A. M. Polyakov, Gauge fields as rings of glue, Nuclear Physics B, vol.164, pp.164-171, 1980.
DOI : 10.1016/0550-3213(80)90507-6

J. Gervais and A. Neveu, The slope of the leading Regge trajectory in quantum chromodynamics, Nuclear Physics B, vol.163, p.163, 1980.
DOI : 10.1016/0550-3213(80)90397-1

V. S. Dotsenko and S. N. Vergeles, Renormalizability of phase factors in the nonabelian gauge theory, Nucl. Phys, vol.527, p.169, 1980.

R. A. Brandt, F. Neri, and M. , Renormalization of loop functions for all loops, Physical Review D, vol.24, issue.4, p.24, 1981.
DOI : 10.1103/PhysRevD.24.879

H. Dorn, Renormalization of path ordered phase factors and related hadron operators in gauge field theories, Fortsch. Phys, vol.34, pp.11-56, 1986.

G. P. Korchemsky and A. V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nuclear Physics B, vol.283, pp.283-342, 1987.
DOI : 10.1016/0550-3213(87)90277-X

M. Neubert, Heavy-quark symmetry, Physics Reports, vol.245, issue.5-6, pp.259-396, 1994.
DOI : 10.1016/0370-1573(94)90091-4

A. V. Manohar and M. B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol, vol.10, pp.1-191, 2000.
DOI : 10.1017/CBO9780511529351

A. G. Grozin, Heavy quark effective theory, Springer Tracts Mod, Phys, vol.201, pp.1-213, 2004.

G. P. Korchemsky and A. V. Radyushkin, Loop-space formalism and renormalization group for the infrared asymptotics of QCD, Physics Letters B, vol.171, issue.4, pp.171-459, 1986.
DOI : 10.1016/0370-2693(86)91439-5

G. P. Korchemsky and A. V. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Physics Letters B, vol.279, issue.3-4, pp.359-366, 1992.
DOI : 10.1016/0370-2693(92)90405-S

A. F. Falk, H. Georgi, B. Grinstein, and M. B. Wise, Heavy meson form factors from QCD, Nuclear Physics B, vol.343, issue.1, pp.343-344, 1990.
DOI : 10.1016/0550-3213(90)90591-Z

M. Czakon, A. Mitov, and G. F. Sterman, Threshold resummation for top-pair hadroproduction to next-to-next-to-leading log, Physical Review D, vol.80, issue.7, pp.80-074017, 2009.
DOI : 10.1103/PhysRevD.80.074017

G. Luisoni and S. Marzani, QCD resummation for hadronic final states, Journal of Physics G: Nuclear and Particle Physics, vol.42, issue.10, p.42, 2015.
DOI : 10.1088/0954-3899/42/10/103101

N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett, vol.102, 2009.

A. Grozin, J. M. Henn, G. P. Korchemsky, and P. Marquard, The n f terms of the three-loop cusp anomalous dimension in QCD
URL : https://hal.archives-ouvertes.fr/cea-01297563

A. G. Grozin, J. M. Henn, G. P. Korchemsky, and P. Marquard, Three Loop Cusp Anomalous Dimension in QCD, Physical Review Letters, vol.114, issue.6, p.62006, 2015.
DOI : 10.1103/PhysRevLett.114.062006

URL : https://hal.archives-ouvertes.fr/cea-01297563

G. P. Korchemsky, Asymptotics of the Altarelli?Parisi?Lipatov evolution kernels of parton distributions, Mod, Phys. Lett, pp.4-1257, 1989.

