B. R. Greene, String theory on Calabi-Yau manifolds, hep-th, 9702155.

M. Grana, Flux compactifications in string theory: A comprehensive review, Physics Reports, vol.423, issue.3, pp.91-158, 2006.
DOI : 10.1016/j.physrep.2005.10.008

F. Denef, Les Houches Lectures on Constructing String Vacua

P. Koerber, Lectures on generalized complex geometry for physicists, Fortschritte der Physik, vol.382, issue.1, pp.169-242, 2011.
DOI : 10.1002/prop.201000083

S. S. Chern, The geometry of $G$-structures, Bulletin of the American Mathematical Society, vol.72, issue.2, pp.167-342, 1966.
DOI : 10.1090/S0002-9904-1966-11473-8

M. Duff, B. Nilsson, C. Pope, and K. Supergravity, Kaluza-Klein supergravity, Physics Reports, vol.130, issue.1-2, pp.1-142, 1986.
DOI : 10.1016/0370-1573(86)90163-8

K. Becker and M. Becker, M theory on eight manifolds, Nucl.Phys, B477, vol.9605053, pp.155-167, 1996.

S. Salamon, Riemannian Geometry and Holonomy Groups, Longman Sc & Tech, 1989.

D. D. Joyce, Compact manifolds with special holonomy. Oxford Mathematical Monographs, 2000.

E. Bonan, Sur les variétés riemanniennes à groupe d'holonomie G2 ou Spin, Comptes Rendus de l'Académie des Sciences Paris -Séries I -Mathematics, pp.127-129, 1966.

M. Berger, Sur les groupes d'holonomie homog??nes de vari??t??s ?? connexion affine et des vari??t??s riemanniennes, Bulletin de la Société mathématique de France, vol.79, pp.279-330, 1955.
DOI : 10.24033/bsmf.1464

P. Candelas, X. De, and . Ossa, Moduli space of Calabi-Yau manifolds, Nucl.Phys, pp.355-455, 1991.

S. Kachru, M. B. Schulz, and S. Trivedi, Moduli stabilization from fluxes in a simple IIB orientifold, pp.310-317, 2003.

M. R. Douglas and S. Kachru, Flux compactification, Reviews of Modern Physics, vol.79, issue.2, pp.733-796, 2007.
DOI : 10.1103/RevModPhys.79.733

F. Denef, M. R. Douglas, and S. Kachru, Physics of String Flux Compactifications, Annual Review of Nuclear and Particle Science, vol.57, issue.1, pp.119-144, 2007.
DOI : 10.1146/annurev.nucl.57.090506.123042

A. Strominger, Superstrings with torsion, Nuclear Physics B, vol.274, issue.2, 1986.
DOI : 10.1016/0550-3213(86)90286-5

N. Hitchin, Generalized Calabi-Yau manifolds, ArXiv Mathematics e-prints, 2002.

M. Gualtieri, Generalized complex geometry, ArXiv Mathematics e-prints, 2004.

P. P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, Journal of High Energy Physics, vol.2008, issue.09, 2008.
DOI : 10.1088/1126-6708/2008/09/123

M. Grana and H. Triendl, Generalized N=1 and N=2 structures in M-theory and type II orientifolds, JHEP, vol.1303, issue.145, 2013.

E. Witten, String theory dynamics in various dimensions, Nuclear Physics B, vol.443, issue.1-2, pp.85-126, 1995.
DOI : 10.1016/0550-3213(95)00158-O

E. Cremmer, B. Julia, and J. Scherk, Supergravity Theory in Eleven-Dimensions, Phys.Lett, pp.76-409, 1978.

H. Nicolai and C. Wetterich, On the Spectrum of Kaluza-Klein Theories With Noncompact Internal Spaces, Phys.Lett, vol.347, p.150, 1985.

A. M. Th, I. Friedrich, U. Katha, and . Semmelmanna, On nearly parallel G2-structures, Journal of Geometry and Physics, vol.23, pp.259-286, 1997.

