A. Melmed, The art and science and other aspects of making sharp tips, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.9, issue.2, pp.601-609, 1991.
DOI : 10.1116/1.585467

H. Morikawa and K. Goto, Reproducible sharp???pointed tip preparation for field ion microscopy by controlled ac polishing, Review of Scientific Instruments, vol.59, issue.10, pp.2195-2202, 1988.
DOI : 10.1063/1.1139985

M. Fotino, Tip sharpening by normal and reverse electrochemical etching, Review of Scientific Instruments, vol.64, issue.1, pp.159-67, 1993.
DOI : 10.1063/1.1144419

J. Ibe, On the electrochemical etching of tips for scanning tunneling microscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.8, issue.4, pp.3570-3575, 1990.
DOI : 10.1116/1.576509

L. Libiouille, Y. Houbion, and J. Gilles, Very sharp platinum tips for scanning tunneling microscopy, Review of Scientific Instruments, vol.66, issue.1, pp.97-100, 1995.
DOI : 10.1063/1.1146153

M. Klein and G. Schwitzgebel, An improved lamellae drop-off technique for sharp tip preparation in scanning tunneling microscopy, Review of Scientific Instruments, vol.68, issue.8, pp.3099-103, 1997.
DOI : 10.1063/1.1148249

J. Lindahl, T. Takanen, and L. Montelius, Easy and reproducible method for making sharp tips of Pt/Ir, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.6, pp.3077-81, 1998.
DOI : 10.1116/1.590445

A. Sørensen, U. Hvid, M. Mortensen, and K. Mørch, Preparation of platinum/iridium scanning probe microscopy tips, Review of Scientific Instruments, vol.70, issue.7, pp.3059-67, 1999.
DOI : 10.1063/1.1149891

Y. Nakamura, Y. Mera, and K. Maeda, A reproducible method to fabricate atomically sharp tips for scanning tunneling microscopy, Review of Scientific Instruments, vol.70, issue.8, pp.3373-3379, 1999.
DOI : 10.1063/1.1149921

B. Ju, Y. Chen, M. Fu, Y. Chen, and Y. Yang, Systematic study of electropolishing technique for improving the quality and production reproducibility of tungsten STM probe, Sensors and Actuators A: Physical, vol.155, issue.1, pp.136-180, 2009.
DOI : 10.1016/j.sna.2009.08.013

T. Hagedorn, E. Ouali, M. Paul, W. Oliver, D. Miyahara et al., Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope, Review of Scientific Instruments, vol.82, issue.11, 2011.
DOI : 10.1063/1.3660279

K. Karrai and R. Grober, Piezo-electric tuning fork tip???sample distance control for near field optical microscopes, Ultramicroscopy, vol.61, issue.1-4, pp.197-205, 1995.
DOI : 10.1016/0304-3991(95)00104-2

H. Edwards, L. Taylor, W. Duncan, and A. Melmed, Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor, Journal of Applied Physics, vol.82, issue.3, pp.980-984, 1997.
DOI : 10.1063/1.365936

F. Giessibl, High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork, Applied Physics Letters, vol.73, issue.26, pp.3956-3964, 1998.
DOI : 10.1063/1.122948

F. Giessibl, Advances in atomic force microscopy, Reviews of Modern Physics, vol.75, issue.3, pp.949-83, 2003.
DOI : 10.1103/RevModPhys.75.949

S. Hembacher, F. Giessibl, J. Mannhart, and C. Quate, Local Spectroscopy and Atomic Imaging of Tunneling Current, Forces, and Dissipation on Graphite, Physical Review Letters, vol.94, issue.5, 2005.
DOI : 10.1103/PhysRevLett.94.056101

J. Polesel-maris, C. Lubin, F. Thoyer, and J. Cousty, Combined dynamic scanning tunneling microscopy and frequency modulation atomic force microscopy investigations on polythiophene chains on graphite with a tuning fork sensor, Journal of Applied Physics, vol.109, issue.7, 2011.
DOI : 10.1063/1.3556437

B. Ng, Y. Zhang, W. Kok, S. , C. Soh et al., Improve performance of scanning probe microscopy by balancing tuning fork prongs, Ultramicroscopy, vol.109, issue.4, pp.291-296, 2009.
DOI : 10.1016/j.ultramic.2008.11.029

S. Torbrü-gge, O. Schaff, and J. Rychen, Application of the KolibriSensor â to combined atomic-resolution scanning tunneling microscopy and noncontact atomic-force microscopy imaging, J Vac Sci Technol B, vol.28, issue.3, pp.12-20, 2010.

