is the Weyl multiplet, which
contains the graviton, eaµ, the gravitini, gauge fields for local scale and R-symmetries and
various auxiliary fields. Of the latter, only the auxiliary tensor Tab

ij is directly relevant,
since it is identified with the graviphoton in the on-shell formulation of the theory, at
the two-derivative level. The reader can find a short account of the Weyl multiplet in
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Appendix B. In what follows, we will mostly deal with the covariant fields of the Weyl
multiplet, which can be arranged in a so-called chiral multiplet (see Appendix B for more
details), which contains the auxiliary tensor Tab

ij and the curvature R(M)µν
ab. The latter

is identified with the Weyl tensor, up to additional modifications. These observations will
be very useful in the identification of the various higher derivative couplings.

There are various matter multiplets that can be defined on a general supergravity
background. Here, the fundamental matter multiplets we consider are vector multiplets
and a single tensor multiplet, corresponding to the universal tensor multiplet of Type
II theories. Both these multiplets comprise 8 + 8 degrees of freedom and are defined in
appendices B and C respectively, to which we refer for further details. Moreover, they
can be naturally viewed as two mutually non-compatible projections of a chiral multiplet,
which is central to our considerations.

All Lagrangians considered in this paper are based on couplings of chiral multiplets,
which contain 16 + 16 degrees of freedom and can be defined on an arbitrary N =2 super-
conformal background. We refer to appendix B for more details on chiral multiplets. Here,
we simply state that these multiplets are labeled by the scaling weight, w, of their low-
est component, A, and that products of chiral multiplets are chiral multiplets themselves,
obtained by simply considering functions F (A), which must be homogeneous, so that a
weight can be assigned to them. As mentioned above, the matter multiplets we consider
are also chiral multiplets of w = 1, on which a constraint projecting out half of the degrees
of freedom is imposed and the same property holds for the covariant components of the
Weyl multiplet. This implies that actions for all the above multiplets can be generated
by considering expressions constructed out of chiral multiplets, which are invariant under
supersymmetry.

3.1 Two derivatives

The prime example is given by the invariant based on a w = 2 chiral multiplet, implying
that its highest component, C, has Weyl weight 4, and chiral weight 0, as is appropriate for
a conformally invariant Lagrangian in four dimensions. It can be shown that the expression

e−1L =C − 1
16
A(Tab ijε

ij)2 + fermions , (3.1)

is the bosonic part of the invariant, including a conformal supergravity background de-
scribed by the auxiliary tensor Tab ij of the gravity multiplet. The two derivative ac-
tion for vector multiplets is now easily constructed, by setting the chiral multiplet in
this formula to be composite, expressed in terms of vector multiplets labeled by indices
I, J, · · · = 0, 1, . . . , nv. It is possible to show (cf. (B.6)) that the relevant terms of such a
composite multiplet are given by8

A = − i
2
F (X) ,

C = iF (X)I 2cX̄
I + i

8
F (X)IJ

[
Bij

IBkl
J εikεjl +XI G+

ab
JT abijε

ij − 2G−ab
IG−abJ

]
, (3.2)

8The function G in (B.6) is conventionally chosen as G(XI) = − i
2F (X) in this context.
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where FI and FIJ are the first and second derivative of the function F , known as the
prepotential and Bij

I , G−ab
I are the remaining bosonic components of the chiral multiplets

(which in this case are constrained by (B.7) for vector multiplets). As the bottom composite
component, A, has w = 2, the function F (X) must be homogeneous of degree two in the
vector multiplet scalars XI . Taking into account the constraints in (B.7), the bosonic
terms of the Lagrangian following from (3.1) read

8π e−1 Lv = iDµFI DµX̄I − iFI X̄
I(1

6
R−D)− 1

8
iFIJ Y

I
ijY

Jij

+1
4
iFIJ(F−Iab − 1

4
X̄IT ijabεij)(F

−Jab − 1
4
X̄JT ijabεij)

−1
8
iFI(F

+I
ab − 1

4
XITabijε

ij)T abij ε
ij − 1

32
iF (Tabijε

ij)2 + h.c. , (3.3)

where in the last line we added the hermitian conjugate to obtain a real Lagrangian.
Here, F I

ab are the vector multiplet gauge field strengths, R is the Ricci scalar and D
is the auxiliary real scalar in the gravity multiplet. This Lagrangian is invariant under
scale transformations and can be related to an on-shell Poincaré Lagrangian by using a
scale transformation to set the coefficient of the Einstein-Hilbert term, Im(FI X̄

I), to a
constant. For standard Calabi-Yau compactifications of Type II theories, one obtains a
cubic prepotential, as

F = −1

6

CIJKY
IY JY K

Y 0
, (3.4)

where the constant tensor CIJK stands for the intersection numbers of the manifold.
As it turns out, the Lagrangian (3.3) is inconsistent as it stands, so that one needs to

add at least one auxiliary hypermultiplet, which is to be gauged away by superconformal
symmetries, similar to the scalar Im(FI X̄

I) above. In addition, in this paper we consider
a single tensor multiplet, corresponding to the universal hypermultiplet upon dualisation
of the tensor field. We refer to appendix C for more details on this multiplet. For later
reference, we display the bosonic action for the auxiliary hypermultiplet and the physical
tensor multiplet that needs to be added to (3.3) to obtain a consistent on-shell theory with
a physical tensor multiplet, as

8π e−1 Lt =− 1
2
εij Ωαβ

[
DµAiαDµAjβ − AiαAjβ

(
1
6
R + 1

2
D)
]

− 1
2
F (2)DµLij DµLij + F (2) Lij L

ij
(

1
3
R +D

)
+ F (2)

[
EµE

µ +GḠ
]

+ 1
2
ie−1εµνρσ

∂F (2)

∂Lij
Eµν ∂ρLik ∂σLjl ε

kl . (3.5)

Here, Ai
α is the hypermultiplet scalar, described as a local section of SU(2)× SU(2), and

Ωαβ is the invariant antisymmetric tensor in the second SU(2). The on-shell fields of the
tensor multiplet are the triplet of scalars Lij and the two-form gauge field, Bµν , while

Eµ = 1
2
i e−1 εµνρσ∂νBρσ , (3.6)

is the dual of its field strength and G is a complex auxiliary scalar. The functions F (2)

and F (3) can be viewed as the second and third derivative of a function of the Lij, that
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can easily be generalised to an arbitrary number of tensor multiplets [19] (see (C.4)-(C.5)).
For a single tensor multiplet, there is a unique choice, as

F (2) =
1√
LijLij

, (3.7)

which we will assume throughout. However, as we ignore all tensor multiplet scalars in our
reduction scheme, all scalars and F (2) are kept constant and only appear as overall factors.

3.2 Higher derivatives

In this paper we construct higher derivative actions based on the properties of chiral mul-
tiplets, as discussed above. One way of doing this is to consider the function F in (3.2) to
depend not only on vector multiplets, but also on other chiral multiplets, which are treated
as background fields. Alternatively, one may consider invariants more general than (3.1),
containing explicit derivatives on the chiral multiplet fields. Here we use both structures,
which we discuss in turn, emphasising the methods and the structure of invariants rather
than details, which can be found in [12,19,20].

We consider two chiral background multiplets, one constructed out of the Weyl multiplet
and one constructed out of the tensor multiplet, whose lowest components we denote as Aw

and At respectively. These are proportional to the auxiliary fields (Tab
ijεij)

2 of the Weyl
and and G of the tensor multiplet and we refer to appendices B and C for more details on
their precise definition. Considering a function F (XI , Aw, At) leads to a Lagrangian of the
form (3.3), where the set of vector field strengths is extended to include the Weyl tensor
R(M)ab

cd in (B.3) and the combination ∇[aEb], so that four derivative interactions of the
type

L =

∫
F (XI , Aw, At) ∝

∫ (
∂F

∂Aw
R(M)− 2 +

∂F

∂At
(∇[aEb]−)2 + . . .

)
, (3.8)

are generated. The explicit expressions for the relevant chiral multiplets can be found in
(B.11) and (C.11) respectively.

These couplings are distinguished, in the sense that they are described by a holomorphic
function and correspond to integrals over half of superspace. The R2 term has been studied
in detail, especially in connection to BPS black holes, see e.g. [11,21–24]. The full function
F (XI , Aw) is in this case related to the topological string partition function [1,2]. We will
only be concerned with the linear part of this function, originating in the one-loop term
in section 2.1, which is controlling the R2 coupling through (3.8). The (∇E)2 term has
appeared more recently [19], without any coupling to vector multiplets.

More general higher derivative couplings can be constructed by looking for invariants
of chiral multiplets that contain explicit derivatives, unlike (3.1). Indeed, such invariants
can be derived by considering a chiral multiplet whose components are propagating fields,
i.e. described by a Lagrangian containing derivatives. This can be done in the standard
way, by writing a Kähler sigma model, which in the simple case of two multiplets reads∫

d4θ d4θ̄ Φ Φ̄′ ≈
∫

d4θΦT(Φ̄′) , (3.9)
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where both Φ and Φ′ must have w = 0 for the integral to be well defined. In the second form
of the integral we defined a new chiral multiplet, T(Φ̄′), the so called kinetic multiplet, since
it contains the kinetic terms for the various fields. This multiplet was constructed explicitly
in [12] and is summarized in appendix D below (see also [25] for a recent generalisation).
In practice, one can think of the operator T as an operator similar to the Laplacian, acting
on the components of the multiplet, as we find∫

d4θΦT(Φ̄′) =C C̄ ′ + 8DaF−abDcF ′+cb + 4D2AD2Ā′ + · · · , (3.10)

where we only display the leading terms.
One can now simply declare the chiral multiplets Φ, Φ′ to be composite by imposing

(3.2), where the corresponding functions F , F ′ can depend on vector multiplet scalars,
as well as the Weyl and tensor multiplet backgrounds, exactly as described above. As
described in section D and in [12], this leads to a real function H = FF̄ ′ + c.c., homo-
geneous of degree zero, which naturally describes a variety of higher derivative couplings,
corresponding to the combinations generated by[

F− 2 +R− 2 + (∇E)− 2
]
⊗
[
F+ 2 +R+ 2 + (∇E)+ 2

]
, (3.11)

where the ± stand for selfdual and anti-selfdual parts. Each of these is controlled by a
function of the vector multiplet moduli as

H(XI , Aw, At, X̄
I , Āw, Āt) =

∑
i+j≤2

H(i,j)(XI , X̄I)(Aw)i (Āt)
j + c.c.⇒

H(0,0)(XI , X̄I) ⇒ (∇F )2, F 4[
H(1,0)Aw + c.c.