F. Witt, Special metric structures and closed forms, ArXiv Mathematics e-prints (Feb, 2005.

F. Witt, Generalised G 2???Manifolds, Communications in Mathematical Physics, vol.65, issue.6, pp.275-303, 2006.
DOI : 10.1007/s00220-006-0011-7

P. Kaste, R. Minasian, and A. Tomasiello, -structures, Journal of High Energy Physics, vol.201, issue.07, p.4, 2003.
DOI : 10.1016/S0550-3213(03)00049-X

URL : https://hal.archives-ouvertes.fr/hal-00627064

J. P. Gauntlett, D. Martelli, and D. Waldram, Superstrings with intrinsic torsion, Physical Review D, vol.69, issue.8, 2004.
DOI : 10.1103/PhysRevD.69.086002

T. House and A. Micu, structure, Classical and Quantum Gravity, vol.22, issue.9, pp.1709-1738, 2005.
DOI : 10.1088/0264-9381/22/9/016

A. Coimbra, C. Strickland-constable, and D. Waldram, E d(d) × R + Generalised Geometry, Connections and M theory, JHEP, vol.1402, p.54, 2014.

D. R. Morrison and C. Vafa, Compactifications of F theory on Calabi-Yau threefolds. 1, Nucl.Phys, B473, pp.74-92, 1996.

D. R. Morrison and C. Vafa, Compactifications of F theory on Calabi-Yau threefolds. 2., Nucl.Phys, B476, vol.9603161, pp.437-469, 1996.

D. Tsimpis, M-theory on eight-manifolds revisited: Script N = 1 supersymmetry and generalized Spin(7) structures, Journal of High Energy Physics, vol.2003, issue.04, 2006.
DOI : 10.1016/0550-3213(96)00172-1

F. Bonetti, T. W. Grimm, and T. G. Pugh, Non-supersymmetric F-theory compactifications on Spin(7) manifolds, Journal of High Energy Physics, vol.720, issue.1, 2014.
DOI : 10.1007/JHEP01(2014)112

F. Cantrijn, A. Ibort, and M. De-león, On the geometry of multisymplectic manifolds, Journal of the Australian Mathematical Society, vol.7, issue.03, pp.303-330, 1999.
DOI : 10.1016/0926-2245(91)90014-Z

N. Hitchin, The geometry of three-forms in six and seven dimensions, ArXiv Mathematics e-prints, 2000.

N. Hitchin, Stable forms and special metrics, ArXiv Mathematics e-prints, 2001.

S. Lie and F. Engel, Theorie de transformationsgruppen i, ii und iii, 1888.

F. Engel, Ein neues, dem linearen komplexe analoges gebilde, Leipz. Ber, vol.52, pp.220-239, 1900.

R. L. Bryant, Some remarks on G2-structures, Proceedings of Gökova Geometry-Topology Conference 2005 Gökova Geometry/Topology Conference (GGT), Gökova, pp.75-109, 2006.

P. Tondeur, Geometry of foliations, Birkhäuser, 1997.
DOI : 10.1007/978-3-0348-8914-8

P. Molino, Riemannian foliations Translated from the French by Grant Cairns, Progress in Mathematics, vol.73, 1988.

G. Thorbergsson, Singular Riemannian Foliations and Isoparametric Submanifolds, Milan Journal of Mathematics, vol.277, issue.166, pp.355-370, 2010.
DOI : 10.1007/s00032-010-0112-9

H. B. Lawson, J. , and M. Michelsohn, Spin geometry, of Princeton Mathematical Series, 1989.

G. Reeb, Sur la courboure moyenne des variétés intégrales d' une equation de pfaff ? = 0, Acad. Sci. Paris, vol.231, pp.231-101, 1950.

D. Tischler, On fibering certain foliated manifolds over S 1, 1970.

W. P. Thurston, A generalization of the Reeb stability theorem, Topology, vol.13, issue.4, pp.347-352, 1974.
DOI : 10.1016/0040-9383(74)90025-1

J. M. Lee, Manifolds and Differential Geometry, 2009.
DOI : 10.1090/gsm/107

A. Clarke and B. Santoro, Holonomy Groups in Riemannian Geometry, ArXiv e-prints, 2012.

J. F. Adams, Lectures on Exceptional Lie Groups, 1996.

I. Yokota, Exceptional Lie groups, ArXiv e-prints (Feb, 2009.