T. Fujii, Micropattern measurement with an atomic force microscope, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.9, issue.2, pp.666-675, 1991.
DOI : 10.1116/1.585483

M. Radmacher, R. Tillamnn, M. Fritz, and H. Gaub, From molecules to cells: imaging soft samples with the atomic force microscope, Science, vol.257, issue.5078, pp.1900-1905, 1992.
DOI : 10.1126/science.1411505

C. Nguyen, K. Chao, R. Stevens, L. Delzeit, A. Cassell et al., Carbon nanotube tip probes: stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors, Nanotechnology, vol.12, issue.3, pp.363-70957, 2001.
DOI : 10.1088/0957-4484/12/3/326

M. Zhao, V. Sharma, H. Wei, R. Birge, J. Stuart et al., Ultrasharp and high aspect ratio carbon nanotube atomic force microscopy probes for enhanced surface potential imaging, Nanotechnology, vol.19, issue.23, pp.957-44842357047, 2008.
DOI : 10.1088/0957-4484/19/23/235704

J. Buchoux, J. Aimé, R. Boisgard, C. Nguyen, L. Buchaillot et al., Investigation of the carbon nanotube AFM tip contacts: free sliding versus pinned contact, Nanotechnology, vol.20, issue.47, pp.957-44844757018, 2009.
DOI : 10.1088/0957-4484/20/47/475701

URL : https://hal.archives-ouvertes.fr/hal-00472743

N. Wilson and J. Macpherson, Carbon nanotube tips for atomic force microscopy, Nature Nanotechnology, vol.79, issue.3, pp.483-91, 2009.
DOI : 10.1038/nnano.2009.154

M. Armstrong-james, K. Fox, and J. Millar, A method for etching the tips of carbon fibre microelectrodes, Journal of Neuroscience Methods, vol.2, issue.4, pp.431-20165, 1980.
DOI : 10.1016/0165-0270(80)90009-6

M. Mousa, Electron emission from carbon fibre tips, Applied Surface Science, vol.94, issue.95, pp.94-95, 1996.
DOI : 10.1016/0169-4332(95)00521-8

A. Schulte and R. Chow, Cylindrically Etched Carbon-Fiber Microelectrodes for Low-Noise Amperometric Recording of Cellular Secretion, Analytical Chemistry, vol.70, issue.5, pp.985-90, 1998.
DOI : 10.1021/ac970934e

S. Chen and A. Kucernak, Fabrication of carbon microelectrodes with an effective radius of 1 nm, Electrochemistry Communications, vol.4, issue.1, pp.80-85, 2002.
DOI : 10.1016/S1388-2481(01)00278-8

A. Castellanos-gomez, N. Agra?¨tagra?¨t, and G. Rubio-bollinger, Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors, Nanotechnology, vol.21, issue.14, pp.957-44841457029, 2010.
DOI : 10.1088/0957-4484/21/14/145702

J. Sripirom, S. Noor, U. Kö-hler, and A. Schulte, Easily made and handled carbon nanocones for scanning tunneling microscopy and electroanalysis, Carbon, vol.49, issue.7, pp.2402-2414, 2011.
DOI : 10.1016/j.carbon.2011.02.007

G. Rubio-bollinger, A. Castellanos-gomez, S. Bilan, L. Zotti, C. Arroyo et al., Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments, Nanoscale Research Letters, vol.7, issue.1
DOI : 10.1021/nl080857a

A. Castellanos-gomez, N. Agra?¨tagra?¨t, and G. Rubio-bollinger, Characterization and Optimization of Quartz Tuning Fork-Based Force Sensors for Combined STM/AFM, Scanning Probe Microsc Nanosci Nanotechnol, vol.3, pp.23-53978, 2013.
DOI : 10.1007/978-3-642-25414-7_2