N. Beisert, Review of AdS/CFT Integrability: An Overview, Letters in Mathematical Physics, vol.27, issue.1-3, pp.3-32, 2012.
DOI : 10.1007/s11005-011-0529-2

URL : https://hal.archives-ouvertes.fr/hal-01180485

J. G. Gatheral, Exponentiation of eikonal cross sections in nonabelian gauge theories, Physics Letters B, vol.133, issue.1-2, pp.133-90, 1983.
DOI : 10.1016/0370-2693(83)90112-0

J. Frenkel and J. C. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys, pp.246-231, 1984.

A. V. Kotikov, Differential equations method. New technique for massive Feynman diagram calculation, Physics Letters B, vol.254, issue.1-2, pp.254-158, 1991.
DOI : 10.1016/0370-2693(91)90413-K

A. V. Kotikov, Differential equation method. The calculation of N-point Feynman diagrams, Physics Letters B, vol.267, issue.1, pp.267-123, 1991.
DOI : 10.1016/0370-2693(91)90536-Y

E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim, A110, pp.1435-1452, 1997.

T. Gehrmann and E. Remiddi, Differential equations for two-loop four-point functions, Nuclear Physics B, vol.580, issue.1-2, pp.580-485, 2000.
DOI : 10.1016/S0550-3213(00)00223-6

M. Argeri and P. Mastrolia, FEYNMAN DIAGRAMS AND DIFFERENTIAL EQUATIONS, International Journal of Modern Physics A, vol.22, issue.24, pp.4375-4436, 2007.
DOI : 10.1142/S0217751X07037147

J. M. Henn, Multiloop Integrals in Dimensional Regularization Made Simple, Physical Review Letters, vol.110, issue.25, 2013.
DOI : 10.1103/PhysRevLett.110.251601

J. M. Henn, Lectures on differential equations for Feynman integrals, Journal of Physics A: Mathematical and Theoretical, vol.48, issue.15, p.48, 2015.
DOI : 10.1088/1751-8113/48/15/153001

URL : http://arxiv.org/abs/1412.2296

N. Arkani-hamed, J. L. Bourjaily, F. Cachazo, and J. Trnka, Local integrals for planar scattering amplitudes, Journal of High Energy Physics, vol.78, issue.6, 2012.
DOI : 10.1007/JHEP06(2012)125

URL : http://arxiv.org/abs/1012.6032

F. Cachazo, Sharpening the leading singularity, arXiv:0803, 1988.

E. Remiddi and J. A. Vermaseren, HARMONIC POLYLOGARITHMS, International Journal of Modern Physics A, vol.15, issue.05, pp.15-725, 2000.
DOI : 10.1142/S0217751X00000367

D. Ma??trema??tre, . Hpl, and . Mathematica, HPL, a Mathematica implementation of the harmonic polylogarithms, Computer Physics Communications, vol.174, issue.3, pp.222-240, 2006.
DOI : 10.1016/j.cpc.2005.10.008

D. Ma??trema??tre, Extension of HPL to complex arguments, Comput. Phys. Commun, vol.183, issue.846, 2012.

W. Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, 1965.

J. Ablinger, A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, 2010.

J. Ablinger, J. Blümlein, and C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials, Journal of Mathematical Physics, vol.52, issue.10, 2011.
DOI : 10.1063/1.3629472

J. Ablinger, J. Blümlein, M. Round, and C. Schneider, Advanced computer algebra algorithms for the expansion of Feynman integrals, p.50, 2012.

J. Ablinger, J. Blümlein, and C. Schneider, Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms, Journal of Mathematical Physics, vol.54, issue.8, 2013.
DOI : 10.1063/1.4811117

A. Vogt, Next-to-next-to-leading logarithmic threshold resummation for deep-inelastic scattering and the Drell???Yan process, Physics Letters B, vol.497, issue.3-4, pp.228-234, 2001.
DOI : 10.1016/S0370-2693(00)01344-7

C. F. Berger, of nonsinglet partonic splitting functions, Physical Review D, vol.66, issue.11, 2002.
DOI : 10.1103/PhysRevD.66.116002

S. Moch, J. A. Vermaseren, and A. Vogt, The three-loop splitting functions in QCD: the??non-singlet case, Nuclear Physics B, vol.688, issue.1-2, pp.101-134, 2004.
DOI : 10.1016/j.nuclphysb.2004.03.030