]
⇒ R2F 2[

H(0,1)At + c.c.
]

⇒ (∇E)2F 2

H(2,0)Aw Āw ⇒ R4

H(0,2)At Āt ⇒ (∇E)4[
H(1,1)Aw Āt + c.c.

]
⇒ R2(∇E)2 , (3.12)

where we display the characteristic terms at each order. Note that we consider a function
at most quadratic in Aw, At, since a higher polynomial would lead to the same terms,
multiplied by additional powers of these auxiliary scalars. These are analogous to the
non-linear parts of the chiral coupling in (3.8) and go beyond one-loop terms, so we do
not consider them in the following. Finally, note that due to the expansion (3.12), the
functions H(i,j) are not homogeneous of degree zero for i, j 6= 0, but we we will always refer
to the corresponding degree zero monomial in (3.12), for clarity.

The invariants based on (3.10) are the simplest ones containing the kinetic multiplet.
It is straightforward to construct more general integrals, for example∫

d4θΦT(Φ̄)T(Φ̄) ,

∫
d4θΦT(Φ̄)T(Φ̄)T(Φ̄) ,

∫
d4θΦ0T(Φ̄)T(Φ̄0T(Φ)) , (3.13)
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which are the cubic and quartic invariants discussed in section D. In exactly the same
way as above, the first of these integrals leads to a homogeneous function of degree −2,
describing couplings cubic in F 2, R2 and (∇E)2. Only some of these are relevant in the
following, in particular the (R2 + (∇E)2)F 4 and F 6, since the rest contain more than eight
derivatives. Finally, the last two integrals describe couplings with at least eight derivatives
and lead to homogeneous functions of degree −4. Only the last integral is relevant for us,
namely for the F 8 term.

4 Eight derivative couplings

We start by considering terms containing the maximum number of derivatives appearing
in the one-loop correction, i.e. we consider the possible eight derivative invariants in four
dimensions. This may seem counterintuitive at first and in fact some of these invariants
have not been described explicitly. However, the terms that are known in four dimensions
are the simplest to describe, setting the stage for the more complicated structures to follow.

Applying the rules and assumptions spelled out in section 2.2, one can characterise
the various terms appearing in the reduction by the order of Riemann tensors, tensor
multiplet fields strengths and vector multiplet fields strengths arising in four dimensions.
Schematically, we then find a decomposition of the type

L1−loop ⇒R4 +R2(∇H)2 + (∇H)4 +R4 +H6F 2 +H4F 4

+H2F 6 +R2 (∇F )2 + (∇F )4 , (4.1)

where we write in blue the terms which correspond to the known four-dimensional invari-
ants. The supersymmetric invariants for the underlined (red) terms are not known.

Gravity and tensor couplings

The most obvious and simplest term is the R4 term, which arises by trivial reduction of the
corresponding ten dimensional term. Note that only the even-even contribution survives
the reduction and leads to a four dimensional R4 term as

t8t8R
4 → 192 (RµνρλR

µνρλ)2 + 144 tr [RµνRρλ]tr [RµρRνλ] + . . .

= 768 (R+)2(R−)2 + 48
(
(R+)2 − (R−)2

)2
+ . . . . (4.2)

The second line corresponds to two different invariants in four dimensions, each with its
own supersymmetric completion, corresponding to the double appearance of R4 in (4.1).
The supersymmetrisation of the second term is not known in N = 2 supergravity (see
however [26] for a discussion in the N = 1 setting). The supersymmetric completion of
the first term was found in [12], where it was shown that it is governed by a homogeneous
degree zero real function of the vector multiplet moduli and the Weyl multiplet scalar Aw.
In the present case however, (4.2) does not depend on moduli other than the total volume
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of the CY manifold, so that we can immediately identify the relevant function as depending
only on the Kähler potential as

HR4 =
3

16
e2K(Y,Ȳ ) AwĀw . (4.3)

Here, the function of the off-shell scalars K(Y, Ȳ ) is very closely related to the lowest order
Kähler potential, as

e−K = 2 ImFABY
AȲ B , (4.4)

with the prepotential (3.4), and is equal to it once special coordinates are chosen (for
Y 0 = 1). Note however, that this is only the most natural choice that results in the first
coupling in (4.2) upon taking the on-shell limit and one might consider more elaborate
off-shell functions leading to the same result. Upon taking derivatives of this function with
respect to the vector multiplet moduli, various couplings involving vector multiplet field
strengths and auxiliary fields arise at the off-shell level, resulting to further eight derivative
terms in the on-shell theory.

The corresponding purely tensor coupling is the eight derivative term of the tensor
multiplet, which takes the form

t8t8R
4 → 96

(
(∇[µEν]∇[µEν])2 − 4∇[µEν]∇[νEρ]∇[ρEσ]∇[σEµ]

)
. (4.5)

These couplings can be described in a way completely analogous to the R4 term, through
a homogeneous real function corresponding to (4.3), as

HH4 =
3

16
e2K(Y,Ȳ ) AtĀt . (4.6)

The final possible combination at the eight derivative level for NS fields is the R2H4

coupling, which in 4D is characterised by the term

t8t8R
4 → −96 (∇[µEν]−∇[µEν])2R−κλ

ρσR−κλρσ . (4.7)

These couplings can be described by the obvious mixed combination of the two functions
(4.3) and (4.6) above, as

HR2H4 =
3

16
e2K(Y,Ȳ ) AwĀt + c.c. . (4.8)

The last function can be straightforwardly added to the functions above, to define a total
function of the vector multiplet moduli and Weyl and tensor multiplet backgrounds, defined
as

H8
NS =

3

16
e2K(Y,Ȳ ) |Aw + At|2 , (4.9)

describing the eight derivative couplings of NS sector fields. At this point it is worth
pausing, to note that the form of these equations exhibits a correspondence between the
graviton and the B-field, since the complete eight derivative action for the gravity and
tensor multiplet is controlled by the combination Aw + At. This will appear in several in-
stances below, at all orders of derivatives, and reflects the structure of the 10D Lagrangian,
which is controlled by the combination R(Ω+).
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Couplings involving vector multiplets

We now turn to some of the eight derivative terms involving derivatives on vector multiplet
fields. We start with mixed terms between NS and RR fields, namely the ones where the
order of derivatives is balanced between the two sectors. Indeed, it is straightforward to
obtain the function characterising the R2F 4 coupling, which in 4D is described by the cubic
invariant in appendix D, where one considers one of the chiral multiplets to be the Weyl
multiplet. The R2F 4 coupling is then characterised by the terms

H(8)

AwAB̄
R−µνρλR

−µνρλ
(
∇F−A∇F+ B̄ + 2XA2XB̄

)
+H(8)

AwAB C̄D̄
R−µνρλR

−µνρλ F−AF−BF+ C̄F+ D̄ + . . . . (4.10)

In this case, only the Ricci-like terms contribute to the reduction altogether, so that we
obtain for the relevant coupling

H(8)
AwI J

= −576

∫
X

ωI
mnωJmn ≡ −576GIJ , (4.11)

i.e. proportional to the lowest order Kähler metric GIJ .
This result determines the coupling of the vector multiplet scalars and the corresponding

vector fields, but we still need to fix the couplings to the Type IIA RR gauge field, labeled
by 0 in four dimensions. These can be derived by the observation that all field strengths
can be introduced by lifting the three-form Hµ1µ2µ3 to the eleven dimensional four-form
field strength Gµ1µ2µ3µ4 and reducing back on a circle, keeping all components. The result
of the reduction of the four-form to 4D gauge fields, F I

µν , naturally leads to the combination
F I
µν +uI F 0

µν , which should replace the field strengths in the couplings shown above, so that
the full coupling becomes

H(8)
AwI J

→ H(8)

AwAB̄
= −576

(
GIJ GIJu

J

uIGIJ GIJu
IuJ

)
. (4.12)

Combined with the fact that the relevant function depends on the Weyl multiplet
background only linearly, as implied by (4.10), one can now integrate to obtain

HR2F 4 = 9Aw e2K(Y,Ȳ ) . (4.13)

This form is in line with the observation that the R2F 4 coupling can be roughly seen as
the product of the chiral R2 term with the real F 4 term. Note that, unlike for the lowest
order Kähler potential, the 0I and 00-components of the second derivative H(8)

AwAB̄
in (4.10)

are physical in this case, since they describe the couplings of the RR one-form gauge field.
In fact, the coupling H(8)

AwAB̄
is proportional to the real part of the period matrix, which

describes the the theta angles in the two derivative theory.
The natural extension of (4.13) to a function where Aw is replaced by At and thus

describes couplings of the type (∇E)2(∇F )2 is straightforward. However, in the compact-
ification we consider all such terms cancel identically, in a nontrivial way. Similarly, there
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are no parity odd terms of this type either, so that this particular coupling seems to be
absent in four dimensions.

The same conclusion seems to hold for terms of the type (∇H)2H2F 2, which would
in principle be characteristic of the H6F 2 term in (4.2), even though this coupling is not
known in four dimensions. Terms of this order in fields do not appear in the odd sector as
well.

