U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel et al., Solid-state dye-sensitized mesoporous TiO 2 solar cells with high photon-to-electron conversion efficiencies, Nature, vol.395, pp.583-585, 1998.

M. Grätzel and . Tris, 1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells, J. Am. Chem. Soc, vol.133, issue.2, pp.18042-18045, 2011.

B. Xu, E. Gabrielsson, M. Safdari, M. Cheng, Y. Hua et al., 1,1,2,2-Tetrachloroethane (TeCA) as a Solvent Additive for Organic Hole Transport Materials and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells, Advanced Energy Materials, vol.22, issue.10
DOI : 10.1002/aenm.201401185

S. Ahmad, E. Guillén, L. Kavan, M. Grätzel, and M. K. Nazeeruddin, Metal free sensitizer and catalyst for dye sensitized solar cells, Energy & Environmental Science, vol.98, issue.1489, pp.3439-3466
DOI : 10.1039/c3ee41888j

L. L. Li and E. W. Diau, Porphyrin-sensitized solar cells, Chem. Soc. Rev., vol.6, issue.1, pp.291-304
DOI : 10.1039/c2ee22870j

M. Liang and J. Chen, Arylamine organic dyes for dye-sensitized solar cells, Chemical Society Reviews, vol.116, issue.8, pp.3453-3488
DOI : 10.1002/aenm.201200435

S. D. Stranks and H. J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices, Nature Nanotechnology, vol.5, issue.5, pp.391-402, 2015.
DOI : 10.1103/PhysRevB.86.115302

Q. Chen, N. De-marco, Y. Yang, T. Song, C. Chen et al., Under the spotlight: The organic???inorganic hybrid halide perovskite for optoelectronic applications, Nano Today, vol.10, issue.3, pp.355-396, 2015.
DOI : 10.1016/j.nantod.2015.04.009

T. T. Bui and F. Goubard, Small organic molecule hole transporting materials for solid-state dye-sensitized solar cells

R. K. Aulakh, S. Sandhu, . Tanvi, S. Kumar, A. Mahajan et al., Designing and synthesis of imidazole based hole transporting material for solid state dye sensitized solar cells, Synthetic Metals, vol.205, pp.92-97, 2015.
DOI : 10.1016/j.synthmet.2015.03.030

C. Y. Hsu, Y. C. Chen, R. Y. Lin, K. C. Ho, and J. Lin, Solid-state dye-sensitized solar cells based on spirofluorene (spiro-OMeTAD) and arylamines as hole transporting materials, Physical Chemistry Chemical Physics, vol.14, issue.41, pp.14099-14109, 2012.
DOI : 10.1039/c2cp41326d

I. Chung, B. Lee, J. He, R. P. Chang, and M. G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency, Nature, vol.131, issue.7399, pp.486-489, 2012.
DOI : 10.1038/nature11067

B. Lee, C. C. Stoumpos, N. Zhou, F. Hao, C. Malliakas et al., as a Hole Conductor, Journal of the American Chemical Society, vol.136, issue.43, pp.15379-15385, 2014.
DOI : 10.1021/ja508464w

M. Freitag, Q. Daniel, M. Pazoki, K. Sveinbjornsson, J. Zhang et al., High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor, Energy Environ. Sci., vol.107, issue.9, pp.2634-2637, 2015.
DOI : 10.1016/j.electacta.2015.01.068

J. Bouclé and J. Ackermann, Solid-state dye-sensitized and bulk heterojunction solar cells using TiO 2 and ZnO nanostructures: Recent progress and new concepts at the borderline, Polym. Int, pp.61-355, 2012.