S. Moch, J. A. Vermaseren, and A. Vogt, Three-loop results for quark and gluon form factors, Physics Letters B, vol.625, issue.3-4, pp.625-245, 2005.
DOI : 10.1016/j.physletb.2005.08.067

P. A. Baikov, K. G. Chetyrkin, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, Quark and Gluon Form Factors to Three Loops, Physical Review Letters, vol.102, issue.21, p.212002, 2009.
DOI : 10.1103/PhysRevLett.102.212002

W. Kilian, T. Mannel, and T. Ohl, Unimagined imaginary parts in heavy quark effective field theory, Physics Letters B, vol.304, issue.3-4, pp.311-317, 1993.
DOI : 10.1016/0370-2693(93)90301-W

N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, Journal of High Energy Physics, vol.18, issue.6, 2011.
DOI : 10.1007/JHEP06(2011)131

D. Correa, J. Henn, J. Maldacena, and A. Sever, The cusp anomalous dimension at three loops and beyond, Journal of High Energy Physics, vol.08, issue.5
DOI : 10.1007/JHEP05(2012)098

E. Laenen, K. J. Larsen, and R. Rietkerk, Imaginary Parts and Discontinuities of Wilson Line Correlators, Physical Review Letters, vol.114, issue.18, 2015.
DOI : 10.1103/PhysRevLett.114.181602

K. Melnikov and T. Van-ritbergen, The three loop on-shell renormalization of QCD and QED, Nucl. Phys, pp.591-515, 2000.

K. G. Chetyrkin and A. G. Grozin, Three loop anomalous dimension of the heavy?light quark current in HQET, Nucl. Phys, pp.666-289, 2003.

J. M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett, vol.809803002, pp.4859-4862, 1998.

S. Rey and J. Yee, Macroscopic strings as heavy quarks: Large- N gauge theory and anti-de Sitter supergravity, The European Physical Journal C, vol.22, issue.2, pp.379-394, 2001.
DOI : 10.1007/s100520100799

N. Drukker, D. J. Gross, and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev, vol.1250069904191, p.60, 1999.

J. M. Henn and T. Huber, The four-loop cusp anomalous dimension in $ \mathcal{N} $ = 4 super Yang-Mills and analytic integration techniques for Wilson line integrals, Journal of High Energy Physics, vol.85, issue.9, 2013.
DOI : 10.1007/JHEP09(2013)147

V. Forini, Quark-antiquark potential in AdS at one loop, Journal of High Energy Physics, vol.18, issue.11, 2010.
DOI : 10.1007/JHEP11(2010)079

D. Correa, J. Henn, J. Maldacena, and A. Sever, An exact formula for the radiation of a moving quark in $\mathcal{N} = 4$ super Yang Mills, Journal of High Energy Physics, vol.01, issue.6
DOI : 10.1007/JHEP06(2012)048

D. Correa, J. Maldacena, and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, Journal of High Energy Physics, vol.08, issue.8, 2012.
DOI : 10.1007/JHEP08(2012)134

N. Drukker, Integrable Wilson loops, Journal of High Energy Physics, vol.99, issue.10, 2013.
DOI : 10.1007/JHEP10(2013)135

Z. Bajnok, J. Balog, D. H. Correa, A. Hegedus, F. I. Massolo et al., Reformulating the TBA equations for the quark anti-quark potential and their two loop expansion, Journal of High Energy Physics, vol.525, issue.3, pp.3-056, 2014.
DOI : 10.1007/JHEP03(2014)056

T. Van-ritbergen, J. A. Vermaseren, and S. A. Larin, The four-loop ??-function in quantum chromodynamics, Physics Letters B, vol.400, issue.3-4, pp.379-384, 1997.
DOI : 10.1016/S0370-2693(97)00370-5

M. E. Machacek and M. T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. wave function renormalization, Nucl. Phys, vol.83, p.222, 1983.