Finally, we consider the purely vector multiplet eight derivative couplings, correspond-
ing to an F 8 term. This can be obtained by a trivial dimensional reduction, leading to the
four dimensional coupling

t8t8R(Ω+)4 → 72
( ∫

X

ωI
mnωJmnωK

pqωLpq
)
∂µνu(I∂µνu

J∂ρσuK∂ρσu
L) , (4.14)

which can be described by the second quartic invariant in (D.11). Since the coupling above
is given purely in terms of the product of the (1, 1) forms, ωI ·ωJ , the relevant real function
is related to the Kähler potential and is given by

HF 8 = 6 e4K(Y,Ȳ ) . (4.15)

This function is consistent with (4.14) for the I, J , indices and naturally extends to the
0-th gauge field in four dimensions as seen above, but we have not checked those couplings
explicitly.

5 Six derivative couplings

At the six derivative level, we need to saturate two of the derivatives in the internal
directions, so that exactly one Riemann tensor will appear in the relevant integrals on the
Calabi-Yau manifold. This requirement turns out to be quite restrictive, since all traces
of the Calabi-Yau curvature vanish. It follows that the internal integrals must also involve
harmonic forms on which the indices of the Riemann tensor are contracted. Given that
we do not consider any complex structure deformations, this observation directly implies
that no invariants involving only NS-NS fields, such as R2H2 or H6, can arise in four
dimensions9.

However, mixed couplings involving fields from both the NS-NS and the R-R sector
are nontrivial and a priori include three types of couplings, namely R2F 2, (∇E)2F 2 and
H2F 4. The latter has not been described in the context of N = 2 supergravity, while the
former two can be constructed using the techniques in [12]. In addition, a purely vector
multiplet coupling including six derivatives on the component fields, i.e. an F 6 invariant
arises.

In particular, the R2F 2 term was already constructed explicitly in [12], and is governed
by a function, H(X,Aw; X̄), that is linear in the Weyl multiplet, while the vector multiplet

9Note that these will become nontrivial if more hyper/tensor multiplets are included in the reduction.
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scalars appear through a holomorphic function of degree −2 and an anti-holomorphic
function of degree 0. The relevant R2F 2 coupling is

HAw ĀB̄R
−
µνρλR

−µνρλ F+ Ā
κσF

+ B̄κσ + . . . , (5.1)

where the part of the coupling coming from the R-R fields, as derived from the reduction
is

HAw ĪJ̄ = −48

∫
X

Rmnpq ωI
mnωJ

pq ≡ −48RIJ , (5.2)

where in the second equality we defined the tensor RIJ for later convenience. This tensor
clearly describes a non-topological coupling, since it depends on the curvature of the Calabi-
Yau manifold explicitly. In fact, the definition (5.2) is invertible, as one can reconstruct the
Riemann tensor Rmnpq from RIJ by contracting with the harmonic two-forms. We record
the following properties of RIJ , which will be useful in the discussion below,

RIJ = RJI , tIRIJ = 0 , GIJRIJ = 0 , (5.3)

where tI and GIJ are the Kähler moduli and GIJ is the inverse of the Kähler metric.
In order to extend (5.2) to include the 0-th gauge field, we follow the same procedure

as in (4.12), to obtain the additional couplings

H(6)

Āw AB
=

(
RIJ RIJu

J

uIRIJ RIJu
IuJ

)
→
(

RIJ RIJRe(zJ)
Re(zI)RIJ RIJRe(zI)Re(zJ)

)
. (5.4)

We then obtain for the function describing the R2F 2 invariant

HR2F 2 = −3i

8

Āw

(Ȳ 0)2
R̂IJ

(
Y I

Y 0
− Ȳ I

Ȳ 0

) (
Y J

Y 0
+
Ȳ J

Ȳ 0

)
, (5.5)

where R̂IJ(Y, Ȳ ) = RIJ(t) is viewed as a function of the tI = Im(Y
I

Y 0 ), as obtained in the
standard special coordinates. Note that (5.5) is manifestly homogeneous in the holomorphic
scalars Y A, but non-homogeneous in the anti-holomorphic scalars Ȳ A, as expected.

It is straightforward to obtain a term of the type (∇E)2F 2 by simply replacing Aw → At

in (5.5), in line with previous observations. It turns out that this invariant is also generated
by the reduction, as

HAt ĀB̄∇
[aEb]−∇[aEb]− F

+ Ā
κσF

+ B̄κσ + . . . , (5.6)

where the two couplings H(6)

At ĪJ̄
= H(6)

Aw ĪJ̄
, are equal. By the same argument as above, the

function (5.5) can be extended to include the tensor multiplet coupling as

H(6)(Āw, Āt, Y, Ȳ ) = −i
Āw + Āt

(Ȳ 0)2
R̂IJ

(
Y I

Y 0
− Ȳ I

Ȳ 0

) (
Y J

Y 0
+
Ȳ J

Ȳ 0

)
, (5.7)

which describes the first row in the six-derivative part of table 1.
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We now turn to the F 6 term, which is computationally more challenging than the
couplings described above. This is due to the fact that there are no terms cubic in the
two-form field strength H in ten dimensions, so that (∇F )3 terms do not arise in four
dimensions. This is consistent with the fact that similar terms cancel in the F 6 coupling
that follows from the cubic invariant described in appendix D. One therefore is forced to
consider terms of the type (∇F )2F 2, which are quartic in the (1, 1) forms ωI , from the
point of view of the Calabi-Yau reduction.

The result is a coupling containing all possible combinations of an internal Riemann
tensor and four ωI , as in

ωI
mnωJmnR

pqrsωKpqωLrs , ωI
mnωJnpR

pqrsωKqmωLrs , . . . , (5.8)

which in principle determine the function controlling the F 6 coupling. However, we also
find nontrivial odd terms for the scalars resulting from (2.7), in contrast to the known
coupling in section D. These terms include

Lodd ∼ YIJKMN du
I ∧ duJ ∧ duK ∧ (∂µuMd ∂µu

N) ,

YIJKMN =

∫
ωI ∧ ωmM ∧ ωnN ∧ (2Rnpω

pq
JωqmK + ωnpJR

pqωqmK) + . . . , (5.9)

where the dots stand for terms containing the same objects in double traces rather than
s single one. We observe that a term completely antisymmetric in three indices I , J ,K
arises and conclude that the known coupling is not sufficient to describe these terms. We
leave it to future work to determine the possible new coupling(s) that can complete the
structure.

Finally, it is worth discussing in brief the invariant of the type H2F 4, which is not known
explicitly in supergravity. Such terms do appear and seem to be controlled by the same
tensor RIJ in (5.2) above, since we find the characteristic couplings RIJE

2∇F I∇F I for
all possible contractions of indices between the vector and tensor multiplet field strengths.
Similarly, we find the parity odd terms

WIJKLH ∧ (∂µuId∂µu
J)(∂νuK∂νu

L) ,

WIJKL =

∫
X

ωmI ∧ ωnJ ∧ ωmK ∧ ωpL ∧Rnp + . . . , (5.10)

where in the last integral we used similar conventions as in (5.9) above. Indeed, the two
integrals appear to be closely related, so that the two couplings may have a similar origin
in terms of superspace invariants.

6 Four derivative couplings

In order to obtain four derivative couplings in four dimensions from the 10D R4 invariant,
one needs to consider terms that include exactly two Riemann tensors in the internal
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directions. It follows that the integrals controlling the 4D couplings are quadratic in the
Calabi-Yau curvature, in the same way as the six derivative couplings of the previous
section are controlled by the Calabi-Yau Riemann tensor through (5.2) above.

At this level in derivatives, four structures can appear, namely R2, F 4, H2F 2, and
H4. Given our assumption of no hyper/tensor multiplets other than the universal tensor
multiplet, all of these structures will be described by functions involving vector multiplet
scalars, but only the latter two involve the tensor multiplet explicitly. All couplings except
the H2F 2 terms can be described straightforwardly in N = 2 supergravity, and we now
discuss each in turn.

The R2 term

The R2 term has been known for quite some time [11, 27], and arises from terms that can
be completely factorised in internal and external indices, as

(t8t8 − 1
8
ε10ε10)R(Ω+)4 →αIt

I
(
Rµνρλ(Ω+)Rµνρλ(Ω+) + εabcdR

ab
2 (Ω+) ∧Rcd

2 (Ω+)
)

B ∧ t8
[
R4(Ω+) +R4(Ω−)

]
→αIu

I
(
trR(Ω+) ∧R(Ω+) + trR(Ω−) ∧R(Ω−)

)
(6.1)

where we used (2.13) and

αI =

∫
X

ωI ∧ trR2 , (6.2)

are the the second Chern classes of the Calabi-Yau four-cycles. Note that this is a topo-
logical quantity, unlike the objects controlling higher derivative couplings described above,
as e.g. in (5.2).

The supergravity description requires to allow the lowest order prepotential to depend
on the Weyl multiplet through Aw [20], so that the explicit prepotential arising from (6.1)
is given by

F = −1

6

CIJKY
IY JY K

Y 0
+

1

24 · 64

αIY
I

Y 0
Aw , (6.3)

where we remind the reader that the physical moduli are given by zI = Y I

Y 0 in terms of the
scalars Y A above.

The H4 term

Turning to the tensor multiplet sector, an explicit computation using (2.14) leads to the
following terms in four dimensions

(t8t8 −
1

8
ε10ε10)R4 = 48RmnpqRmnpq

(
2 ∂[µEν] ∂[µEν] +

3

4
(EµEµ)2

)
, (6.4)

where, in complete analogy with the R2 terms, only factorised traces contribute. It follows
that the four dimensional Lagrangian contains the four derivative tensor multiplet invariant
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arising from (C.11), controlled by exactly the same prepotential in (6.3), upon extending
the term containing the Weyl background to include the tensor background, as

F = −1

6

CIJKY
IY JY K

Y 0
+

1

24 · 64

αIY
I

Y 0
(Aw + 8At) , (6.5)

with At as in (C.7). This function describes the couplings in the first line of Table 1.
Once again we observe the close relation between the R2 and tensor multiplet couplings,

which are characterised by exactly the same functional form in terms of the corresponding
chiral backgrounds. This structure arises despite the fact that in N = 2 supergravity in
four dimensions the tensor H and gravity are not in the same multiplet anymore, so that,
a priori, more flexibility, parametrized by two functions is allowed. However, we find that
the Calabi-Yau reduction leads to a single function of vector multiplet scalars for both
couplings.

