A. Ambainis, QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS, International Journal of Quantum Information, vol.01, issue.04, pp.507-518, 2003.
DOI : 10.1142/S0219749903000383

S. Venegas-andraca, Quantum walks: a comprehensive review, Quantum Information Processing, vol.81, issue.5, pp.1015-1106, 2012.
DOI : 10.1007/s11128-012-0432-5

Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Physical Review A, vol.48, issue.2, pp.1687-1690, 1993.
DOI : 10.1103/PhysRevA.48.1687

N. Konno, A new type of limit theorems for the one-dimensional quantum random walk, Journal of the Mathematical Society of Japan, vol.57, issue.4, pp.1179-1195, 2005.
DOI : 10.2969/jmsj/1150287309

T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. Sanders, Quantum walks in higher dimensions, Journal of Physics A: Mathematical and General, vol.35, issue.12, pp.2745-2753, 2002.
DOI : 10.1088/0305-4470/35/12/304

E. Farhi and S. Gutmann, Quantum computation and decision trees, Physical Review A, vol.58, issue.2, pp.915-928, 1998.
DOI : 10.1103/PhysRevA.58.915

S. De-toro-arias and J. Luck, Anomalous dynamical scaling and bifractality in the one-dimensional Anderson model, Journal of Physics A: Mathematical and General, vol.31, issue.38, pp.7699-7717, 1998.
DOI : 10.1088/0305-4470/31/38/007

D. Ben-avraham, E. M. Bollt, and C. Tamon, One-Dimensional Continuous-Time Quantum Walks, Quantum Information Processing, vol.85, issue.6, pp.295-308, 2004.
DOI : 10.1007/s11128-004-9420-8

F. Strauch, Connecting the discrete- and continuous-time quantum walks, Physical Review A, vol.74, issue.3, p.30301, 2006.
DOI : 10.1103/PhysRevA.74.030301

D. Shepelyansky, Coherent Propagation of Two Interacting Particles in a Random Potential, Physical Review Letters, vol.73, issue.19, pp.2607-2610, 1994.
DOI : 10.1103/PhysRevLett.73.2607

Y. Imry, Coherent Propagation of Two Interacting Particles in a Random Potential, Europhysics Letters (EPL), vol.30, issue.7, pp.405-408, 1995.
DOI : 10.1209/0295-5075/30/7/005

D. O. Krimer and S. Flach, Interaction-induced connectivity of disordered two-particle states, Physical Review B, vol.91, issue.10, p.100201, 2015.
DOI : 10.1103/PhysRevB.91.100201

Y. Omar, N. Paunkovic, L. Sheridan, and S. Bose, Quantum walk on a line with two entangled particles, Physical Review A, vol.74, issue.4, p.42304, 2006.
DOI : 10.1103/PhysRevA.74.042304

J. K. Gamble, M. Friesen, D. Zhou, R. Joynt, and S. Coppersmith, Two-particle quantum walks applied to the graph isomorphism problem, Physical Review A, vol.81, issue.5, p.52313, 2010.
DOI : 10.1103/PhysRevA.81.052313

S. D. Berry and J. Wang, Two-particle quantum walks: Entanglement and graph isomorphism testing, Physical Review A, vol.83, issue.4, p.42317, 2011.
DOI : 10.1103/PhysRevA.83.042317

K. Mayer, M. C. Tichy, F. Mintert, T. Konrad, and A. Buchleitner, Counting statistics of many-particle quantum walks, Physical Review A, vol.83, issue.6, p.62307, 2011.
DOI : 10.1103/PhysRevA.83.062307

P. P. Rohde, A. Schreiber, M. Stefanak, I. Jex, and C. Silberhorn, Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation, New Journal of Physics, vol.13, issue.1, p.13001, 2011.
DOI : 10.1088/1367-2630/13/1/013001

M. Stefanak, S. M. Barnett, B. Kollar, T. Kiss, and I. Jex, Directional correlations in quantum walks with two particles, New Journal of Physics, vol.13, issue.3, p.33029, 2011.
DOI : 10.1088/1367-2630/13/3/033029

A. Ahlbrecht, A. Alberti, D. Meschede, V. B. Scholz, A. Werner et al., Molecular binding in interacting quantum walks, New Journal of Physics, vol.14, issue.7, p.73050, 2012.
DOI : 10.1088/1367-2630/14/7/073050

