Impact of carbonation on unsaturated water transport properties of cement-based materials

Martin AUROY\textsuperscript{a}, Stéphane POYET\textsuperscript{a}, Patrick LE BESCOP\textsuperscript{a}, Jean-Michel TORRENTI\textsuperscript{b}, Thibault CHARPENTIER\textsuperscript{c}, Mélanie MOSKURA\textsuperscript{c}, Xavier BOURBON\textsuperscript{d}

\textsuperscript{a} CEA, DEN, DPC, SECR, Laboratoire d'Etude du Comportement des Bétons et des Argiles, F-91191 Gif-sur-Yvette, France.
\textsuperscript{b} Université Paris-Est, IFSTTAR, Département Matériaux & Structures, 14-52 Boulevard Newton, F-77447 Marne la Vallée Cedex 2, France.
\textsuperscript{c} CEA, DSM, IRAMIS, NIMBE, Laboratoire Structure et Dynamique par Résonance Magnétique, CEA/CNRS UMR 3299, F-91191 Gif-sur-Yvette, France.
\textsuperscript{d} Andra, Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Chatenay-Malabry Cedex, France.

Corresponding author: Stéphane Poyet
CEA Saclay, DEN/DPC/SECR/Laboratoire d'Etude du Comportement des Bétons et des Argiles, Bâtiment 158, Point Courrier 25, F-91191 Gif sur Yvette cedex, France.
Phone: +33 1 69 08 50 59; Fax: +33 1 69 08 84 41; E-mail: stephane.poyet@cea.fr

Abstract

In unsaturated conditions, the durability of concrete structures is strongly dependent on the evolution of the amount of free water within concrete porosity. Reliable durability assessment of concrete structures in relation to their environment thus requires accurate unsaturated water transport description as well as reliable input data. The effect of carbonation on water transport remains poorly studied and data are lacking. It was then the purpose of this article to acquire all the data needed to describe unsaturated water transport in carbonated cementitious materials (porosity, water retention and unsaturated permeability). Four hardened pastes made with four different binders were carbonated at 3\% CO\textsubscript{2} to ensure representativeness with natural carbonation. Beyond the modification
of the water retention curve and porosity clogging, significant microcracking due to carbonation shrinkage was observed. The consequence on permeability highlighted a competition between porosity clogging and microcracking that was dependent on the initial mineralogical composition.

**Keywords:** waste management (E); cement paste (D); drying (A); permeability (C); microstructure (B)

1. **Introduction**

In unsaturated conditions, the durability of concrete structures is strongly dependent on the evolution of the amount of free water within concrete porosity (the term “free water” means the water that can be evaporated: it includes capillary and adsorbed water). This dependence is well illustrated by the results of Tuutti [1] that show the strong evolution of the corrosion current (over several orders of magnitude) of steel embedded in a carbonated mortar as a function of the external relative humidity (RH). In a more general way water significantly influences concrete performances and durability (shrinkage, creep, cracking, transport properties). Reliable durability assessment of concrete structures in relation to their environment thus requires accurate unsaturated water transport description. Many studies were published on this specific subject and a lot of data were acquired in the laboratory using different cement-based materials taking care to avoid interaction with carbon dioxide (CO$_2$). These results are of course very important but they are not fully relevant for durability appraisal because they disregard the fact that concrete structures are being carbonated when exchanging water with the environment.

Carbonation refers to the reaction between the calcium contained in concrete pore solution and gaseous CO$_2$. It leads to hydrates dissolution (mainly portlandite and C-S-H) and precipitation of calcium carbonate (CaCO$_3$). Beyond the fall of the pore solution pH that triggers rebar depassivation and corrosion, the precipitation of CaCO$_3$ generates porosity clogging: the reduction of which depends on the cement type and water to cement ratio (w/c) [2-8]. The specific surface area is then significantly decreased (around 50%) despite conflicting observations [9, 10].

The pore size distribution is also altered. Litvan and Meyer [11] studied carbonated concrete samples taken from a 20-year field exposure test (two concretes made with CEM I and CEM III). They found that carbonation led to significant coarsening of the pore structure of the CEM III concrete whereas the finer pores were affected for the CEM I one. Using pastes with different w/c (from 0.4 to 0.7) Ngala
and Page [5] found that carbonation (using 5% of CO$_2$) increased the proportion of capillary pores (pores larger than 30 nm) whatever the binder and water to binder ratio. More recently, Thiéry et al. [7] carbonated CEM I pastes with different w/c (using 50% of CO$_2$) and found that carbonation was capable of producing large capillary pores (larger than 100 nm) for w/c greater than 0.45. This could be just a consequence of the high CO$_2$ content used in this study because the authors noted that this phenomenon was reproduced using 10% of CO$_2$. Morandeau [12, 13] conducted similar experiments using CEM I pastes with or without fly ash (using 10% of CO$_2$). The pore volume of the CEM I pastes was almost uniformly reduced over the whole pore size distribution whereas a significant coarsening was obtained for pastes containing fly ash.

The water retention curves (i.e. adsorption and desorption isotherms) are also transformed. Due to porosity clogging, the water retained at equilibrium is significantly reduced [2, 4, 14-16]. In addition, using CEM I pastes of different w/c Houst [14], Houst and Wittmann [4] (=90% CO$_2$) and Thiéry et al. [7] (50% CO$_2$) showed that despite this reduction in water content (in percent by dry mass) the curves remained unchanged when they were expressed in saturation (Figure 1). This highlights the change in density induced by carbonation due to CO$_2$ fixation (1.60 and 2.03 g/cm$^3$ for non- and carbonated pastes respectively as estimated using mercury intrusion porosimetry [14]). This also means that all the pores were impacted in the same manner by CaCO$_3$ precipitation. This is of course not consistent with the coarsening of the pore structure discussed above. This is also not consistent with the results of Hyvert [16] who obtained significant alteration of the water retention curve of CEM I and CEM III/A mortars (w/c = 0.5) after carbonation (50% CO$_2$) (Figure 2).