J. Kim, J. Huang, and A. De-lozanne, Honeycomb lattice of graphite probed by scanning tunneling microscopy with a carbon nanotube tip, Mesoscale Nanoscale Phys, vol.2013, pp.1-11

Y. Dappe, C. Gonzá-lez, and J. Cuevas, Carbon tips for all-carbon single-molecule electronics, Nanoscale, vol.98, issue.12, pp.6953-6961, 2014.
DOI : 10.1039/c4nr00516c

URL : https://hal.archives-ouvertes.fr/cea-01376328

R. Fowler and L. Nordheim, Electron Emission in Intense Electric Fields, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.119, issue.781, pp.173-81, 1928.
DOI : 10.1098/rspa.1928.0091

M. Wang, J. Wang, and L. Peng, Engineering the cap structure of individual carbon nanotubes and corresponding electron field emission characteristics, Applied Physics Letters, vol.88, issue.24, p.243108, 2006.
DOI : 10.1063/1.2208941

C. Spindt, I. Brodie, L. Humphrey, and E. Westerberg, Physical properties of thin???film field emission cathodes with molybdenum cones, Journal of Applied Physics, vol.47, issue.12, pp.5248-63, 1976.
DOI : 10.1063/1.322600

W. Dyke and W. Dolan, Field Emission, Adv Electron Electron Phys, vol.8, issue.08, pp.89-185, 1956.
DOI : 10.1016/S0065-2539(08)61226-3

R. Gomer, Field emission and field ionization, 1961.

A. Lucier, H. Mortensen, Y. Sun, G. Tter, and P. , Determination of the atomic structure of scanning probe microscopy tungsten tips by field ion microscopy, Physical Review B, vol.72, issue.23, 2005.
DOI : 10.1103/PhysRevB.72.235420

A. Lucier, Preparation and characterization of tungsten tips suitable for molecular electronics studies, 2004.

M. Shiraishi and M. Ata, Work function of carbon nanotubes, Carbon, vol.39, issue.12, pp.1913-1920, 2001.
DOI : 10.1016/S0008-6223(00)00322-5

E. Mü-ller, I. Horcas, R. Ferná-ndez, J. Gó-mez-rodríguez, J. Colchero et al., Work function of tungsten single crystal planes measured by the field emission microscope WSXM: A software for scanning probe microscopy and a tool for nanotechnology, J Appl Phys Rev Sci Instrum, vol.2678, issue.6, pp.732-72432410, 1955.

J. Penuelas, A. Ouerghi, D. Lucot, C. David, and J. Gierak, Surface morphology and characterization of thin graphene films on SiC vicinal substrate, Physical Review B, vol.79, issue.3, 2009.
DOI : 10.1103/PhysRevB.79.033408

F. Varchon, P. Mallet, J. Veuillen, and L. Magaud, Ripples in epitaxial graphene on the Si-terminated SiC(0 0 0 1) surface, Phys Rev B, vol.77, 2008.

U. Starke and C. Riedl, Epitaxial graphene on SiC (0 0 0 1) and SiC (0 0 0 À1): from surface reconstructions to carbon electronics, J Phys Condens Matter, vol.212113, p.13401612, 2009.

A. Ouerghi, M. Silly, M. Marangolo, C. Mathieu, M. Eddrief et al., Large-Area and High-Quality Epitaxial Graphene on Off-Axis SiC Wafers, ACS Nano, vol.6, issue.7, pp.6075-82, 2012.
DOI : 10.1021/nn301152p

URL : https://hal.archives-ouvertes.fr/hal-01240933

S. Goler, C. Coletti, V. Piazza, P. Pingue, F. Colangelo et al., Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial graphene, Carbon, vol.51, pp.249-54, 2013.
DOI : 10.1016/j.carbon.2012.08.050

P. Lauffer, K. Emtsev, R. Graupner, T. Seyller, and L. Ley, Atomic and electronic structure of few-layer graphene on SiC(0 0 0 1) studied with scanning tunneling microscopy and spectroscopy, Phys Rev B, vol.77, 2008.

D. Edie, The effect of processing on the structure and properties of carbon fibers, Carbon, vol.36, issue.4, pp.345-62, 1998.
DOI : 10.1016/S0008-6223(97)00185-1

G. Duvaut, Mé canique des milieux continus. Dunot, 1990.