Y. Lahini, M. Verbin, S. D. Huber, Y. Bromberg, R. Pugatch et al., Quantum walk of two interacting bosons, Physical Review A, vol.86, issue.1, p.11603, 2012.
DOI : 10.1103/PhysRevA.86.011603

C. Benedetti, F. Buscemi, and P. Bordone, Quantum correlations in continuous-time quantum walks of two indistinguishable particles, Physical Review A, vol.85, issue.4, p.42314, 2012.
DOI : 10.1103/PhysRevA.85.042314

C. M. Chandrashekar and T. Busch, Quantum walk on distinguishable non-interacting many-particles and indistinguishable two-particle, Quantum Information Processing, vol.81, issue.5, pp.1287-1299, 2012.
DOI : 10.1007/s11128-012-0387-6

X. Qin, Y. Ke, X. Guan, Z. Li, A. N. Lee et al., Statistics-dependent quantum co-walking of two particles in one-dimensional lattices with nearest-neighbor interactions, Physical Review A, vol.90, issue.6, p.62301, 2014.
DOI : 10.1103/PhysRevA.90.062301

T. Fukuhara, P. Schauss, M. Endres, S. Hild, M. Cheneau et al., Microscopic observation of magnon bound states and their dynamics, Nature, vol.11, issue.7469, pp.76-79, 2013.
DOI : 10.1038/nature12541

URL : https://hal.archives-ouvertes.fr/hal-01397783

A. Peruzzo, M. Lobino, J. Matthews, N. Matsuda, A. Politi et al., Quantum Walks of Correlated Photons, Science, vol.329, issue.5998, pp.1500-1503, 2010.
DOI : 10.1126/science.1193515

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi et al., Two-Particle Bosonic-Fermionic Quantum Walk via Integrated Photonics, Physical Review Letters, vol.108, issue.1, p.10502, 2012.
DOI : 10.1103/PhysRevLett.108.010502

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli et al., Strongly correlated quantum walks in optical lattices, Science, vol.347, issue.6227, pp.1229-1233, 2015.
DOI : 10.1126/science.1260364

T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum walks driven by many coins, Physical Review A, vol.67, issue.5, p.52317, 2003.
DOI : 10.1103/PhysRevA.67.052317

B. Tregenna, W. Flanagan, R. Maile, and V. Kendon, Controlling discrete quantum walks: coins and initial states, New Journal of Physics, vol.5, p.83, 2003.
DOI : 10.1088/1367-2630/5/1/383

N. Inui, N. Konno, and E. Segawa, One-dimensional three-state quantum walk, Physical Review E, vol.72, issue.5, p.56112, 2005.
DOI : 10.1103/PhysRevE.72.056112

T. Miyazaki, M. Katori, and N. Konno, Wigner formula of rotation matrices and quantum walks, Physical Review A, vol.76, issue.1, p.12332, 2007.
DOI : 10.1103/PhysRevA.76.012332

S. Falkner and S. Boettcher, Weak limit of the three-state quantum walk on the line, Physical Review A, vol.90, issue.1, p.12307, 2014.
DOI : 10.1103/PhysRevA.90.012307

M. Stefanak, I. Bezdekova, and I. Jex, Limit distributions of three-state quantum walks: The role of coin eigenstates, Physical Review A, vol.90, issue.1, p.12342, 2014.
DOI : 10.1103/PhysRevA.90.012342

A. K. Geim and K. Novoselov, The rise of graphene, Nature Materials, vol.42, issue.3, pp.183-191, 2007.
DOI : 10.1038/nmat1849

A. H. Castro-neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, pp.109-162, 2009.
DOI : 10.1103/RevModPhys.81.109

A. Privitera and M. Capone, Lattice approaches to dilute Fermi gases: Legacy of broken Galilean invariance, Physical Review A, vol.85, issue.1, p.13640, 2012.
DOI : 10.1103/PhysRevA.85.013640

G. Wannier, Dynamics of Band Electrons in Electric and Magnetic Fields, Reviews of Modern Physics, vol.34, issue.4, pp.645-655, 1962.
DOI : 10.1103/RevModPhys.34.645

R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. Mitchell et al., Behavior of Polycatalytic Assemblies in a Substrate-Displaying Matrix, Journal of the American Chemical Society, vol.128, issue.39, pp.12693-12699, 2006.
DOI : 10.1021/ja058394n

T. Antal and P. Krapivsky, Molecular spiders on a plane, Physical Review E, vol.85, issue.6, p.61927, 2012.
DOI : 10.1103/PhysRevE.85.061927