P. Docampo, S. Guldin, T. Leijtens, N. K. Noel, U. Steiner et al., Lessons Learned: From Dye-Sensitized Solar Cells to All-Solid-State Hybrid Devices, Advanced Materials, vol.1, issue.24, pp.4013-4030
DOI : 10.1002/adma.201400486

H. Y. Chen, Y. F. Xu, D. B. Kuang, and C. Su, Recent advances in hierarchical macroporous composite structures for photoelectric conversion, Energy Environ. Sci., vol.5, issue.12, pp.3887-3901, 2014.
DOI : 10.1039/C4EE02213K

I. Concina and A. Vomiero, Metal Oxide Semiconductors for Dye- and Quantum-Dot-Sensitized Solar Cells, Small, vol.5, issue.15, pp.1744-1774
DOI : 10.1002/smll.201402334

C. Gao, X. Li, B. Lu, L. Chen, Y. Wang et al., A facile method to prepare SnO2 nanotubes for use in efficient SnO2???TiO2 core???shell dye-sensitized solar cells, Nanoscale, vol.44, issue.11, pp.3475-3481, 2012.
DOI : 10.1039/c2nr30349c

L. J. Antila, M. J. Heikkilä, V. Mäkinen, N. Humalamäki, M. Laitinen et al., ALD Grown Aluminum Oxide Submonolayers in Dye-Sensitized Solar Cells: The Effect on Interfacial Electron Transfer and Performance, The Journal of Physical Chemistry C, vol.115, issue.33, pp.16720-16729, 2011.
DOI : 10.1021/jp204886n

Y. Liu, H. Zhai, F. Guo, N. Huang, W. Sun et al., Synergistic effect of surface plasmon resonance and constructed hierarchical TiO2 spheres for dye-sensitized solar cells, Nanoscale, vol.126, issue.21, pp.6863-6869, 2012.
DOI : 10.1039/c2nr31954c

Z. Tian, L. Wang, L. Jia, Q. Li, Q. Song et al., A novel biomass coated Ag?TiO 2 composite as a photoanode for enhanced photocurrent in dye-sensitized solar cells, pp.6369-6376, 2013.

Q. Sun, J. Zhang, P. Wang, J. Zheng, X. Zhang et al., Sulfur-doped TiO 2 nanocrystalline photoanodes for dye-sensitized solar cells, J. Renew

T. Ma, M. Akiyama, and E. Abe, High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode, Nano Letters, vol.5, issue.12, pp.2543-2547, 2005.
DOI : 10.1021/nl051885l

H. Wang, H. Li, J. Wang, J. Wu, D. Li et al., Nitrogen-doped TiO2 nanoparticles better TiO2 nanotube array photo-anodes for dye sensitized solar cells, Electrochimica Acta, vol.137, pp.744-750, 2014.
DOI : 10.1016/j.electacta.2014.05.112

B. Zhao, J. Wang, H. Li, H. Wang, X. Jia et al., The influence of yttrium dopant on the properties of anatase nanoparticles and the performance of dye-sensitized solar cells, Phys. Chem. Chem. Phys., vol.115, issue.22, pp.14836-14842, 2015.
DOI : 10.1039/C5CP01178G

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, vol.293, issue.5528, pp.269-271, 2001.
DOI : 10.1126/science.1061051

T. Lindgren, J. M. Mwabora, E. Avandaño, J. Jonsson, A. Hoel et al., Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering, The Journal of Physical Chemistry B, vol.107, issue.24, pp.5709-5716, 2003.
DOI : 10.1021/jp027345j

D. Valentin, C. Finazzi, E. Pacchioni, G. Selloni, A. Livraghi et al., Theory and experiment, Chem. Phys, vol.2, issue.339, pp.44-56, 2007.

D. Valentin, C. Pacchioni, and G. , Trends in non-metal doping of anatase TiO, Catal. Today, vol.2, issue.206, pp.12-18, 2013.

R. Asahi and T. Morikawa, Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis, Chemical Physics, vol.339, issue.1-3, pp.57-63, 2007.
DOI : 10.1016/j.chemphys.2007.07.041

H. Tian, L. Hu, C. Zhang, W. Liu, Y. Huang et al., Solar Cells, The Journal of Physical Chemistry C, vol.114, issue.3, pp.1627-1632, 2010.
DOI : 10.1021/jp9103646

D. Valentin, C. Pacchioni, G. Selloni, and A. , Origin of the different photoactivity of N-doped anatase and rutile TiO 2, Phys. Rev. B, p.70, 2004.