The F 4 term

In the purely RR sector, an invariant quartic in derivatives on the vector multiplet compo-
nents exists in 4D, which is characterised by an (∇F )2 coupling. As above, we analyse the
terms arising from the odd term under pair exchange in R(Ω+) in order to obtain these
explicitly. Using (2.14), the terms coming from non-Ricci combinations cancel, and the
remaining ones are Laplacians of four dimensional fields. Explicitly, we obtain that the
total (∇F )2 term reads

(t8t8 −
1

8
ε10ε10)R4 → 3XIJ∇2uI∇2uJ , (6.6)

where XIJ is the tensor

XIJ =

∫
X

εmnm1...m4εpqn1...n4R
m1m2n1n2Rm3m4n3n4 ωI

mn ωJ
pq , (6.7)

and is explicitly given by

XIJ = 8
[
(Rmnpq)

2ωI
rsωJrs − 8RmnpqRmnp

rωI q
sωJrs + 4RmnpqRmn

rsωIpr ωJqs

+ 2RmnpqRmn
rsωIpq ωJrs − 8RmnpqRm

r
p
sωInr ωJqs

]
(6.8)

The gauge field partner of these scalar couplings is obtained by lifting to eleven dimensions
the original expression and reducing back on a circle times a Calabi-Yau. It then follows
that the result for gauge fields takes the form

(t8t8 −
1

8
ε10ε10)R4 → 3XIJ∇aF I

ac∇bFb
cJ . (6.9)

Comparing (6.6) and (6.9) to the known F 4 term in supergravity, given in (D.7), we find
that the interactions of the vector multiplets arising from expansion along the second
cohomology are governed by the tensor XIJ above.
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We now turn to the three-index structure, and compute the parity odd term quadratic
in 4D field strengths. Following the same lifting and reducing procedure, we find that the
only even-odd term quadratic in 3-from field strengths is

t8µ1...µ8B ∧∇Gµ1µ2µ9 ∧∇Gµ3µ4
µ9 ∧Rµ5µ6 ∧Rµ7µ8 , (6.10)

which upon reduction to 4D gives rise to a term of the type

6uK HIJ,K ε
µνρλ∇µF

I
ν
κ∇ρF

I
λκ ' −3HIJ,K ε

µνρλ∇µu
K F I

νρ∇κF
I
λκ + . . . , (6.11)

where in the second step we partially integrated and the dots denote terms involving the
derivative of the coupling HIJ,K . The explicit expression for this three index coupling
follows from the relation

uK HIJ,K = −16

∫
X

B∧
[
Rmn ∧RmnωI

rsωJrs − 8Rpq ∧Rp
rωI q

sωJrs

− 4Rpq ∧RrsωIpr ωJqs + 2Rpq ∧R rsωIpq ωJrs
]
, (6.12)

where we note the important identities

tK HIJ,K = −XIJ , tIXIJ = 32αI . (6.13)

The remaining interactions with the ten dimensional RR gauge field, F 0, described by
H0I and H00, are obtained by viewing F 0 as a Kaluza-Klein gauge field, coming from the
reduction from 11D. As these must necessarily be quadratic in the Kaluza-Klein gauge
fields, only the factorised term in the 10D invariant contributes. It then follows that, as far
as terms quadratic in Riemann tensors are concerned, the lifting and reducing procedure
is identical to the 4D/5D connection studied in [24]. Therefore, we can simply add the
couplings H0I and H00 found in that work, given by

H0Ī

∣∣
KK

= − 12 iαI = −3

8
iXIJt

J ,

H00̄

∣∣
KK

= 24αIt
I =

3

4
XIJt

ItJ , (6.14)

to the ones in (6.6) and (6.9) above.
After adding the extra contribution in (6.14) to (6.6), and performing the by now

standard shift in (4.12) to account for the axionic coupling to the 0-th gauge field strength,
we obtain the final form of the coupling HAB, as

HAB̄ =

(
XIJ −XIJz

J

−z̄IXIJ XIJz
I z̄J

)
→ |Y 0|−4

(
|Y 0|2XIJ −Ȳ 0XIJY

J

−Y 0 Ȳ IXIJ XIJY
I Ȳ J

)
, (6.15)

where in the second step we passed from the special coordinates zI to the projective
coordinates Y A. Note that the coupling XIJ is real and depends only on the Kähler
moduli tI , similar to the lowest order Kähler potential.

The couplings (6.15) satisfy the condition Y AHAB̄ = 0, so that they belong to the class
of [12]. Recently, a more general class of F 4 invariants appeared in [25], which allows for
Y AHAB̄ 6= 0 and contains additional terms quadratic in the Ricci tensor. However, we find
that no such extra terms appear in the reduction of the 10D action, beyond the one in the
familiar (Weyl)2 term, consistent with the properties of HAB̄ above.
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On H2F 2 terms

Finally, we comment on the possible four derivative terms which mix tensor and vector
multiplets. Such terms have not been explicitly constructed in the literature and it is a
interesting open problem to tackle, even for rigidly supersymmetric theories. Indeed, a
construction of such an invariant is likely to lead to insight into more general mixed terms
of the type H2nF 2m, where n is odd, examples of which have been mentioned above (e.g.
the H2F 4 term).

An explicit computation of the terms arising from reduction of the parity even terms
at this order reveals that terms involving derivatives of H and F do not arise. However,
we do find nontrivial terms involving field strengths only, e.g.

L ∝ XIJE
µEν∂µu

I∂νu
J , (6.16)

and terms related to this by introducing the gauge field strengths, i.e. XIJE
µEνF I

µ
ρF J

νρ,
where XIJ is the integral defined in (6.7) above. In order to obtain this result, we used
(2.14) and we note that the additional terms ∆J0(Ω+, H) in (2.6) are nontrivial in this
case.

In addition, the parity odd terms are also nontrivial for these couplings, since one can
easily verify that the parity odd term (2.7) leads to couplings of the type

YIJ H ∧ ∂µu[Id∂µu
J ] , (6.17)

where YIJ is the integral

YIJ =

∫ (
Rmn ∧Rnp ∧ ωIp ∧ ωJm −

1

8
Rmn ∧Rmn ∧ ωIp ∧ ωJp

)
. (6.18)

In the last relation, the two-forms ωI are viewed as vector valued one-forms, for convenience.
Note that the term (6.17) is linear in the tensor field strength, unlike the parity even
coupling (6.16). This may seem counterintuitive, but we stress that our simplifying choice
of ignoring the scalars in the tensor multiplet may obscure the connection between tensor
multiplet couplings that are expected to be controlled by appropriate functions of these
scalars. Finally, we point out that YIJ is by definition antisymmetric in its indices, which
is similar to the corresponding six derivative terms in (5.9)-(5.10) above. This type of odd
terms is somewhat unconventional in the N =2 setting and may point to a common origin
of all these unknown invariants.

One possible way to construct couplings of this type is to make use of the results of [28],
on arbitrary couplings of vector and tensor multiplet superfields. In terms of the superfields
G2 and WA describing the tensor and vector multiplets respectively, one may consider an
integral of the type10 ∫

d4θd4θ̄H(W, W̄ )G2 , (6.19)

10We thank Daniel Butter for pointing out this possibility.
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in order to describe couplings such as above, where the function H must be such that
the couplings (6.16)-(6.17) are reproduced. It is worth mentioning that including kinetic
multiplets in (6.19) may lead to even higher derivative couplings that can account for some
of the unknown couplings pointed out above, i.e. of the type H2nF 2m, where n is odd.
The explicit realisation of the possible Lagrangians following from the integral (6.19) in
components would require the construction of a density formula for a general real multiplet
of N =2 supergravity and falls outside the scope of the present work.

7 Some open questions

We shall conclude with a list of some open questions.

One immediate consequence of this work is the prediction of new four-dimensional higher-
derivative N = 2 invariants. It would be nice to be able to verify this prediction by
explicitly constructing some of these terms, either using the structure in (6.19), or new
techniques. It is interesting to point out that the new invariants involve terms, descending
from the eleven-dimensional anomalous terms C3 ∧X8, which are top-form Chern-Simons-
like couplings. Examples of these at the six-and four-derivative are discussed in sections 5
and 6 respectively. It would also be very interesting to verify whether the terms that we find
to be vanishing but could in principle be nontrivial, such as the H6F 2 and (∇H)2(∇F )2

terms, do exist or not. Moreover, we stress that we have been focusing on the leading
terms, matching to the invariants constructed in [12] and disregarding the possibility of
more detailed structures that might appear. While we have not found any inconsistencies,
we cannot exclude the existence of subleading terms that are not captured here. For
example, the types of invariants recently constructed in [25] allow for additional couplings
proportional to the square of the Ricci tensor, rather than the Weyl tensor alone.

There is a number of important omissions here. We have worked exclusively with one-loop
terms, and avoided the discussion of the dilaton. Our excuse can be that the tree-level
terms neither survive the eleven-dimensional limit, nor contribute to the well studied R2

terms in four dimensions. Yet they are important for understanding the corrections to
the moduli spaces. In addition the dilaton is subtle and important enough to merit a
discussion.

As already mentioned, we have largely ignored the complex deformations of the internal
CY. It might be of some interest to extend our results to generic hyper-matter, since that
would most likely turn on the couplings that we find to be vanishing.