M. E. Machacek and M. T. Vaughn, Two-loop renormalization group equations in a general quantum field theory (II). Yukawa couplings, Nuclear Physics B, vol.236, issue.1, p.236, 1984.
DOI : 10.1016/0550-3213(84)90533-9

M. E. Machacek and M. T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. scalar quartic couplings, Nucl. Phys, vol.70, p.249, 1985.

G. F. Sterman, Infrared divergences in perturbative QCD, AIP Conference Proceedings, pp.22-40, 1981.
DOI : 10.1063/1.33099

P. Nogueira, Automatic Feynman Graph Generation, Journal of Computational Physics, vol.105, issue.2, pp.279-289, 1993.
DOI : 10.1006/jcph.1993.1074

J. A. Vermaseren, New features of FORM, math-ph, 10025.

M. Tentyukov and J. A. Vermaseren, The multithreaded version of FORM, Computer Physics Communications, vol.181, issue.8, pp.1419-1427, 2010.
DOI : 10.1016/j.cpc.2010.04.009

A. C. Hearn, REDUCE computer algebra system, reduce-algebra.sourceforge.net

R. Harlander, T. Seidensticker, and M. Steinhauser, Corrections of to the decay of the Z boson into bottom quarks, Physics Letters B, vol.426, issue.1-2, pp.125-132, 1998.
DOI : 10.1016/S0370-2693(98)00220-2

T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, AIHENP 99, p.9905298, 1999.

K. G. Chetyrkin and F. V. Tkachov, Integration by parts: The algorithm to calculate ??-functions in 4 loops, Nuclear Physics B, vol.192, issue.1, pp.192-159, 1981.
DOI : 10.1016/0550-3213(81)90199-1

A. V. Smirnov, Algorithm FIRE???Feynman Integral REduction, Journal of High Energy Physics, vol.2008, issue.10, 2008.
DOI : 10.1088/1126-6708/2008/10/107

A. V. Smirnov and V. A. , FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Computer Physics Communications, vol.184, issue.12, pp.2820-2827, 2013.
DOI : 10.1016/j.cpc.2013.06.016

A. V. Smirnov, FIRE5: A C++ implementation of Feynman Integral REduction, Computer Physics Communications, vol.189
DOI : 10.1016/j.cpc.2014.11.024

R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction

R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, Journal of Physics: Conference Series, vol.523, p.12059, 2014.
DOI : 10.1088/1742-6596/523/1/012059

A. B. Goncharov, Multiple zeta-values, Galois groups, and geometry of modular varieties, p.5069

F. C. Brown, Multiple zeta values and periods of moduli spaces M 0,n , math, p.606419

T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Computer Physics Communications, vol.141, issue.2, pp.296-312, 2001.
DOI : 10.1016/S0010-4655(01)00411-8

D. J. Broadhurst, Massive three-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity, Eur. Phys. J, vol.89803091, pp.311-333, 1999.

Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nuclear Physics B, vol.425, issue.1-2, pp.217-260, 1994.
DOI : 10.1016/0550-3213(94)90179-1

J. M. Drummond, J. M. Henn, and J. Trnka, New differential equations for on-shell loop integrals, Journal of High Energy Physics, vol.01, issue.206, p.83, 2011.
DOI : 10.1007/JHEP04(2011)083

URL : https://hal.archives-ouvertes.fr/hal-00613009

L. J. Dixon, J. M. Drummond, and J. M. Henn, Analytic result for the two-loop six-point NMHV amplitude in $ \mathcal{N} = {4} $ super Yang-Mills theory, Journal of High Energy Physics, vol.601, issue.206, p.24, 2012.
DOI : 10.1007/JHEP01(2012)024

A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko, and V. N. Velizhanin, Three-loop universal anomalous dimension of the Wilson operators in N=4 SUSY Yang???Mills model, Physics Letters B, vol.595, issue.1-4, pp.595-521, 2004.
DOI : 10.1016/j.physletb.2004.05.078