Figure 1: Effect of carbonation on the desorption isotherm of a CEM I paste (w/c=0.4), redrawn after [14]. Key: ● non-carbonated paste, ▲ carbonated paste.
The effect of carbonation on permeability tests and observed a reduction in permeability as a consequence of carbonation during the test. Using CEM I grouts, Dewaele et al. [9] obtained permeability decrease of several orders of magnitude after carbonation (by injection under pressure of CO$_2$-rich water). Claisse et al. [6] carbonated CEM I concretes (5% CO$_2$) and measured significant increase in the so-called impermeability index [18] indicating a fall in permeability. In the same way Song and Kwon [19] carbonated two CEM I concretes and found that the permeability coefficient of the carbonated concretes was three times less than that of the non-carbonated ones. These results are however not consistent with the observations of Borges et al. [20] who measured oxygen permeability on CEM I paste with or without slag (75% and 90%). The CEM I paste permeability values remained stable after carbonation (5% CO$_2$) whereas the pastes incorporating slag showed significant increase in permeability. Moreover Thiéry et al. [7] and Wang et al. [21] showed that for a high w/c CEM I concrete (0.84) the permeability (evaluated using inverse analysis) was increased after carbonation (by one order of magnitude).

In summary, there are not enough studies dealing with the effect of carbonation on water transport properties and the results are piecemeal and often conflicting. This might be due to differences in CO$_2$ content, cement type or even mix composition. It is then the purpose of this article to study the effect of carbonation and to acquire all the data needed to describe unsaturated water transport in carbonated cement pastes; that is to say: porosity, water retention curve and unsaturated permeability (see section 2).
2. Theoretical framework

Water transport within concretes involves three mechanisms: (i) permeation of the liquid phase; (ii) permeation of the gaseous phase (mix of vapour and dry air) and (iii) diffusion of vapour within the gaseous phase (the transport of adsorbed water is not accounted for here). The description of these phenomena results in a complex set of coupled differential equations [22-25]. The major disadvantage of this approach is the great number of input data that are required and the experimental difficulty related to their assessment.

Water transport is then usually described in a simplified way using a single equation as for liquid permeation only (the two other motions are included). This approach was found to be valid (water transport in the gaseous phase was found to be negligible compared liquid permeation) for weakly permeable materials [24]: this was the case for a concrete with an intrinsic permeability equal to $1 \times 10^{-21} \text{m}^2$ [26]. More recently, Thiéry et al. [27, 28] estimated the respective contribution of each motion for three different concretes. They showed that this approach validity depends on the intrinsic permeability and the RH-domain that is considered. For instance for a high-performance concrete with low permeability ($\approx 2 \times 10^{-22} \text{m}^2$) the assumption appears to be valid between RH=20% and 100% whereas for a low-strength concrete with high permeability ($\approx 4 \times 10^{-19} \text{m}^2$) the validity domain is limited to 65%-100% RH.

To describe water transport in a simplified way, we have started using Darcy’s law extended to unsaturated flow [29] which allowed estimating the water flux $j$:

$$j = -\rho \frac{K_e}{\eta} \nabla P$$  \hspace{1cm} (1)

where $P$ is the liquid pressure [Pa]; $\eta$ and $\rho$ the water viscosity [Pa·s] and density [kg/m$^3$] respectively. $K_e$ is the effective permeability that characterizes the resistance of the unsaturated concrete to water flow (under a pressure gradient) [m$^2$]. It was expressed as the product $(K \times k_r)$ in which $K$ is the intrinsic permeability [m$^2$] and $k_r$ the relative permeability that accounts for the effect of desaturation on the depercolation of the saturated porous network (ranges between 0 and 1). The mass conservation equation then wrote:

$$\frac{\partial}{\partial t} (\rho \phi S) = -\text{div} \left( j \right) = \text{div} \left[ \rho \frac{K_e}{\eta} \nabla P \right]$$  \hspace{1cm} (2)
$S$ is the saturation index [without unit], it describes how pores are filled with liquid water and ranges between 0 (dry state) and 1 (saturated state). $\phi$ is the concrete porosity (volume per volume) [without unit]. In isothermal conditions, assuming that water is incompressible and that a differentiable relation between saturation $S$ and water pressure $P$ exists (this relation is known as the capillary pressure curve) eq. (3) could be easily obtained:

$$\phi \left( \frac{\partial S}{\partial P} \right) \frac{\partial P}{\partial t} = \text{div} \left[ \frac{K_e}{\eta} \text{grad}(P) \right] - S \left( \frac{\partial \phi}{\partial t} \right)$$

(3)

The right-hand term $\left( S \frac{\partial \phi}{\partial t} \right)$ accounted for porosity reduction induced by carbonation and the pressure $P$ was calculated using the so-called Kelvin-Laplace equation:

$$P(h) = -\rho RH \ln(h)$$

(4)

$R$ is the universal gas constant [J/mol/K], $T$ is the absolute temperature [K], $M$ is the liquid water molar mass [kg/mol] and $h$ is the relative humidity. The description of water transport within concrete thus required the knowledge of only three physical parameters: the concrete porosity ($\phi$), the effective permeability ($K_e$) and the left-hand term $\left( \frac{\partial \phi}{\partial P} \right)$ which was assessed using the water retention curve [30]. It must be noted that for constant porosity, eq. (3) could be simplified to eq. (5) which was used to describe unsaturated water transport in the non-carbonates pastes (part 4.4.1).