H. Melhem, P. Simon, J. Wang, C. Di-bin, B. Ratier et al., Direct photocurrent generation from nitrogen doped TiO2 electrodes in solid-state dye-sensitized solar cells: Towards optically-active metal oxides for photovoltaic applications, Solar Energy Materials and Solar Cells, vol.117, pp.624-631, 2013.
DOI : 10.1016/j.solmat.2012.08.017

H. Diker, C. Varlikli, and E. Stathatos, N-doped titania powders prepared by different nitrogen sources and their application in quasi-solid state dye-sensitized solar cells, International Journal of Energy Research, vol.84, issue.19, pp.908-917, 2014.
DOI : 10.1002/er.3091

B. Pignon, H. Maskrot, V. G. Ferreol, Y. Leconte, S. Coste et al., Herlin-Boime, N. Versatility of laser pyrolysis applied to the synthesis of TiO 2 nanoparticles?Application to UV attenuation, Eur. J. Inorg. Chem, pp.883-889, 2008.

N. Herlin-boime and J. Bouclé, TiO 2 Nanocrystals Synthesized by Laser Pyrolysis for the Up-Scaling of Efficient Solid-Stage Dye-Sensitized Solar Cells, Adv. Energy Mater, vol.1, pp.908-916, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00682977

J. Wang, Y. Lin, M. Pinault, A. Filoramo, M. Fabert et al., /MWCNT Nanohybrid Materials by Laser Pyrolysis and Application to Efficient Photovoltaic Energy Conversion, ACS Applied Materials & Interfaces, vol.7, issue.1, pp.51-56, 2015.
DOI : 10.1021/am507179c

URL : https://hal.archives-ouvertes.fr/hal-01134058

R. A. Spurr and H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Analytical Chemistry, vol.29, issue.5, pp.760-762, 1957.
DOI : 10.1021/ac60125a006

H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures, 1954.

S. H. Kang, H. S. Kim, J. Y. Kim, and Y. Sung, Enhanced photocurrent of nitrogen-doped TiO2 film for dye-sensitized solar cells, Materials Chemistry and Physics, vol.124, issue.1, pp.422-426, 2010.
DOI : 10.1016/j.matchemphys.2010.06.059

M. Zhang, G. Lin, C. Dong, and K. H. Kim, Mechanical and optical properties of composite TiOxNy films prepared by pulsed bias arc ion plating, Current Applied Physics, vol.9, issue.3, pp.174-178, 2009.
DOI : 10.1016/j.cap.2009.01.034

R. Amadelli, L. Samiolo, M. Borsa, M. Bellardita, L. N. Palmisano et al., N-TiO2 Photocatalysts highly active under visible irradiation for NOX abatement and 2-propanol oxidation, Catalysis Today, vol.206, issue.206, pp.19-25, 2013.
DOI : 10.1016/j.cattod.2011.11.031

J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan et al., Nanobelts, Journal of the American Chemical Society, vol.131, issue.34, pp.12290-12297, 2009.
DOI : 10.1021/ja903781h

W. Guo, Y. Shen, L. Wu, Y. Gao, and T. Ma, Electrodes, The Journal of Physical Chemistry C, vol.115, issue.43, pp.21494-21499, 2011.
DOI : 10.1021/jp2057496

URL : https://hal.archives-ouvertes.fr/hal-00141461

L. Schmidt-mende, U. Bach, R. Humphry-baker, T. Horiuchi, H. Miura et al., Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells, Advanced Materials, vol.86, issue.7, pp.813-815, 2005.
DOI : 10.1002/adma.200401410

Y. Xie, N. Huang, Y. Liu, W. Sun, H. F. Mehnane et al., Photoelectrodes modification by N doping for dye-sensitized solar cells, Electrochimica Acta, vol.93, pp.202-206, 2013.
DOI : 10.1016/j.electacta.2013.01.091