S. Caron-huot and S. He, Jumpstarting the all-loop S-matrix of planar $ \mathcal{N} = {4} $ super Yang-Mills, Journal of High Energy Physics, vol.11, issue.7, 2012.
DOI : 10.1007/JHEP07(2012)174

J. M. Henn, A. V. Smirnov, and V. A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, Journal of High Energy Physics, vol.547, issue.206, 2013.
DOI : 10.1007/JHEP07(2013)128

N. I. Usyukina and A. I. Davydychev, Exact results for three- and four-point ladder diagrams with an arbitrary number of rungs, Physics Letters B, vol.305, issue.1-2, pp.305-136, 1993.
DOI : 10.1016/0370-2693(93)91118-7

L. J. Dixon, Calculating scattering amplitudes efficiently, hep-ph, 9601359.

C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nuclear Physics B, vol.646, issue.1-2, pp.220-256, 2002.
DOI : 10.1016/S0550-3213(02)00837-4

S. Caron-huot and J. M. Henn, Iterative structure of finite loop integrals, Journal of High Energy Physics, vol.15, issue.6, 2014.
DOI : 10.1007/JHEP06(2014)114

R. N. Lee, Reducing differential equations for multiloop master integrals, Journal of High Energy Physics, vol.48, issue.4
DOI : 10.1007/JHEP04(2015)108

A. G. Grozin, Calculating three-loop diagrams in heavy quark effective theory with integration-by-parts recurrence relations, Journal of High Energy Physics, vol.2000, issue.03, 2000.
DOI : 10.1088/1126-6708/2000/03/013

A. G. Grozin, Higher radiative corrections in HQET, Heavy quark physics. Proceedings, p.61

J. M. Henn, A. V. Smirnov, and V. A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, Journal of High Energy Physics, vol.6, issue.3
DOI : 10.1007/JHEP03(2014)088

A. Czarnecki and K. Melnikov, Threshold expansion for heavy-light systems and flavor off-diagonal current-current correlators, Physical Review D, vol.66, issue.1, p.11502, 2002.
DOI : 10.1103/PhysRevD.66.011502

F. C. Brown, Iterated integrals in quantum field theory, IHES, 2009.
DOI : 10.1017/CBO9781139208642.006

A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Physical Review Letters, vol.105, issue.15, p.151605, 2010.
DOI : 10.1103/PhysRevLett.105.151605

A. V. Smirnov, FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions, Computer Physics Communications, vol.185, issue.7, pp.2090-2100, 2014.
DOI : 10.1016/j.cpc.2014.03.015

A. G. Grozin and A. V. Kotikov, HQET heavy?heavy vertex diagram with two velocities

M. Beneke and V. M. Braun, Heavy quark effective theory beyond perturbation theory: renormalons, the pole mass and the residual mass term, Nuclear Physics B, vol.426, issue.2, pp.301-343, 1994.
DOI : 10.1016/0550-3213(94)90314-X

A. G. Grozin and R. N. Lee, Three-loop HQET vertex diagrams for B 0 ? ¯ B 0 mixing, 2009.

T. Huber and D. Ma??trema??tre, HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Computer Physics Communications, vol.175, issue.2, pp.122-144, 2006.
DOI : 10.1016/j.cpc.2006.01.007

W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Physics Letters B, vol.84, issue.2, p.84, 1979.
DOI : 10.1016/0370-2693(79)90282-X

R. Harlander, P. Kant, L. Mihaila, and M. Steinhauser, Dimensional reduction applied to QCD at three loops, Journal of High Energy Physics, vol.105, issue.09, p.53, 2006.
DOI : 10.1103/PhysRevD.66.074007