$$\phi \left( \frac{\partial S}{\partial P} \right) \frac{\partial P}{\partial t} = \text{div} \left[ \frac{K_e}{\eta} \text{grad}(P) \right]$$

(5)

3. Materials and specimens

3.1. Materials

Four different hardened cement pastes with constant water to binder ratio (0.40) were used (Table 1). These binders were chosen because they are being used for R&D studies by the French Agency for radioactive waste management (Andra) and its partners. The low-pH mix was designed in the field of geological disposal to limit the chemical interaction between clay minerals and concrete structures [31, 32]. The CEM I, CEM V/A and Low-pH mix were already studied in a previous work [33, 34] in which the water transport properties of the non-carbonated materials were characterized. The cement pastes CEM I, CEM III/A, CEM V/A and Low-pH blend (T1 from [32]) are respectively noted PI, PIII, PV and PBP in this study.
Table 1: Cement pastes composition.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CEM I</th>
<th>CEM III/A</th>
<th>CEM V/A</th>
<th>Low-pH blend (T1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM I</td>
<td>100%</td>
<td>39%</td>
<td>56%</td>
<td>37.5%</td>
</tr>
<tr>
<td>Slag</td>
<td>-</td>
<td>61%</td>
<td>22%</td>
<td>-</td>
</tr>
<tr>
<td>Fly ash</td>
<td>-</td>
<td>-</td>
<td>22%</td>
<td>30%</td>
</tr>
<tr>
<td>Silica fume</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>32.5%</td>
</tr>
<tr>
<td>Superplasticizer Chryso® Fluid Optima 175</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1% of binder (by mass)</td>
</tr>
<tr>
<td>Water to binder ratio</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
</tbody>
</table>

3.2. Specimens preparation

The pastes were prepared in twelve consecutive batches of 2 L (3 batches for each composition) over two days. The appropriate amounts of cement and water were mixed in a planetary mixer until homogenization of the fresh mix. The paste was then poured into polypropylene cylindrical moulds (Ø50×100 mm) and vibrated to remove entrapped air bubbles. The specimens were kept two weeks after casting in their sealed moulds before unmoulding. The specimens were then cured for four months in sealed containers immersed in specific curing solutions. The composition of the curing solutions of the PI, PIII and PV specimens was designed to prevent calcium and alkalis leaching. The pore solutions were expressed at high-pressure [35] from specimens kept in sealed moulds for 4 months. The use of the device optimized by Cyr & Daidié [36] allowed retrieving several millilitres of solution, the composition of which was analyzed using ionic chromatography (Table 2).

Because the pore-solution of PBP was known to exhibit significant changes during the early months of hydration [32], a different protocol was chosen: several specimens were reduced into a rough powder and added to deionized water to generate the curing solution.

Table 2: Ion chromatography results for the pore solutions of PI, PIII and PV.

<table>
<thead>
<tr>
<th>Cations (mmol/L)</th>
<th>PI</th>
<th>PIII</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>52</td>
<td>130</td>
<td>98</td>
</tr>
<tr>
<td>K⁺</td>
<td>473</td>
<td>366</td>
<td>469</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>2.5</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>pH</td>
<td>13.6</td>
<td>13.5</td>
<td>13.5</td>
</tr>
</tbody>
</table>

The top and bottom parts of the samples that present different properties from the bulk [37-39] were cut off and discarded. The thickness of the parts to be removed was assessed by using accelerated
chemical degradation [40]. One specimen of each paste was immersed in ammonium nitrate solution (6 mol/L). The leaching solution was stirred constantly but not renewed [41]. After one month, the samples were withdrawn from the solution, sawn in two parts and sprayed with phenolphthalein solution. Three zones could be observed (Figure 3):

• the central part where the degradation depth was constant versus height,
• the bottom part where the degradation depth was less due to sedimentation,
• the top part where the degradation depth was higher due to bleeding and sedimentation.

The removal of top and bottom ends (10 mm) was believed to yield homogeneous properties versus height. 140 disks per paste (6 mm-thick) were sawn from the central part of the resulting specimens. Most of these disks (110 per paste) were used for carbonation study and the remaining part was dedicated to the non-carbonated pastes characterization.

Figure 3: Degradation profile of PI sample after one month in ammonium nitrate (6M) at ambient temperature.

3.3. Accelerated carbonation

Accelerated carbonation was achieved using the device developed by Drouet [33]. It includes a climatic chamber for environmental control and a specific system allowing an accurate regulation of the CO$_2$ partial pressure. Prior to carbonation, the 440 disks were kept in the carbonation device without CO$_2$ (25°C ± 0.2°C and 55 ± 1% RH) in order to reach a constant value of saturation that promotes carbonation [3, 42-44]. One month later, the equilibrium was reached (constant mass variation) and the carbonation test was started with a CO$_2$ content of 3.0 ± 0.2%. This value was
chosen to ensure representativeness of the mineralogical evolution compared to atmospheric carbonation [45]. The carbonation progress was monitored in a simple way through mass variation. The process was pursued until the complete carbonation state which was verified afterwards using X-ray diffraction (XRD) and thermogravimetric analysis (TGA) (see section 5.1.).

4. Methods

4.1. Mineralogical assemblage

The mineralogical changes induced by carbonation were identified using a PANalytical X’Pert diffractometer and Cu Kα radiation (λ = 1,54 Å) (XRD). The solid samples surface was scanned between 5 and 65°, with a step size of 0.017°. The use of the X’Celerator detector allowed the acquisition time of the diffractograms to be around 20 minutes.