We have concentrated only on CY compactification and hence ungauged N =2 theories.
Quantum corrections to the super potential have been much studied and are of obvious
interest. It would be very interesting to extend the discussion of (at least some of ) the
higher derivative couplings to the gauged theories. The fact that the couplings described
here have an off-shell formulation is helpful in that respect.

The relation of our calculation to the topological string calculations needs further elucida-
tion. Most of our CY integrals are not topological and one may ask if there is an extension
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or refinement of topological strings that may capture the physical string theory couplings
described here. Our calculations are exclusively one-loop, but one might hope that the
structure of the terms discussed here, and the relations between different supersymmetric
invariants are sufficiently restricted by supersymmetry to extend to all genus calculations.

The structure of the various functions describing the coupling of the gravity and tensor
multiplets seem to treat the two backgrounds on the same footing, somehow reflecting
the structure of the ten dimensional action built out of the torsionfull curvature tensor
R(Ω+). Given that this structure was instrumental in checking T-duality in [14], it would
be interesting to consider the properties of our couplings under the c-map, which is the
lower dimensional analogous operation. Note that this would explicitly relate the vector
and tensor multiplets, especially in view of the fact that the various couplings mix the two
kinds of multiplets.

The new terms discussed here are not relevant for BPS black hole physics, at least at the
attractor [12,29,30], as they vanish by construction on fully BPS backgrounds and do not
affect the entropy and charges. However, our results are relevant for non-BPS black holes
and may be related to the one-loop modifications to the entropy of such objects, as in [31].
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A Tensor structures in ten dimensions

We define the tensor, t8, as having four antisymmetric pairs of indices and given in terms
of its contraction with an antisymmetric tensor F µν by

t8F
4 = 24 trF 4 − 6 (trF 2)2 . (A.1)

Taking derivatives of this identity with respect to F one can obtain the explicit tensor t8.
The Type IIA one-loop correction in ten dimensions contains terms quadratic in t8 and
quartic in the modified curvature R(Ω+)µ1µ2

µ3µ4 . The latter is antisymmetric in each pair
of indices, but does not satisfy the Bianchi and pair exchange identities. Considering a
general tensor, R, with these symmetries, the relevant expression reads

t8t8R4 = 192R1 + 384R2 + 24R3 + 12R4 − 96 (R5a +R5b)− 48 (R6a +R6b) , (A.2)
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where the Ri are defined in (A.4) below. Similarly, we display for completeness the full
expression for the odd-odd term quartic in R as

−1

8
ε10ε10R4 = 192 R̃1 + 24 R̃3 + 12 R̃4 − 192 R̃5 − 384 R̃6 − 384 Ã7

+ 4RR (RR + 6Rµ1µ2µ3µ4Rµ3µ4µ1µ2 − 24RRRµ1µ2Rµ2µ1)

+ 384RRµ1µ2

(
Rµ2

µ3
µ1

µ4Rµ4µ3 −Rµ2
µ3µ4µ5Rµ4µ5µ1µ3 +

2

3
Rµ2

µ3Rµ3µ1

)
+ 32RRµ1µ2µ3µ4 (Rµ3µ4

µ5µ6Rµ5µ6µ1µ2 − 4Rµ3
µ5

µ1
µ6Rµ4µ6µ2µ5)

+ 96Rµ1µ2Rµ2µ1 (2Rµ3µ4Rµ4µ3 −Rµ3µ4µ5µ6Rµ5µ6µ3µ4)

+ 768Rµ1µ2Rµ2
µ3

µ1
µ4
(
Rµ4

µ5µ6µ7Rµ6µ7µ3µ5

−Rµ4
µ5

µ3
µ6Rµ6µ5 − 2Rµ4

µ5Rµ5µ3

)
+ 384Rµ1µ2Rµ2

µ3 (2Rµ3
µ4µ5µ6Rµ5µ6µ1µ4 −Rµ3

µ4Rµ4µ1)

+ 384Rµ1µ2Rµ2
µ3µ4µ5

(
Rµ4µ5µ1

µ6Rµ6µ3 −Rµ4µ5
µ6µ7Rµ6µ7µ1µ3

+ 2Rµ4
µ6

µ1µ3Rµ5µ6 + 4Rµ4
µ6

µ1
µ7Rµ5µ7µ3µ6

)
(A.3)

where Rµ1µ2 = Rµ1µ3µ2
µ3 is a non-symmetric tensor corresponding to the Ricci tensor

and the scalar R is its trace. The various non-Ricci combinations appearing in both the
even-even and odd-odd structures are defined as

R1 = trRµ1µ2Rµ2µ3Rµ3µ4Rµ4µ1 , R̃1 = trRµ1µ2R̃µ2µ3Rµ3µ4R̃µ4µ1 ,

R2 = trRµ1µ2Rµ2µ3Rµ1µ4Rµ4µ3 ,

R3 = trRµ1µ2Rµ3µ4trRµ1µ2Rµ3µ4 , R̃3 = trRµ1µ2R̃µ3µ4trRµ3µ4R̃µ1µ2 ,

R4 = trRµ1µ2Rµ1µ2trRµ5µ6Rµ5µ6 , R̃4 = trRµ1µ2R̃µ1µ2Rµ5µ6R̃µ5µ6 ,

R5a = trRµ1µ2Rµ2µ5trRµ5µ6Rµ6µ1 , R5b = tr R̃µ3µ4R̃µ3µ5tr R̃µ5µ8R̃µ4µ8 ,

R̃5 = trRµ1µ2R̃µ1µ5trRµ5µ6R̃µ2µ6 ,

R6a = trRµ1µ2Rµ5µ6trRµ1µ5Rµ2µ6 , R6b = tr R̃µ3µ4R̃µ5µ6tr R̃µ3µ5R̃µ4µ6 ,

R̃6 = trRµ1µ2R̃µ5µ6Rµ8µ5
µ7µ1Rµ7µ6

µ8µ2 ,

Ã7 =Rµ1µ2
µ3µ4Rµ3µ5

µ1µ6Rµ4µ7
µ5µ8Rµ6µ8

µ2µ7 , (A.4)

for any tensor Rµ1µ2
µ3µ4 that is antisymmetric in each pair of indices, but does not satisfy

the Bianchi identity and we use the shorthand notation R̃µ1µ2
µ3µ4 = Rµ3µ4

µ1µ2 in order to
keep expressions compact. Note that if R is identified with a Riemann tensor, all tilded
quantities become equal to their untilded counterparts.

B Off-shell N =2 supergravity and chiral multiplets

In this appendix we summarise some general formulae on the N = 2 Weyl multiplet in
four dimensions and the chiral multiplets in a general superconformal background. Our

28



Weyl multiplet parameter

field eM
A ψM

i bM AM VMi
j TAB

ij χi D ωABM fM
A φM

i εi ηi

w −1 −1
2

0 0 0 1 3
2

2 0 1 1
2

−1
2

1
2

c 0 −1
2

0 0 0 −1 −1
2

0 0 0 −1
2
−1

2
−1

2

γ5 + + − + −

Table 2: Weyl and chiral weights (w and c) and fermion chirality (γ5) of the Weyl multiplet component

fields and the supersymmetry transformation parameters.

conventions are as in [12], where the reader can find a more detailed account.

N =2 superconformal gravity

The off-shell formulation of four-dimensional N = 2 supergravity is based on the Weyl
multiplet of conformal supergravity, whose components are given in Table 2. This consists
of the vierbein eµ

a, the gravitino fields ψµ
i, the dilatational gauge field bµ, the R-symmetry

gauge fields Vµij (which is an anti-hermitian, traceless matrix in the SU(2) indices i, j)
and Aµ, an anti-selfdual tensor field Tab

ij, a scalar field D and a spinor field χi. All spinor
fields are Majorana spinors which have been decomposed into chiral components. The three
gauge fields ωµ

ab, fµ
a and φµ

i, associated with local Lorentz transformations, conformal
boosts and S-supersymmetry, respectively, are not independent as will be discussed later.

The infinitesimal Q, S and K transformations of the independent fields, parametrized
by spinors εi and ηi and a vector ΛK

A, respectively, are as follows,

δeµ
a = ε̄i γaψµi + ε̄i γ

aψµ
i ,

δψµ
i = 2Dµεi − 1

8
Tab

ijγabγµεj − γµηi

δbµ = 1
2
ε̄iφµi − 3

4
ε̄iγµχi − 1

2
η̄iψµi + h.c. + Λa

Keµa ,

δAµ = 1
2
iε̄iφµi + 3

4
iε̄iγµ χi + 1

2
iη̄iψµi + h.c. ,

δVµij = 2 ε̄jφµ
i − 3ε̄jγµ χ

i + 2η̄j ψµ
i − (h.c. ; traceless) ,

δTab
ij = 8 ε̄[iR(Q)ab

j] ,

δχi = − 1
12
γab /DTab

ij εj + 1
6
R(V)µν

i
jγ

µνεj − 1
3
iRµν(A)γµνεi

+D εi + 1
12
γabT

abijηj ,

δD = ε̄i /Dχi + ε̄i /Dχ
i . (B.1)

Here, Dµ denotes the full superconformally covariant derivative, while Dµ denotes a covari-
ant derivative with respect to Lorentz, dilatation, and chiral SU(2)×U(1) transformations,
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e.g.
Dµεi =

(
∂µ − 1

4
ωµ

cd γcd + 1
2
bµ + 1

2
iAµ

)
εi + 1

2
Vµij εj . (B.2)

Under local scale and U(1) transformations the various fields and transformation parame-
ters transform as indicated in table 2.

