Super-resolution method using sparse regularization for point-spread function recovery
Abstract
In large-scale spatial surveys, such as the forthcoming ESA Euclid mission, images may be undersampled due to the optical sensors sizes. Therefore, one may consider using a super-resolution (SR) method to recover aliased frequencies, prior to further analysis. This is particularly relevant for point-source images, which provide direct measurements of the instrument point-spread function (PSF). We introduce SParse Recovery of InsTrumental rEsponse (SPRITE), which is an SR algorithm using a sparse analysis prior. We show that such a prior provides significant improvements over existing methods, especially on low signal-to-noise ratio PSFs.
Origin : Publication funded by an institution
Loading...