Thermogravimetric analysis experiments (TGA) were accomplished using a NETZSCH STA 409 PC LUXX device to determine the amount of portlandite (CH) and calcium carbonate (CaCO3). Following current methodology [46] the samples were powdered (120 ± 0.1 mg) and tested at a constant heating rate of 10°C/min up to 1150°C under N2 flowrate (80 mL/min).

The C-S-H content was evaluated following the method proposed by Olson and Jennings [47] and the water content at equilibrium with RH = 20% (input data for the estimation process) was obtained from the water desorption isotherms.

29Si Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) was used to probe the effect of carbonation on the C-S-H structure as commonly done [45, 48-51]. We did not use 13C NMR because it was found difficult to distinguish one calcium carbonate from the others [52]. The 29Si MAS NMR experiments were conducted following the current protocol of Brunet et al. [53]. Spectra were collected using a Bruker 300WB NMR spectrometer operating at a Larmor frequency of 59.3 MHz (magnetic field 7.05 T). Samples intended for MAS NMR analysis were powdered (around 100 mg sieved to remove the particles larger than 100 µm) and packed in ZrO2 4mm (outer diameter) rotors. Sample spinning frequency was 10,000 Hz and recycle delay was 2s. No differences in line shape were seen for longer recycle delays (20s, 200s) and spin rate of 10 kHz was found to be sufficient to remove
paramagnetic effects (i.e. here spinning sidebands intensity minimized). Data were processed using an in-house made software [53].

4.2. Porosity

Water porosity $\emptyset$ was obtained using oven-drying. The specimens were preliminarily saturated under vacuum and water following the current standard used in France [54]. 80°C was chosen as the reference temperature in order to enable comparison with a previous study focused on similar materials [33] but supplementary tests were conducted at 105°C to enable comparison with literature.

The pore size distribution was investigated by mercury intrusion porosimetry (MIP) using a Micrometrics Autopore IV. Samples were crushed into small parts (several millimetres), frozen by immersion into liquid nitrogen, let to dry under vacuum for seven days and then tested at 20 ± 2°C.

Two samples of each formulation were used.

4.3. Water desorption isotherm

The desorption isotherms were characterized using the desiccator method [55]. The non-carbonated samples were tested just after the cure (after 4 months) whereas the carbonated ones were tested after the cure (4 months) and carbonation (1 year). All the samples were resaturated before the test (4 h under vacuum and then 20 h under water and vacuum). A set of specimens (from 3 to 6) of each paste was inserted into a desiccator above a specific saturated salt solution to control the RH (Table 3). Thirteen different sample-sets were placed simultaneously into thirteen different desiccators including different salt solutions. This procedure allowed reducing the test duration, but might have resulted in increasing variability.

<table>
<thead>
<tr>
<th>Saturated salt solution</th>
<th>Chemical formula</th>
<th>RH (20°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium chloride</td>
<td>CaCl₂</td>
<td>≈3%</td>
</tr>
<tr>
<td>Lithium chloride</td>
<td>LiCl</td>
<td>11%</td>
</tr>
<tr>
<td>Potassium acetate</td>
<td>C₂H₃KO₂</td>
<td>23%</td>
</tr>
<tr>
<td>Magnesium chloride</td>
<td>MgCl₂</td>
<td>33%</td>
</tr>
<tr>
<td>Potassium carbonate</td>
<td>K₂CO₃</td>
<td>43%</td>
</tr>
<tr>
<td>Magnesium nitrate</td>
<td>Mg(NO₃)₂</td>
<td>54%</td>
</tr>
<tr>
<td>Sodium bromide</td>
<td>NaBr</td>
<td>59%</td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td>NH₄NO₃</td>
<td>63%</td>
</tr>
<tr>
<td>Potassium iodide</td>
<td>KI</td>
<td>70%</td>
</tr>
</tbody>
</table>
The thirteen desiccators were put in an air-conditioned room (20 ± 2°C). At given times, the desiccators were opened and the samples weight was measured. The results (relative mass variation at equilibrium \( \frac{\Delta m}{m} (h) \)) enabled the calculation of the water retention curves expressed in terms of water content \( w(h) \) (ratio of the mass of water for the RH \( h \) to the dry mass) [60]:

\[
w(h) = \frac{d_{sat}}{d_{sat} - \emptyset} \left( \frac{\Delta m}{m} (h) + \frac{\emptyset}{d_{sat}} \right)
\]

where \( d_{sat} \) is the specific gravity of the saturated paste. It was measured using the buoyancy method. The deviation from equilibrium was characterised using an indicator \( \tau \) defined as:

\[
\tau(t) = \frac{\frac{\Delta m}{m}_{t+1} - \frac{\Delta m}{m}_t}{\frac{\Delta m}{m}_t}
\]

where \( \frac{\Delta m}{m}_t \) and \( \frac{\Delta m}{m}_{t+1} \) are the relative mass variation measured at the times \( t \) and one day after respectively. Once the indicator \( \tau \) became lower than 0.05%, the equilibrium was considered achieved. For instance, in the case of carbonated PI at 43% RH (Figure 4), the criterion was reached after 110 days. After 275 days, the indicator \( \tau \) reached 0.01% (five time lower than the criterion) but the difference between the relative mass variations at 110 and 275 days remained very limited: about 3.5% (relative value).

![Figure 4: Characterization of the desorption isotherm (carbonated PI at 20°C and 43% RH).](image-url)
Complementary tests were conducted using a sorption balance (SMS DVS Advantage) [10, 61]. This device presents two major benefits: (i) a complete desorption isotherm could be obtained in about ten days and (ii) it allowed testing some specific RH values that are difficult to achieve using saturated salt solutions (especially RH lower than 30%). A few disks were crushed and then powdered (sieved to remove the particles larger than 100 µm) in a CO₂-free glove box. The powder was resaturated using deionized water: a sample of about 50 mg was taken and introduced into the sorption balance. The tests were performed at 25°C ± 0.1°C and the RH was decreased by steps under the “dm/dt” mode (the software automatically shifted from one RH step to another when equilibrium was considered to be reached).