The various quantities denoted by R(Q), and appearing in the supersymmetry varia-
tions above denote the supercovariant curvature tensors corresponding to each generator,
Q, whose detailed definition can be found in [12]. Here, we only give the following

R(P )µν
a = 2 ∂[µ eν]

a + 2 b[µ eν]
a − 2ω[µ

ab eν]b − 1
2
(ψ̄[µ

iγaψν]i + h.c.) ,

R(Q)µν
i = 2D[µψν]

i − γ[µφν]
i − 1

8
T abij γab γ[µψν]j ,

R(M)µν
ab = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 4f[µ
[aeν]

b] + 1
2
(ψ̄[µ

i γab φν]i + h.c.)

+ (1
4
ψ̄µ

i ψν
j T abij − 3

4
ψ̄[µ

i γν] γ
abχi − ψ̄[µ

i γν] R(Q)abi + h.c.) , (B.3)

which are necessary to introduce the conventional constraints

R(P )µν
a = 0 ,

γµR(Q)µν
i + 3

2
γνχ

i = 0 ,

eνbR(M)µνa
b − iR̃(A)µa + 1

8
TabijTµ

bij − 3
2
D eµa = 0 , (B.4)

defining the composite gauge fields associated with local Lorentz transformations, S-super-
symmetry and special conformal boosts, ωM

AB, φM
i and fM

A, respectively.

Chiral multiplets

Chiral multiplets are the basic building blocks of all supersymmetric invariants in this
paper. We therefore give a concise overview of their most basic properties, to be used in
the various constructions.

Chiral multiplets are complex, carrying a Weyl weight w and a chiral U(1) weight c,
which is opposite to the Weyl weight, i.e. c = −w, while anti-chiral multiplets can be
obtained from chiral ones by complex conjugation, so that anti-chiral multiplets will have
w = c. The components of a generic scalar chiral multiplet are a complex scalar A, a
Majorana doublet spinor Ψi, a complex symmetric scalar Bij, an anti-selfdual tensor G−ab,
a Majorana doublet spinor Λi, and a complex scalar C. The assignment of their Weyl and
chiral weights is shown in table 3. The Q- and S-supersymmetry transformations for a
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Chiral multiplet

field A Ψi Bij G−ab Λi C

w w w + 1
2

w + 1 w + 1 w + 3
2

w + 2

c −w −w + 1
2
−w + 1 −w + 1 −w + 3

2
−w + 2

γ5 + +

Table 3: Weyl and chiral weights (w and c) and fermion chirality (γ5)

of the chiral multiplet component fields.

scalar chiral multiplet of weight w, are as follows

δA = ε̄iΨi ,

δΨi = 2 /DAεi +Bij ε
j + 1

2
γabG−ab εijε

j + 2wAηi ,

δBij = 2 ε̄(i /DΨj) − 2 ε̄kΛ(i εj)k + 2(1− w) η̄(iΨj) ,

δG−ab = 1
2
εij ε̄i /DγabΨj + 1

2
ε̄iγabΛi − 1

2
(1 + w) εij η̄iγabΨj ,

δΛi = − 1
2
γab /DG−abεi − /DBijε

jkεk + Cεij ε
j + 1

4

(
/DAγabTabij + wA /DγabTabij

)
εjkεk

− 3 γaε
jkεk χ̄[iγ

aΨj] − (1 + w)Bijε
jk ηk + 1

2
(1− w) γabG−abηi ,

δC = − 2 εij ε̄i /DΛj − 6 ε̄iχj ε
ikεjlBkl

− 1
4
εijεkl

(
(w − 1) ε̄iγ

ab /DTabjkΨl + ε̄iγ
abTabjk /DΨl

)
+ 2wεij η̄iΛj . (B.5)

Any homogeneous function of chiral superfields constitutes a chiral superfield, whose
Weyl weight is determined by the degree of homogeneity of the function at hand. Indeed,
one can show that a function G(Φ) of chiral superfields ΦI defines a chiral superfield, whose
component fields take the following form,

A|G =G ,

{Ψi , Bij , G
−
ab }|G =GI {Ψi

I , Bij
I , G−ab

I } ,
Λi|G =GI Λi

I − 1
2
GIJ

[
Bij

Iεjk + 1
2
G−ab

Iγabδki
]

Ψk
J ,

C|G =GI C
I − 1

4
GIJ

[
Bij

IBkl
J εikεjl − 2G−ab

IG−abJ
]
, (B.6)

where GI , GIJ etc. are the derivatives of the function G with respect to the scalars AI

and we omitted all terms nonlinear in fermions for brevity.
Chiral multiplets of w = 1 are special, because they are reducible upon imposing a

reality constraint. The two cases that are relevant are the vector multiplet, which arises
upon reduction from a scalar chiral multiplet, and the Weyl multiplet, which is a reduced
anti-selfdual chiral tensor multiplet.

31



vector multiplet tensor multiplet

field X Wµ Ωi Y ij Lij Bµν ϕi G

w 1 0 3
2

2 2 0 5
2

3

c −1 0 −1
2

0 0 0 −1
2

1

γ5 + −

Table 4: Weyl and chiral weights (w and c) and fermion chirality (γ5) of the vector
multiplet and the tensor multiplet.

The constraint for a scalar chiral superfield implies that C|vector and Λi|vector are ex-
pressed in terms of the lower components of the multiplet, and imposes a reality constraint
on B|vector and a Bianchi identity on G−|vector [32–34], as

A|vector =X ,

Ψi|vector = Ωi ,

Bij|vector =Yij = εikεjlY
kl ,

G−ab|vector =F−ab − 1
4
X̄ Tab

ij εij ,

Λi|vector = − εij /DΩj

C|vector = − 22cX̄ − 1
4
G+
ab T

ab
ijε

ij , (B.7)

where Fµν = 2∂[µAν] is the field strength of a gauge field, Aµ. The corresponding Bianchi
identity on Gab can be written as,

Db
(
G+
ab −G

−
ab + 1

4
XTabijε

ij − 1
4
X̄Tab

ijεij
)

= 0 , (B.8)

where in both (B.7) and (B.8) we again omitted terms nonlinear in fermions. The reduced
scalar chiral multiplet thus describes the covariant fields and field strength of a vector
multiplet, which encompasses 8+8 bosonic and fermionic components. Table 4 summarizes
the Weyl and chiral weights of the various fields belonging to the vector multiplet: a
complex scalar X, a Majorana doublet spinor Ωi, a vector gauge field Aµ, and a triplet of
auxiliary fields Yij.

The Q- and S-supersymmetry transformations for the vector multiplet take the form,

δX = ε̄iΩi ,

δΩi = 2 /DXεi + 1
2
εijGµνγ

µνεj + Yijε
j + 2Xηi ,

δAµ = εij ε̄i(γµΩj + 2ψµjX) + εij ε̄
i(γµΩj + 2ψµ

jX̄) ,

δYij = 2 ε̄(i /DΩj) + 2 εikεjl ε̄
(k /DΩl) , (B.9)
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and, for w = 1, are in clear correspondence with the supersymmetry transformations of
generic scalar chiral multiplets given in (B.5).

We now turn to the covariant fields of the Weyl multiplet, which can be arranged in an
anti-selfdual tensor chiral multiplet, whose chiral superfield components take the following
form,

Aab|W =Tab
ijεij ,

Ψabi|W = 8 εijR(Q)jab ,

Babij|W = − 8 εk(iR(V)−ab
k
j) ,(

G−ab
)
cd|W = − 8 R̂(M)−ab

cd ,

Λabi|W = 8
(
R(S)−abi + 3

4
γab /Dχi

)
,

Cab|W = 4D[aD
cTb]c ijε

ij − dual . (B.10)

Note that all quantities involved in the components above are either manifestly super-
covariant curvatures or (covariant) auxiliary fields of the Weyl multiplet. In particular,
R(S)abi is the curvature of the S-supersymmetry gauge field, which is solved in terms of
the derivative of the gravitino curvature, R(Q)abi, due to the conventional constraints.

All higher derivative terms involving powers of the Weyl tensor in this paper are con-
structed by couplings of the scalar chiral multiplet with w = 2 is obtained by squaring the
Weyl multiplet above. The various scalar chiral multiplet components of this multiplet are
given by,

Aw = (Tab
ijεij)

2 ,

Ψwi = 16 εijR(Q)jab T
klab εkl ,

Bijw = − 16 εk(iR(V)kj)ab T
lmab εlm − 64 εikεjl R̄(Q)ab

k R(Q)l ab ,

G−abw = − 16 R̂(M)cd
ab T klcd εkl − 16 εij R̄(Q)icdγ

abR(Q)cd j ,

Λiw = 32 εij γ
abR(Q)jcd R̂(M)cdab + 16 (R(S)ab i + 3γ[aDb]χi)T

klab εkl

− 64R(V)ab
k
i εklR(Q)ab l ,

Cw = 64 R̂(M)−cdab R̂(M)−cd
ab + 32R(V)−ab kl R(V)−ab

l
k

− 32T ab ij DaD
cTcb ij + 128 R̄(S)abiR(Q)ab

i + 384 R̄(Q)ab iγaDbχi . (B.11)

In practice, we will only use the lowest component, Aw, to construct functions that define
composite chiral multiplets, as in (B.6), which determines completely all instances of the
higher components in the relevant couplings. The components (B.11) can then be substi-
tuted straightforwardly in the final expressions to obtain the explicit couplings to the fields
of the Weyl background.
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C Tensor multiplet as a chiral background

We now turn to the tensor multiplet, which is also defined as an off-shell multiplet in
an arbitrary superconformal background. The field content of this multiplet includes a
pseudoreal triplet of scalars, Lij, a two-form gauge potential, Bµν , a Majorana fermion
doublet, ϕi, and an auxiliary complex scalar, G, with the Weyl and chiral assignments
given in 4. The corresponding supersymmetry transformation rules are as follows

δLij = 2 ε̄(iϕj) + 2 εikεjl ε̄
(kϕl) ,

δϕi = /DLij εj + εij /̂EI εj −Gεi + 2Lij ηj ,

δG = − 2 ε̄i /D ϕi − ε̄i(6Lij χj + 1
4
γabTabjk ϕ

l εijεkl) + 2 η̄iϕ
i ,

δBµν = iε̄iγµνϕ
j εij − iε̄iγµνϕj ε

ij + 2iLij ε
jk ε̄iγ[µψν]k − 2iLij εjk ε̄iγ[µψν]

k ,

(C.1)

and we refer to [19] for the precise definitions of the superconformally covariant derivatives
on the various fields. The vector Êµ is the superconformal completion of the dual of the
three-form field strength, Êµ = 1

2
i e−1 εµνρσ∂νBρσ.

