High-Energy Long-Lived Mixed Frenkel–Charge-Transfer Excitons: From Double Stranded (AT)n to Natural DNA - Archive ouverte HAL Access content directly
Journal Articles Chemistry - A European Journal Year : 2016

High-Energy Long-Lived Mixed Frenkel–Charge-Transfer Excitons: From Double Stranded (AT)n to Natural DNA

(1, 2) , (2, 1) , (2, 3) , (4) , (4) , (3) , (5) , (2, 1) , (2, 1)
1
2
3
4
5

Abstract

The electronic excited states populated upon absorption of UV photons by DNA are extensively studied in relation to the UV-induced damage to the genetic code. Here, we report a new unexpected relaxation pathway in adenine–thymine double-stranded structures (AT)n. Fluorescence measurements on (AT)n hairpins (six and ten base pairs) and duplexes (20 and 2000 base pairs) reveal the existence of an emission band peaking at approximately 320 nm and decaying on the nanosecond time scale. Time-dependent (TD)-DFT calculations, performed for two base pairs and exploring various relaxation pathways, allow the assignment of this emission band to excited states resulting from mixing between Frenkel excitons and adenine-to-thymine chargetransfer states. Emission from such high-energy long-lived mixed (HELM) states is in agreement with their fluorescence anisotropy (0.03), which is lower than that expected for p–p* states (0.1). An increase in the size of the system quenches p–p* fluorescence while enhancing HELM fluorescence. The latter process varies linearly with the hypochromism of the absorption spectra, both depending on the coupling between p–p* and charge-transfer states. Subsequently, we identify the common features between the HELM states of (AT)n structures with those reported previously for alternating (GC)n : high emission energy, low fluorescence anisotropy, nanosecond lifetimes, and sensitivity to conformational disorder. These features are also detected for calf thymus DNA in which HELM states could evolve toward reactive p–p* states, giving rise to delayed fluorescence.

Dates and versions

cea-01282135 , version 1 (03-03-2016)

Identifiers

Cite

I. Vaya, J. Brazard, M. Huix-Rotllant, A. K. Thazhathveetil, F. D. Lewis, et al.. High-Energy Long-Lived Mixed Frenkel–Charge-Transfer Excitons: From Double Stranded (AT)n to Natural DNA . Chemistry - A European Journal, 2016, 22, pp.1 - 12. ⟨10.1002/chem.201504007⟩. ⟨cea-01282135⟩
55 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More