The specific surface area \( S_s \) was assessed using the well-known BET model [62, 63]:

\[
w(h) = \frac{Cw_mh}{(1-h)[1+(C-1)h]} \tag{8}
\]

where \( C \) and \( w_m \) are the two BET parameters. \( C \) is related to the energy of the first layer and \( w_m \) represents the water content needed to complete a monomolecular layer. The specific surface area \( S_s \) was calculated using the BET monolayer parameters \( w_m \) following [64]:

\[
S_s = N_A \frac{w_mA}{\rho V} \tag{9}
\]

where \( N_A \) is Avogadro’s number, \( V \) is the molar volume of water vapour and \( A \) is the surface occupied by one molecule of liquid water obtained following [65, 66]:

\[
A = 1.091 \frac{M}{N_A \rho} \tag{10}
\]

### 4.4. Permeability

#### 4.4.1. Inverse analysis

The intrinsic permeability \( (K) \) was fitted through numerical simulations to match experimental data [26, 67]. Here, initially saturated specimens \((\Phi 50 \times 100 \text{ mm})\) were submitted to 55% RH and 25°C in a climatic chamber during 100 days. The finite-element code Cast3m\(^1\) was used to solve eq. (3). The relative permeability to liquid water \( k_r \) was evaluated using the Mualem-van Genuchten model [68, 69]. The water retention curves were fitted using the equation proposed by van Genuchten:

\[^{1}\text{http://www-cast3m.cea.fr/changelang.php?lang=en}\]
\[ w = w_{\text{sat}} \left[ 1 + \left( \frac{P}{P_0} \right)^{1-\frac{1}{m}} \right]^{-m} \]  

(11)

where \( P_0 \) and \( m \) are the two positive parameters of the model and \( w_{\text{sat}} \) is the water content at saturation (RH = 100%). The relative permeability \( k_r \) was calculated using Mualem’s model (the value of the parameters \( P_0 \) and \( m \) are the same as above) [69]:

\[ k_r = \left[ 1 + \left( \frac{P}{P_0} \right)^{1-\frac{1}{m}} \right]^{-mp} \left\{ 1 - \left[ \left( \frac{P}{P_0} \right)^{1-\frac{1}{m}} \right] \left[ 1 + \left( \frac{P}{P_0} \right)^{1-\frac{1}{m}} \right]^{-m} \right\}^2 \]  

(12)

where the exponent \( p \) is known as the pore-interaction factor (without unit) and embodies pore tortuosity. It was taken equal to +0.5 as suggested by Mualem [68], but \( p \) may be negative or positive [68].

The moisture capacity (the left-hand term \( \phi (\frac{\partial S}{\partial P}) \) in eqs. 3 and 5) was then:

\[ \phi (\frac{\partial S}{\partial P}) = \frac{m\phi}{m-1} \frac{P_0}{P} \left[ \frac{1}{P_0} \left[ 1 + \left( \frac{P}{P_0} \right) \right]^{1-\frac{1}{m}} \right]^{-m} \]  

(13)

The numerical restitution (solid line) of the experimental relative mass loss (circles) is illustrated on Figure 5 (a). The value of \( K \) is estimated by minimization of the quadratic difference between the computed and measured relative mass loss for each measuring time (Figure 5 b). The minimum yielded the value of the intrinsic permeability. In this example (non-carbonated PI), the optimal value of \( K \) was equal to \( 2.7 \times 10^{-22} \text{ m}^2 \).
Inverse analysis was used for non-carbonated specimens only. The carbonated ones were too small (the specimens dry too quickly and the mass loss is too low to yield appropriate results) and another approach had to be used to assess permeability.

4.4.2. Cup-method

The cup-method [70] is a direct way of determination of the effective permeability. In this experiment, disks do constitute a boundary separating two different environments (same temperature but two different RH: \( h_1 \) and \( h_2 \)) through which water is transported (Figure 6)

\[
\Delta P = -\rho \frac{RT}{M} \ln \left( \frac{h_1}{h_2} \right) \tag{14}
\]

where \( \dot{m} \) is the mass loss time derivative [kg/s], \( \Sigma \) the disk cross sectional area [m²], \( t \) the thickness [m], \( \Delta P \) the liquid pressure difference between the two environments (computed using eq.14) [Pa].
An experimental set-up was implemented by adapting existing diffusion cells (Figure 6). In practice, \( h_1 \) was controlled using a saturated salt solution whereas \( h_2 \) was controlled using a climatic chamber (which also allows controlling temperature). In this test, initially saturated samples are used to focus on the drying path (and \( h_1 \) was always greater than \( h_2 \)). The cup-method is implemented on carbonated disks (due to the small specimen thickness) as well as non-carbonated ones to validate the method.

### 4.5. Cracking

Because cracks were observed on the disks surface after carbonation, some of them were impregnated with a fluid resin incorporating a fluorescent dye\(^2\). The disks were observed in the light of a ultra-violet (UV) lamp. The resin-filled cracks could clearly be seen thanks to the dye fluorescence. Pictures were taken and then processed using a specific software\(^3\) in order to provide a cracking index \( I_c \) to compare qualitatively the pastes (grey-scale image processing). The cracking index was simply defined as the ratio of the number of pixels attributed to the cracks to the total number of pixels of the disk surface:

\[
I_c = \frac{\text{Number of pixels attributed to the cracks}}{\text{Total number of pixels of the surface}}
\]  

\(^2\) Struers EpoDye and EpoFix  
\(^3\) [http://imagej.nih.gov/ij/](http://imagej.nih.gov/ij/)
5. Results

5.1. Mineralogical changes

The usual mineralogical changes could be highlighted using XRD (Figure 8): dissolution of the main hydrates (portlandite, AFt and AFm) and precipitation of calcium carbonate (calcite and vaterite, the presence of aragonite was not identified). These evolutions were supported by the TGA data (Figure 9). 100 days were necessary to achieve a stabilized state of carbonation (constant concentration of calcium carbonate). As it was expected, the amount of calcium carbonate increased with the initial portlandite content. The remaining presence of portlandite was also observed after carbonation that was attributed to the calcium carbonate formation around the portlandite crystal inhibiting their dissolution [71-74].