The couplings of the tensor multiplets are given in terms of composite vector multiplets
[19], described by functions of a set of tensor multiplets, labeled by I. To this end, we
define the first component, the scalar XI as

XI = FI,J ḠJ + FI,JKij ϕ̄iJϕjK , (C.2)

which, by (C.1), transforms according to the first of (B.5) into the remaining bosonic
components of the vector multiplet, as

Yij I = −2FI,J
[
2cLij

J + 3DLij
J
]
− 2FI,JKij (ḠJ GK + Êµ

J ÊµK) ,

− 2FI,JKkl (DµLik
J DµLjl

K + 2 εk(iDµLj)l
J ÊµK)

Fµν I = −2FI,JKmn ∂[µLmk
J ∂ν]Lnl

K εkl

− 4 ∂[µ

(
FI,J Êν]

J − 1
2
FI,J Vν]

i
j Lik

J εjk
)
,

CI = −22c(FI,J GJ)− 1
4

(F+
ab I − 1

4
FI,J ḠJTab ijε

ij)T abijε
ij , (C.3)

where we suppressed all fermions and the component CI is consistent with (B.7). In order
for this multiplet to be well defined, the first derivative of FI,J(L) with respect to LK ij,
denoted by FI,J,Kij, must satisfy the constraints

FI,J,Kij = FI,K,Jij , εjk FI,J,Kij,Lkl(L) = 0 , (C.4)

while Weyl covariance requires the condition

FI,JKik LkjK = −1
2
δi
j FI,J , (C.5)

which implies that the function FI,J is SU(2) invariant and homogeneous of degree −1, so
that it has scaling weight −2.
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The expressions for the composite chiral supermultiplet above can be used to construct
actions with higher derivative couplings. In general, one can use (C.2)-(C.3) on the same
footing as any vector multiplet to obtain actions containing vector-tensor couplings. This
is beyond the scope of this paper, where we only consider a background chiral multiplet
containing four derivatives on the components of a single tensor multiplet, similar to [19]
but allowing for couplings depending on vector multiplet scalars as well.

For a single tensor multiplet, the functions FI,J in (C.2) reduce to a single function
F(L), while the constraints (C.4)-(C.5) imply the constraint,

∂2F(L)

∂Lij ∂Lij
= 0 . (C.6)

We then consider the chiral multiplet of w = 2 defined by its first component as the square
of (C.2), through

Ât = F2Ḡ2 + 2F F ij G ϕ̄iϕj = HG2 +Hij Ḡ ϕ̄iϕj , (C.7)

where we defined the function H(L) = [F(L)]2, and its derivatives, as

Hij =
∂H
∂Lij

, Hij,kl =
∂2H

∂Lij ∂Lkl
. (C.8)

As noted in (3.7), for a single tensor multiplet the function F is essentially unique, so that
H is simply given by its square, as

H =
1

LijLij
, (C.9)

where in the reduction we consider in the main text, the scalars Lij contain the dilaton
and are kept constant throughout.

The remaining components of this composite background multiplet are given by (B.6)
for G(A) = A2, as follows from (C.7). For completeness, we display their form for a general
function H, as follows

Bt
ij = 2 Ḡ

(
2H

[
2cLij + 3DLij

]
−Hij (|G|2 + Êµ Ê

µ)

−Hkl (DµLikD
µLjl + 2 εk(iDµLj)l Ê

µ)
)
,

Gt−
ab = − 2Hmn ḠD[aLmkDb]Lnl εkl − 8H Ḡ

(
D[aÊb] − 1

4
Rab

i
j(V)Lik ε

jk
)

− 4 ḠHmnD[aL
mnÊb] − 1

2
H |G|2Tabijεij ,

(C.10)
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for the lower components and

Ct =H(L)
{
− 4Ḡ2cG− 2 (2cLij + 3DLij)

2 + 16D[aEb]− D[aEb]−

− 8DaEb
(
Rabi−

j (V)Likε
jk − 1

4
[T abijεij G+ h.c.]

)
+ 1

16

(
(Tab

ijεij)
2G2 + 2 (Tabijε

ij)2Ḡ2
)

+ 12 (|G|2 + E2)D

+Rabm
n(V)Lmlε

nl
(
Rab

i−
j (V)Likε

jk − 1
2
[Tab

ijεij G+ h.c.]
)}

+Hij(L)
{(

2cL
kl + 3DLkl

)
(DµLikDµLjl − 4 εikE

µDµLjl)

− 22cLij(2 |G|2 + E2)− 4 ḠDµGDµLij

− 4
(
EbDaLij + 1

2
DaLikDbLjlεkl

)(
Rabm−

n (V)Lmoε
no − 1

4
T abmnεmnG

)
+ 8(DaLikDbLjlεkl − 2EaDbLij)D[aEb]−

}
+Hij,kl(L)

{
− εikεpqDµLmpDνLmnDµLjnDνLql

− 8 εikE
bDaLjm(DaLmnDbLnl + 1

6
εabcdDcLmnDdLnl)

+ 2DµLikDµLjl|G|2 − (|G|2 + E2)
(
εikεjl(|G|2 + E2) + 4εikE

µDµLjl
)

+ 2εikε
mnDµLjmDµLnlE2 + 4εik(DµLjmDνLlnεmn)EµEν

}
, (C.11)

for the top component.

D The kinetic multiplet and supersymmetric invari-

ants

The central object in constructing the various higher derivative invariants of the type
R2nF 2m in this paper is the so called kinetic chiral multiplet. The term ‘kinetic’ multiplet
was first used in the context of the N = 1 tensor calculus [35], because this is the chiral
multiplet that enables the construction of the kinetic terms, conventionally described by a
real superspace integral, in terms of a chiral superspace integral. In [12,34] a corresponding
kinetic multiplet, T(Φ̄), for a chiral w = 0 multiplet, Φ, was identified for N = 2 super-
symmetry, which now involves four rather than two covariant θ̄-derivatives. It follows that
T(Φ̄) contains up to four space-time derivatives, so that the expression∫

d4θ d4θ̄ Φ Φ̄′ ≈
∫

d4θΦT(Φ̄′) , (D.1)

corresponds to a four derivative coupling. Expressing the chiral multiplets in terms of
(functions of) reduced chiral multiplets, (D.1) leads to higher-derivative couplings of vector
multiplets and/or the Weyl multiplet.
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Denote the components of a w = 0 chiral multiplet by (A,Ψ, B,G−,Λ, C), out of which
we construct the components of T(Φ̄w=0), denoted by (A,Ψ, B,G−,Λ, C)|T(Φ̄). In [12] the
following relation was established,

A|T(Φ̄) = C̄ ,

Ψi|T(Φ̄) = − 2 εij /DΛj − 6 εikεjlχ
jBkl − 1

4
εijεkl γ

abTab
jk
↔
/D Ψl ,

Bij|T(Φ̄) = − 2 εikεjl
(
2c + 3D

)
Bkl − 2G+

abR(V)ab ki εjk ,

G−ab|T(Φ̄) = −
(
δa

[cδb
d] − 1

2
εab

cd
)[

4DcD
eG+

ed + (DeĀDcTde
ij +DcĀD

eTed
ij)εij

]
+ 2cĀ Tab

ijεij −R(V)−ab
i
k B

jk εij + 1
8
Tab

ij TcdijG
+cd ,

Λi|T(Φ̄) = 22c /DΨjεij + 1
4
γcγab(2DcT

ab
ij Λj + T abij DcΛ

j)

− 1
2
εij
(
R(V)ab

j
k + 2iR(A)abδ

j
k

)
γcγabDcΨ

k

+ 1
2
εij
(
3DbD − 4iDaR(A)ab + 1

4
Tbc

ij
↔
Da T

ac
ij

)
γbΨj

− 2G+ab /DR(Q)abi + 6 εijD /DΨj

+ 3 εij
(
/Dχk B

kj + /DĀ /Dχj
)

+ 3
2

(
2 /DBkjεij + /DG+

abγ
ab δki + 1

4
εmnTab

mn γab /DĀ δi
k
)
χk ,

C|T(Φ̄) = 4(2c + 3D)2cĀ− 1
2
Da

(
T abij Tcb

ij
)
DcĀ+ 1

16
(Tabijε

ij)2C̄

+Da

(
εijDaTbcij G

+bc + 4 εijT abij D
cG+

cb − Tbc
ij T acij D

bĀ
)

+
(
6DbD − 8iDaR(A)ab

)
DbĀ+ , (D.2)

where we suppressed terms nonlinear in the covariant fermion fields. Observe that the
right-hand side of these expressions is always linear in the conjugate components of the
w = 0 chiral multiplet, i.e. in (Ā,Ψi, Bij, G+

ab,Λ
i, C̄).

Using the result (D.2) one can construct a large variety of superconformal invariants
with higher-derivative couplings involving vector multiplets, as well as the tensor and Weyl
chiral backgrounds. The construction of the higher-order Lagrangians therefore proceeds
in two steps. First one constructs the Lagrangian in terms of unrestricted chiral multiplets
of appropriate Weyl weights, in the form∫

d4θΦ0 T(n1) T(n2) · · · T(nk) . (D.3)

Here, the n-th power of the kinetic multiplet is defined recursively as T(n) = T(Φ̄n T(n−1))
for Φn of appropriate weight. Subsequently, one expresses the unrestricted supermultiplets
in terms of the reduced supermultiplets in section B. In these expressions it is natural to
introduce a variety of arbitrary homogeneous functions, so that resulting final Lagrangian
is controlled by a function of given homogeneity and holomorphicity in the various fields,
corresponding to the original structure in (D.3).