H. Tian, L. Hu, C. Zhang, L. Mo, W. Li et al., Superior energy band structure and retarded charge recombination for Anatase N, B codoped nano-crystalline TiO2 anodes in dye-sensitized solar cells, Journal of Materials Chemistry, vol.219, issue.18, pp.9123-9130, 2012.
DOI : 10.1039/c2jm16896k

W. Guo, Y. Shen, G. Boschloo, A. Hagfeldt, and T. Ma, Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells, Electrochimica Acta, vol.56, issue.12, pp.4611-4617, 2011.
DOI : 10.1016/j.electacta.2011.02.091

W. Guo, Q. Q. Miao, G. Xin, L. Q. Wu, and T. L. Ma, Dye-Sensitized Solar Cells Based on Nitrogen-Doped Titania Electrodes, Key Engineering Materials, vol.451, pp.21-27, 2011.
DOI : 10.4028/www.scientific.net/KEM.451.21

W. Guo, L. Wu, Z. Chen, G. Boschloo, A. Hagfeldt et al., Highly efficient dye-sensitized solar cells based on nitrogen-doped titania with excellent stability, Journal of Photochemistry and Photobiology A: Chemistry, vol.219, issue.2-3, pp.180-187, 2011.
DOI : 10.1016/j.jphotochem.2011.01.004

W. Guo, Y. Shen, L. Wu, Y. Gao, and T. Ma, Performance of Dye-Sensitized Solar Cells Based on MWCNT/TiO 2 ? x N x Nanocomposite Electrodes, Eur. J. Inorg. Chem, pp.1776-1783, 2011.

Y. V. Kolen-'ko, B. R. Churagulov, M. Kunst, L. Mazerolles, and C. Colbeau-justin, Photocatalytic properties of titania powders prepared by hydrothermal method, Appl. Catal. B Environ, vol.54, pp.51-58, 2004.

J. M. Meichtry, C. Colbeau-justin, G. Custo, and M. I. Litter, Preservation of the photocatalytic activity of TiO2 by EDTA in the reductive transformation of Cr(VI). Studies by Time Resolved Microwave Conductivity, Catalysis Today, vol.224, pp.236-243, 2014.
DOI : 10.1016/j.cattod.2013.10.021

T. Segal-peretz, O. Leman, A. M. Nardes, and G. L. Frey, /Conjugated Polymer Photovoltaic Devices, The Journal of Physical Chemistry C, vol.116, issue.2, pp.2024-2032, 2012.
DOI : 10.1021/jp209016z

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. Van-de-krol, Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study, The Journal of Physical Chemistry Letters, vol.4, issue.16, pp.2752-2757, 2013.
DOI : 10.1021/jz4013257

A. Saeki, Y. Yasutani, H. Oga, and S. Seki, Nanoparticles: Interplay of Free and Shallowly Trapped Electrons, The Journal of Physical Chemistry C, vol.118, issue.39, pp.22561-22572, 2014.
DOI : 10.1021/jp505214d

R. Katoh, A. Furube, K. I. Yamanaka, and T. Morikawa, Photocatalysts: A Time-Resolved Microwave Conductivity Study, The Journal of Physical Chemistry Letters, vol.1, issue.22, pp.3261-3265, 2010.
DOI : 10.1021/jz1011548

H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, anatase thin films, Journal of Applied Physics, vol.75, issue.4, pp.2042-2047, 1994.
DOI : 10.1063/1.356306

P. Simon, B. Pignon, B. Miao, S. Coste-leconte, Y. Leconte et al., N-Doped Titanium Monoxide Nanoparticles with TiO Rock-Salt Structure, Low Energy Band Gap, and Visible Light Activity, Chemistry of Materials, vol.22, issue.12, pp.3704-3711, 2010.
DOI : 10.1021/cm100653q

URL : https://hal.archives-ouvertes.fr/hal-00498085

S. Lee, C. Jeon, and Y. Park, Tubules by Template Synthesis and Hydrolysis with Water Vapor, Chemistry of Materials, vol.16, issue.22, pp.4292-4295, 2004.
DOI : 10.1021/cm049466x