Figure 10 presents the results obtained using $^{29}$Si NMR. $Q_0$ represents isolated SiO$_2$ tetrahedra, $Q_1$ denotes chain end groups, $Q_2$ middle groups, $Q_3$ branching sites and $Q_4$ cross-linking ones [48]. $Q_2^p$ represents the bridging SiO$_2$ sites but other tetrahedra cannot be distinguished using $^{29}$Si MAS NMR. A more detailed analysis would be required to describe accurately the C-S-H structure [51]. $^{29}$Si NMR spectra showed that carbonation decreases the amount of anhydrous phases ($Q_0$) in agreement with the XRD results. But above all this, the characteristic peaks of the C-S-H ($Q_1$, $Q_2^p$ and $Q_3$) drastically decreased revealing significant decalcification of the C-S-H. The end result was close to a silicate material ($Q_3$ gel and $Q_4$ gel) which could possibly contain calcium (Ca-enriched silica gel with a low C/S ratio).
Figure 8: X-ray diagrams acquired for non-carbonated (NC) and carbonated (C) pastes PI, PIII, PV and PBP - AFt: ettringite, AFm: monosulfate, m: mullite, p: portlandite, q: quartz, Gy: gypsum, c: calcite, v: vaterite, a: aragonite, d: dolomite, an: anhydrous phases C$_2$S and C$_3$S, h: hematite.

Figure 9: Evolution of the amounts of portlandite (CH) and calcium carbonate (CC) as a function of carbonation time in PI, PIII, PV and PBP.
Many disks were cracked or even broken at the end of the carbonation campaign, regardless of the composition: more than 50% of the PI specimens and to a lesser extent PIII, PV and PBP (between 25% and 40%). This was believed to be due to the combination of drying and carbonation shrinkage. Only the unbroken and non-cracked disks (as observed with the naked eyes) were used for further characterization.

5.2. Porosity

The precipitation of calcium carbonate led to the reduction of water porosity (Table 4). The fall of porosity was of the same order of magnitude of those obtained by Ngala and Page [5]. The porosity variation was directly related to clinker substitution by pozzolanic additions: the higher the initial portlandite content, the higher the fall of porosity (Figure 9 and Table 4).
Table 4: Porosity to water of the cement pastes.

<table>
<thead>
<tr>
<th>Water content $w_{sat}$</th>
<th>PI</th>
<th>PIII</th>
<th>PV</th>
<th>PBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-carbonated</td>
<td>22.1%</td>
<td>26.2%</td>
<td>25.2%</td>
<td>30.6%</td>
</tr>
<tr>
<td>Carbonated</td>
<td>10.0%</td>
<td>14.8%</td>
<td>14.1%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Porosity</td>
<td>Non-carbonated</td>
<td>36.3%</td>
<td>39.8%</td>
<td>36.9%</td>
</tr>
<tr>
<td>Carbonated</td>
<td>21.1%</td>
<td>29.3%</td>
<td>27.6%</td>
<td>35.5%</td>
</tr>
<tr>
<td>Variation</td>
<td>-15.2%</td>
<td>-10.5%</td>
<td>-9.3%</td>
<td>-5.5%</td>
</tr>
</tbody>
</table>

Not only the total porosity was reduced but also the pore size distribution was modified (Figure 11). The critical pore diameter decreased for PI and PV whereas a slight, but significant, coarsening of the pore structure was observed for PIII and PBP.

Figure 11: Impact of carbonation on the pore size distribution (characterized by MIP two samples per formulation).

5.3. Water desorption isotherm

Figure 12 presents the water desorption isotherms obtained using the desiccator method (filled circles) and the sorption balance (DVS, open diamonds). A satisfactory agreement between the two methods.
was then obtained for all the binders in the non- and carbonated states. Carbonation led to a significant drop of water content at equilibrium that was directly related to porosity clogging (Table 4). The desorption isotherms morphology was also altered as a consequence of the pore size distribution modification. This is patent when saturation is used to plot the water retention curves (Figure 13). As already beheld by Houst and Whittmann [4], the modifications of the CEM I paste curve appeared moderate and remained limited to low RH. Those of the blended pastes were more significant and appeared to be all the more significant as the amount of addition was high.

The van Genuchten parameters needed for the inverse analysis (pressure $P_0$ and exponent $m$) were evaluated; the results are presented on Figure 13 and the parameters are listed on Table 5.
Figure 13: Water retention curves of the hardened cement pastes (saturation). The lines correspond to van Genuchten model (eq. 11).

Table 5: The van Genuchten parameters ($P_0$ in MPa and $m$ without unit) obtained by capillary-pressure curve fitting.