In this work, we will make use of invariants of the type (D.3), where one, two or three
kinetic multiplets appear, and are naturally quadratic, cubic and quartic in chiral multiplet
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components, respectively. While the first of these was described in detail in [12], the other
two have not appeared in the literature. These are straightforward to write, using the
formulae above and in [12] but are rather unilluminating, so that we prefer to emphasise
the structure of the corresponding Lagrangians, restricting ourselves to the leading terms.

The quadratic invariant

The simplest case of a Lagrangian involving a kinetic multiplet is the one in (D.1), where
a w = 0 chiral multiplet is multiplied with the kinetic of an antichiral one. In components,
the leading bosonic terms in the resulting Lagrangian read

e−1L =C C̄ + 8DaF−abDcF+
cb + 4F−ac F+

bcR(ω, e)a
b

+ 4D2AD2Ā+ 8DµA
[
Rµ

a(ω, e)− 1
3
R(ω, e) eµ

a
]
DaĀ

−DµBij DµBij + (1
6
R(ω, e) + 2D)BijB

ij + · · · , (D.4)

where we suppressed the prime on the second chiral multiplet indicated in (D.1) for brevity.
The next step is to consider the components of the chiral and anti-chiral multiplet in
(D.4) to be composite, given as holomorphic and anti-holomorphic functions, F , F̄ of the
fundamental vector, tensor and Weyl multiplet respectively. The result is a Lagrangian
that is controlled by a homogeneous function of degree zero,

F (XA, Aw, At) F̄ (X̄A, Āw, Āt) ∼ H(XA, Aw, At, X̄
A, Āw, Āt) , (D.5)

which depends on the vector multiplets scalars, XA, and the Weyl and tensor multiplet
composites, Aw and At. This invariant corresponds to higher derivative couplings that are
quadratic in the leading terms, F 2, R2 and (∇E)2 respectively. The arbitrariness of the
function in Aw is analogous to the similar dependence of the chiral couplings, F (XA, Aw)
which describes the full topological string partition function. Note that the various combi-
nations have different order of derivatives, as e.g. F 4 comprises only four derivatives, while
R2F 2, (∇E)2F 2 contain six derivatives and R4, R2(∇E)2, (∇E)4 contain eight deriva-
tives. However, all these invariants have a common structure, found by substituting the
definitions of the chiral multiplets in terms of F , F̄ and H in (D.4).

This was done in [12], where the F 4 coupling was constructed, based on a real function
H(X, X̄), which plays the role of a Kähler potential, as it is defined up to a real function,
as

H(X, X̄)→ H(X, X̄) + Λ(X) + Λ̄(X̄) . (D.6)
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The explicit form of the Lagrangian is

e−1L =HIJK̄L̄

[
1
4

(
G−ab

I G−ab J − 1
2
Yij

I Y ijJ
)(
G+
ab
K G+abL − 1

2
Y ijK Yij

L
)

+ 4DaXI DbX̄K
(
DaXJ DbX̄L + 2G− ac J G+ b

c
L − 1

4
ηab Y J

ij Y
L ij
)]

+
{
HIJK̄

[
4DaXI DaXJ D2X̄K −DaXI Y J

ij DaY K ij

−
(
G−ab I G− Jab − 1

2
Y I
ij Y

Jij)
(
2cX

K + 1
8
G−Kab T abijεij

)
+ 8DaXIG− Jab

(
DcG+ cbK − 1

2
DcX̄KT ij cbεij

)]
+ h.c.

}
+HIJ̄

[
4
(
2cX̄

I + 1
8
G+ I
ab T

ab
ijε

ij
)(
2cX

J + 1
8
G− Jab T abijεij

)
+ 4D2XI D2X̄J

+ 8DaG− abI DcG+c
b
J −DaYijI DaY ij J + 1

4
Tab

ij Tcdij G
−ab IG+cd J

+
(

1
6
R+ 2D

)
Yij

I Y ij J + 4G−ac I G+
bc
J Ra

b

+ 8
(
Rµν − 1

3
gµνR+ 1

4
T µb

ij T νbij + iR(A)µν − gµνD
)
DµXI DνX̄J

−
[
DcX̄J

(
DcTabij G− I ab + 4T ij cbDaG− Iab

)
εij + [h.c.; I ↔ J ]

]
−
[
εik Yij

I G+ab J R(V)ab
j
k + [h.c.; I ↔ J ]

]]
, (D.7)

where (we suppress fermionic contributions),

G−ab
I =F−ab

I − 1
4
X̄I Tab

ijεij ,

2cX
I =D2XI +

(
1
6
R+D

)
XI . (D.8)

One can obtain the more general couplings as discussed above, resulting in similar
expressions. For example, the R2F 2- and R4-type couplings feature terms found by sub-
stituting F 2 → R2 and similarly for the other components in (D.7) and are discussed
in [12].

The cubic invariant

The next more complicated example of Lagrangians containing kinetic multiplets is to
consider an integral quadratic in kinetic multiplets, as∫

d4θ̄ Φ̄0T(Φ1)T(Φ2) , (D.9)

where Φ0 is a w = −2 chiral, while Φ1 and Φ2 are w = 0 anti-chirals, as above. It is
straightforward to apply the multiplication rule for chiral multiplets, to obtain the analo-
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gous master formula of the type (D.4), in this case. The result takes the form

e−1L =C2 C̄ − 1
16
Ā C2(T+)2

+ 2 Ā C
[
4 (2 + 3D)2A+ 1

16
C (T−)2 + 4Da

(
T+ abDcG+

cb

)
+ . . .

]
− Ā C

[
2 εikεjl(2 + 3D)Bij (2 + 3D)Bkl −D[a

(
DcG−cb]+

)
D[a
(
DcG

−cb]+
)

+ . . .
]

+ 2C
[
Bij (2 + 3D)Bij −G+ ab

(
D[a

(
DcG−cb]+

)
−2AT+

ab

)
+ · · ·

]
, (D.10)

which is manifestly quadratic in holomorphic and linear in anti-holomorphic components.
Note that we again use a simplified notation that naively identifies the three a priori
independent multiplets, despite the fact that the anti-chiral multiplet is of weight −2,
while the chiral ones are of w = 0. The most general invariant follows by completing the
combinations given above with the components of the kinetic multiplet given in (D.2) and
viewing the holomorphic components as quadratic forms in the components of the two
chiral multiplets in (D.9), as done in (D.4).

It is now straightforward, if cumbersome, to consider the three multiplets in (D.9) as
functions of the vector multiplets, the tensor multiplet and the Weyl multiplet, as done in
(D.5), leading to a Lagrangian described by a function,H(XA, Aw, At, X̄

A, Āw, Āt), which is
homogeneous of degree zero in the holomorphic components and homogeneous of degree −2
in the anti-holomorphic components. We refrain from giving the corresponding expression
(D.7) in this case, since we will only be dealing with the leading terms and the properties
of the corresponding function H.

Once again, the generic function of all available multiplets leads to various invariants,
which contain different orders of derivatives but share the same structure, as in (D.10). The
prototype of these terms is the F 6 invariant arising by taking H(XA, X̄A), i.e. a function
of vector multiplet scalars only. Allowing for holomorphic/anti-holomorphic dependence
on the scalars Aw and At leads to terms of the type R2F 4, R4F 2, (∇E)2F 4 and so on for
all possible combinations. Note that many of these contain more than eight derivatives
and therefore fall outside the scope of this work.

The quartic invariants

We finally consider integrals of the type (D.3) which are cubic in the kinetic multiplet
operator, T, in which case we find two possibilities. Indeed, this is the first case where one
needs to consider nested kinetic multiplets, since the two possible integrals,∫

d4θ̄ Φ̄0T(Φ1)T(Φ2)T(Φ3) ,

∫
d4θ̄ Φ̄0T(Φ1)T(Φ′0T(Φ̄2)) , (D.11)

are not equivalent upon partial integration. Here, the first integral is the straightforward
extension of (D.1) and (D.9), while in the second integral Φ0 and Φ′0 are w = −2 chirals,
while Φ1 and Φ2 are w = 0 chirals, as above.

Once again, one can apply the multiplication rule for chiral multiplets, to obtain the
analogous master formula of the type (D.4), in these cases. The expression for the first
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integral is similar to (D.10), where three chiral multiplets appear and is not used in this
paper. The second integral is more cumbersome, but can be easily computed by an iterative
procedure, by noting that Φ̄0T(Φ1) and Φ′0T(Φ̄2) are w = 0 multiplets, so that (D.4) applies
for their components. One can then obtain the result to the integral by making the following
substitutions

A→A0A|T(Φ̄) ,

Bij →B0 ij A|T(Φ̄) + A0Bij|T(Φ̄) ,

G− ab →G− ab0 A|T(Φ̄) + A0G
− ab|T(Φ̄) ,

C →C0A|T(Φ̄) + A0C|T(Φ̄) − 1
4

(
εikεjlB0 ij Bkl|T(Φ̄) − 2G−0 abG

− ab|T(Φ̄)

)
, (D.12)

in (D.4), where the components labeled with |T(Φ̄) are as in (D.2).
As above, allowing for the four chiral multiplets involved to depend on the vector,

tensor and/or the Weyl multiplet, exactly as in (D.5), one obtains various higher derivative
invariants, sharing the same structure. However, all but one of the invariants described by
each of the two integrals in (D.11) necessarily contain more than eight spacetime derivatives
if the Weyl and tensor multiplet backgrounds are allowed, so that they are not relevant for
our consideration. The exception is the case where all the composite chiral multiplets only
depend on the vector multiplets, in which case we obtain two F 8 invariants from (D.11).
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