S. Catani, B. R. Webber, and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys, pp.349-635, 1991.

N. Gromov and P. Vieira, The all loop AdS4/CFT3 Bethe ansatz

V. Mitev and E. Pomoni, The Exact Effective Couplings of 4D N=2 gauge theories

A. Pineda, The static potential in N = 4 supersymmetric Yang?Mills at weak coupling, Phys. Rev, vol.77, 2008.

M. Peter, Static Quark-Antiquark Potential in QCD to Three Loops, Physical Review Letters, vol.78, issue.4, pp.602-605, 1997.
DOI : 10.1103/PhysRevLett.78.602

M. Peter, The static potential in QCD ??? a full two-loop calculation, Nuclear Physics B, vol.501, issue.2, pp.471-494, 1997.
DOI : 10.1016/S0550-3213(97)00373-8

Y. Schröder, The static potential in QCD to two loops, Physics Letters B, vol.447, issue.3-4, pp.447-321, 1999.
DOI : 10.1016/S0370-2693(99)00010-6

M. Prausa and M. Steinhauser, Two-loop static potential in N = 4 supersymmetric Yang?Mills theory, Phys.Rev, vol.88, issue.2, 2013.

V. M. Braun, G. P. Korchemsky, and D. Mueller, The Uses of conformal symmetry in QCD, Progress in Particle and Nuclear Physics, vol.51, issue.2, pp.311-398, 2003.
DOI : 10.1016/S0146-6410(03)90004-4

A. L. Kataev and S. V. Mikhailov, New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models, Theoretical and Mathematical Physics, vol.196, issue.204, pp.139-150174, 2012.
DOI : 10.1007/s11232-012-0016-7

A. L. Kataev and S. V. Mikhailov, {??}-expansion in QCD, its conformal symmetry limit: theory + applications, Nuclear and Particle Physics Proceedings, vol.258, issue.259, pp.258-259, 2015.
DOI : 10.1016/j.nuclphysbps.2015.01.011

A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, Fermionic contributions to the three-loop static potential, Physics Letters B, vol.668, issue.4, pp.668-293, 2008.
DOI : 10.1016/j.physletb.2008.08.070

C. Anzai, Y. Kiyo, and Y. Sumino, Static QCD Potential at Three-Loop Order, Physical Review Letters, vol.104, issue.11, 2010.
DOI : 10.1103/PhysRevLett.104.112003

URL : http://arxiv.org/abs/0911.4335

A. G. Grozin, LECTURES ON MULTILOOP CALCULATIONS, International Journal of Modern Physics A, vol.19, issue.04, pp.19-473, 2004.
DOI : 10.1142/S0217751X04016775

A. G. Grozin, Introduction to effective field theories. 3. Bloch?Nordsieck effective theory, pp.1305-4245

A. Palanques-mestre and P. Pascual, The 1/N F expansion of the ? and ? functions in QED, Commun. Math. Phys, vol.277, p.95, 1984.

D. J. Broadhurst, Large N expansion of QED: Asymptotic photon propagator and contributions to the muon anomaly, for any number of loops, Z. Phys, pp.58-339, 1993.

A. V. Kotikov, The Gegenbauer Polynomial technique: the evaluation of a class of Feynman diagrams, Physics Letters B, vol.375, issue.1-4, pp.375-240, 1996.
DOI : 10.1016/0370-2693(96)00226-2

D. J. Broadhurst, J. A. Gracey, and D. Kreimer, Beyond the triangle and uniqueness relations: non-zeta counterterms at large $N$ from positive knots, Zeitschrift f???r Physik C Particles and Fields, vol.75, issue.3, pp.559-574, 1997.
DOI : 10.1007/s002880050500

M. Beneke and V. M. Braun, Power corrections and renormalons in Drell-Yan production, Nuclear Physics B, vol.454, issue.1-2, pp.253-290, 1995.
DOI : 10.1016/0550-3213(95)00439-Y

D. J. Broadhurst and A. G. Grozin, Matching QCD and HQET heavy?light currents at two loops and beyond, Phys. Rev, pp.52-4082, 1995.