<table>
<thead>
<tr>
<th></th>
<th>PI</th>
<th>PIII</th>
<th>PV</th>
<th>PBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_0$</td>
<td>51.4</td>
<td>86.5</td>
<td>96.9</td>
<td>108.7</td>
</tr>
<tr>
<td>$m$</td>
<td>0.46</td>
<td>0.56</td>
<td>0.53</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Carbonation led to a reduction of the specific surface area (Table 6). Using the approach proposed by Olson and Jennings [47] together with the desorption isotherm (water content at 20% RH), the C-S-H content was estimated (Table 7). It was then implicitly assumed that this approach remains valid for carbonated cementitious materials. It was found that $\Delta S_2$ increased with $\Delta C$-S-H indicating C-S-H carbonation and partial dissolution.
Table 6: Impact of carbonation on the specific surface area ($S_s$).

<table>
<thead>
<tr>
<th>$S_s$ (m²/g)</th>
<th>PI</th>
<th>PII</th>
<th>PV</th>
<th>PBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-carbonated</td>
<td>190</td>
<td>300</td>
<td>298</td>
<td>382</td>
</tr>
<tr>
<td>Carbonated</td>
<td>93</td>
<td>89</td>
<td>98</td>
<td>88</td>
</tr>
<tr>
<td>$\Delta S_s$</td>
<td>-97</td>
<td>-211</td>
<td>-200</td>
<td>-294</td>
</tr>
</tbody>
</table>

Table 7: Impact of carbonation on the C-S-H content.

<table>
<thead>
<tr>
<th>C-S-H concentration (mol/L of paste)</th>
<th>PI</th>
<th>PII</th>
<th>PV</th>
<th>PBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-carbonated</td>
<td>5.2</td>
<td>6.5</td>
<td>6.5</td>
<td>7.6</td>
</tr>
<tr>
<td>Carbonated</td>
<td>3.7</td>
<td>3.3</td>
<td>3.9</td>
<td>2.6</td>
</tr>
<tr>
<td>$\Delta$C-S-H</td>
<td>-1.4</td>
<td>-3.2</td>
<td>-2.5</td>
<td>-5.0</td>
</tr>
</tbody>
</table>

5.4. Cracking

Figure 14 presents the pictures of the non- and carbonated disks surface. The absence of cracks on the non-carbonated disks could be noticed whereas the carbonated ones were more or less significantly cracked depending on the considered binder. Although only the disks surface could be observed, the resulting cracking pattern was believed to be representative of that of the bulk. The image processing results are reported on Figure 14 ("thresholded" binary image) and in Table 8 (cracking index values). An average crack opening of 10-15 µm was measured for all the binders. Different values of the cracking index were found depending on the considered binder: PI presented the lowest value and PBP the highest.
Figure 14: Photos of the non- and carbonated impregnated disks under UV light (on the left) and result of the image processing (on the right)

Table 8: Cracking indices ($I_c$).

<table>
<thead>
<tr>
<th></th>
<th>PI</th>
<th>PIII</th>
<th>PV</th>
<th>PBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_c$ (%)</td>
<td>4%</td>
<td>9%</td>
<td>7%</td>
<td>10%</td>
</tr>
</tbody>
</table>

5.5. Permeability

5.5.1. Inverse analysis

The numerical restitution of the experimental drying kinetics of the Ø50×100 mm cylinders (55% RH and 25°C) is presented on Figure 15 (following the method presented in part 4.4.1). The obtained intrinsic permeability values are compiled in Table 9. These values are consistent with the pore size distributions: the finer the pore size distribution, the lower the permeability value.
Figure 15: Numerical restitutions of the relative mass loss as a function of the intrinsic permeability ($K$) (PI, PIII, PV and PBP).

Table 9: Values of the intrinsic permeability ($K$) of non-carbonated paste.

<table>
<thead>
<tr>
<th>$K_{nc}$ ($10^{-22}$ m²)</th>
<th>PI</th>
<th>PIII</th>
<th>PV</th>
<th>PBP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.70</td>
<td>0.26</td>
<td>0.50</td>
<td>0.45</td>
</tr>
</tbody>
</table>

5.5.2. Cup method

Firstly, the cup-method was applied on non-carbonated PI to compare with inverse analysis (Figure 16). A good agreement between both methods was noticed: the two datasets presented the same order of magnitude and described a similar trend. A small difference could however be observed that could be due to:

- the variability linked to the differences between the batches used for the two methods (the data required for inverse analysis were extracted from a previous study [33],
- uncertainties on the unsaturated properties (for instance water retention curve),
- the error on the relative permeability ($k_r$) assessed using Mualem’s model and more specifically the value of the pore interaction factor $p$ (eq. 12) [68, 75, 76].
It was noticed that for RH lower than 40%, a permeability increase was obtained for the non-carbonated specimens. Cracks could be observed on the disk surface. They were believed to be due to restrained drying shrinkage. Beyond that, the authors think that the comparison was globally satisfactory and that the cup method is an efficient tool for unsaturated permeability evaluation. This statement could not however be generalized to the blended cements (Figure 17) for which the reliable permeability description was limited to a small range of saturation (around 0.8 to 1.0). This was due to their refined pore size distribution leading to flattened desorption isotherms at high RH (Figure 12). In the following sections, the permeability of non-carbonated blended cement pastes was then described using inverse analysis.

Figure 16: Effective permeability ($K_e$) evolution vs. saturation state ($S$), at 25°C, for non-carbonated PI.
The cup-method was applied to assess the unsaturated permeability of the carbonated pastes (Figure 18). A decrease in the permeability of PI was observed subsequently to carbonation that is consistent with porosity clogging. On the opposite side, a significant increase of permeability was found for the blended cements despite the fall of porosity.
Figure 18: Impact of carbonation on the effective permeability ($K_e$). The lines stand for the best fit using Mualem-van Genuchten model (with $p \neq 0.5$).

Intrinsic permeability values of the carbonated pastes were assessed following eq. (16). This is the well-known Mualem-van Genuchten equation. It is the same as eq. (12) but it is expressed in terms of saturation instead of pressure. No restriction was imposed to the pore interaction factor value (the exponent $p$) to improve the fitting capacity [75-79]. The resulting $p$ values were different from the default value (+0.5) proposed by Mualem [68]: they were all negative as it was already observed [75, 76]. The corresponding values (pore interaction factor and intrinsic permeability) are compiled in
Two different explanations were explored to explain the significant permeability increase of the blended cement pastes: (i) coarsening of the pore structure and formation of large pores and (ii) microcracking. These points are discussed in the following section.

6. Discussion

The coarsening of the pore structure and formation of large pores could not be observed using MIP. Microcracking was then believed to be the major cause of the permeability increase. This was supported by the fact that the permeability of the carbonated disks increases with the cracking index \( I_c \) as depicted on Figure 19 (a). \( R_K \) is the ratio of the intrinsic permeability of the carbonated paste \( K_c^{exp} \) to the non-carbonated one \( K_{nc} \) (Table 11):

\[
R_K = \frac{K_c^{exp}}{K_{nc}}
\]

For \( R_K \leq 1 \) (PI), the high amount of calcium carbonates (due to the high initial portlandite content) led to significant porosity clogging that prevailed over the effect of microcracking. On the contrary, for \( R_K \geq 1 \) (PII, PV and PBP), the effect of microcracking prevailed over porosity clogging. This fact was directly related to the initial mineralogical composition of the pastes. C-S-H rich pastes (with low portlandite) showed significant cracking after carbonation (Figure 19, b): the higher the initial C-S-H content, the higher the cracking index \( I_c \). The authors believe that the cracking was induced by C-S-H carbonation following the proposition of Swenson and Sereda [71]. The C-S-H decalcification induced by carbonation and the subsequent polymerisation (increase of the main silica chain length) generated shrinkage [80]. This carbonation shrinkage [42, 71, 81-83] eventually led to cracking as it
was already observed [20, 84, 85]. The substantial C-S-H decalcification observed for all the binders after complete carbonation using $^{29}$Si NMR supported this assumption (Figure 10).

Figure 19: Influence of cracking on permeability (a) and influence of C-S-H initial content on the cracking index ($I_c$).

The dataset obtained was used to describe the effect of porosity clogging on permeability. A simple law derived from Kozeny-Carman model [86-89] was used:

$$K_{c}^{K-C} = K_{nc} \left( \frac{\phi_{c}}{\phi_{nc}} \right)^3 \left( \frac{1 - \phi_{nc}}{1 - \phi_{c}} \right)^2$$  \hspace{1cm} (18)

where $K_{nc}$, $K_{c}^{K-C}$, $\phi_{c}$ and $\phi_{nc}$ are the intrinsic permeability and water porosity values of the non- and carbonated pastes respectively. The ratio $R$ was computed once again, but this time the permeability of the carbonated pastes was estimated using eq. (18) ($K_{c}^{K-C}$, Table 11). The results are depicted on Figure 20. For the PI paste the measured permeability was of the same order as the one obtained using eq. (18) but was three times higher. This suggested that the effect of porosity clogging was counterbalanced by microcracking. The results were however very different for the blended cements, the discrepancy between experimental and computed data increased with the cracking index ($I_c$). This suggested that in that specific case microcracking was the main cause of permeability increase and that clogging had negligible impact.
Table 11: Influence of clogging on permeability.

<table>
<thead>
<tr>
<th>Permeability $(\times 10^{-22} \text{m}^2)$</th>
<th>PI</th>
<th>PIII</th>
<th>PV</th>
<th>PBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{nc}$</td>
<td>2.70</td>
<td>0.26</td>
<td>0.50</td>
<td>0.45</td>
</tr>
<tr>
<td>$K_{nc}^{exp}$</td>
<td>1.16</td>
<td>74.82</td>
<td>74.39</td>
<td>81.48</td>
</tr>
<tr>
<td>$K_{nc}^{K-C}$ (eq. 18)</td>
<td>0.35</td>
<td>0.08</td>
<td>0.16</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Figure 20: Competition between porosity clogging and cracking.

Conclusion

The impact of carbonation on unsaturated water transport was addressed using four pastes made with different binders (three commercial cements and a low-pH blend). In the framework of a simplified approach for the description of unsaturated water transport, three physical parameters were characterised: porosity, water desorption isotherm and permeability. The samples were carbonated at a CO$_2$ content of 3% to ensure representativeness and mitigate cracking (as already observed at 50%). The precipitation of calcium carbonate led to porosity reduction, the extent of which was related to the initial composition of the paste (portlandite and C-S-H contents). The water desorption curves were significantly altered by carbonation:

- a drop of water content was observed over all the RH range according to porosity clogging;
- the isotherms morphology was changed in relation to pore size distribution modification.

The cup-method test was a good alternative to inverse analysis for the assessment of the unsaturated permeability. The results highlighted a competition between two concomitant phenomena: porosity clogging and microcracking. A decrease of permeability after carbonation was observed for Portland
cement (CEM I): porosity clogging prevailed over microcracking. On the contrary and despite the fall of porosity, significant permeability increase was obtained for the blended cements: microcracking prevailed over clogging. Permeability was found to increase with cracking (digital image processing) and more specifically with the initial C-S-H content. C-S-H decalcification revealed by $^{29}$Si NMR was believed to be the main cause of shrinkage resulting in cracking.

This study was only a first step; these tests should also be conducted using concretes. The presence of aggregates might help mitigating the consequences of carbonation shrinkage and change the cracking pattern (the cracks could be concentrated around the aggregates).

**Acknowledgments.**

The authors would like to thank Andra for financial support. Lafarge, Calcia, Holcim kindly accepted to supply cements free of charge.

**References**


