H. Nmr, CDCl 3 , 300 MHz), d (ppm): 9.84 (s, 1H), p.72

2. Hz, 0.07 (s, 6H), 0.00 (s, 6H) 13 C NMR (CDCl 3 , 75 MHz), d (ppm): 190(1-hydroxyethyl)-[1,1 0 -biphenyl]-4-yl)amino)benz- aldehyde 4. A solution of compound 3 (280 mg, 0.38 mmol, 1 eq.) in anhydrous tetrahydrofuran (10 mL) and tetrabutylammonium fluoride (1 mL, 1 M, 2.6 eq.) was stirred overnight at room temperature under argon. The solution was washed twice with brine, and the organic layer was dried over anhydrous MgSO 4 , before solvent removal under vacuum. The crude product was purified by silica gel chromatography using petroleum ether: ethyl acetate 1/1 as an eluent to give compound 4 as a yellow solid, 4.92 (q, J = 6.5 Hz, 2H), 1.44 (d, J = 6.3 Hz, 6H), 0.92 (s, 18H) MHz), d (ppm): 9.84 (s, 1H), pp.7357-7361, 2004.

4. Hz, 55 (d, J = 6.5 Hz, 6H) 13 C NMR (CDCl 3 , 75 MHz), d (ppm): 190-MS (MALDI-TOF) m, -hydroxyethyl)-[1,1 0 -biphenyl]-4-yl)amino)- benzylidene)malononitrile 5. To a solution, pp.4-97

1. Hz, HR-MS (ESI) m/z: [M] + calcd for C 53 H 51 NO 13 910.3433; found 910 UV-vis (toluene), l max (e max (mol À1 L cm À1 )): 370 (sh),2-dicyanovinyl)phenyl)- azanediyl)bis([1,1 0 -biphenyl]-4 0 ,4-diyl))bis(ethane-1,1-diyl))- disuccinate 8. The procedure was identical to that reported for compound 7 except that the following solutions were used: solution of compound 5 (730 mg, 1.30 mmol, 1 eq, DPTS (803 mg, 3.9 mmol anhydrous dichloromethane (20 mL), and solution of DCC (803 mg, 3.9 mmol, 3 eq.) in anhydrous dichloromethane (2 mL). Purification of the red power was performed by silica gel chromatography using petroleum ether 63%). 1 H NMR (CDCl 3 , 300 MHz, d): 7.78 (d, J = 9.0 Hz, 2H), pp.4-3376

H. Huang and K. D. Belfield, 1.58 (d, J = 6.8 Hz, 6H) 13 C NMR (CDCl 3 , 75 MHz, d): 173, Paper Journal of Materials Chemistry C Notes and references Nature Adv. Mater, vol.2, issue.18, pp.4-39, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00091098

M. J. Hynes and J. A. Maurer, Lighting the path: photopatternable substrates for biological applications, Mol. BioSyst., vol.133, issue.4, pp.559-564, 2012.
DOI : 10.1021/la303429a

). S. Chenais, S. M. Forgetb-)-l, V. Goldenberg, Y. Lisinetskii, J. Gritsai et al., Recent advances in solid-state organic lasers, Polymer International, vol.2, issue.3, pp.390-406, 2012.
DOI : 10.1002/pi.3173

URL : https://hal.archives-ouvertes.fr/hal-00644242

H. Duong, C. Liu, W. Li, L. Deng, M. Ma et al., Printed Multilayer Microtaggants with Phase Change Nanoparticles for Enhanced Labeling Security, ACS Applied Materials & Interfaces, vol.6, issue.11, pp.8909-8912, 2014.
DOI : 10.1021/am501668x

D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson et al., New Approaches to Nanofabrication:?? Molding, Printing, and Other Techniques, Chemical Reviews, vol.105, issue.4, pp.1171-1191, 2005.
DOI : 10.1021/cr030076o

-. B. Sun, X. Dong, W. Chen, S. Nakanishi, X. Duan et al., Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures, Advanced Materials, vol.90, issue.454, pp.914-919, 2008.
DOI : 10.1002/adma.200702035

S. Jiang, W. Wang, L. Yuan, Y. Jiang, H. Song et al., Highly Fluorescent Contrast for Rewritable Optical Storage Based on Photochromic Bisthienylethene-Bridged Naphthalimide Dimer, Chemistry of Materials, vol.18, issue.2, pp.235-237, 2006.
DOI : 10.1021/cm052251i

C. Gather, A. Kohnen, A. Falcou, H. Becker, and K. Meerholz, Solution-Processed Full-Color Polymer Organic Light-Emitting Diode Displays Fabricated by Direct Photolithography, Advanced Functional Materials, vol.5937, issue.2, pp.191-200, 2007.
DOI : 10.1002/adfm.200600651

K. Iliopoulos, O. Krupka, D. Gindre, and M. Sallé, Reversible Two-Photon Optical Data Storage in Coumarin-Based Copolymers, Journal of the American Chemical Society, vol.132, issue.41, pp.14343-14345, 2010.
DOI : 10.1021/ja1047285

L. Duan, T. Hou, J. Lee, D. Qiao, G. Zhang et al., Solution processable small molecules for organic light-emitting diodes, Journal of Materials Chemistry, vol.21, issue.74, pp.6392-6407, 2010.
DOI : 10.1039/b926348a

A. Ishow, G. Brosseau, K. Clavier, P. Nakatani, C. Tauc et al., Multicolor Emission of Small Molecule-Based Amorphous Thin Films and Nanoparticles with a Single Excitation Wavelength, Chemistry of Materials, vol.20, issue.21, pp.6597-6599, 2008.
DOI : 10.1021/cm802264c

URL : https://hal.archives-ouvertes.fr/hal-00409263

E. Ishow, G. Clavier, F. Miomandre, M. Rebarz, G. Buntinx et al., Comprehensive investigation of the excited-state dynamics of push???pull triphenylamine dyes as models for photonic applications, Physical Chemistry Chemical Physics, vol.131, issue.33, pp.13922-13939, 2013.
DOI : 10.1039/c3cp51480c

URL : https://hal.archives-ouvertes.fr/hal-00860963

R. Ishow, G. Guillot, O. Buntinx, and J. Poizat, Photoinduced intramolecular charge-transfer dynamics of a red-emitting dicyanovinyl-based triarylamine dye in solution, Journal of Photochemistry and Photobiology A: Chemistry, vol.234, pp.27-36, 2012.
DOI : 10.1016/j.jphotochem.2011.12.018

URL : https://hal.archives-ouvertes.fr/hal-00686941

-. Fouassier and J. Lalevée, Photoinitiators for Polymer Synthesis: Scope, Reactivity and Efficiency, 2012.
DOI : 10.1002/9783527648245

L. Feng, L. Duan, J. Hou, D. Qiao, G. Zhang et al., A Comparison Study of the Organic Small Molecular Thin Films Prepared by Solution Process and Vacuum Deposition: Roughness, Hydrophilicity, Absorption, Photoluminescence, Density, Mobility, and Electroluminescence, The Journal of Physical Chemistry C, vol.115, issue.29, pp.14278-14284, 2011.
DOI : 10.1021/jp203674p

T. Nishi, S. Asahi, and J. Kobatake, Enhanced photocycloreversion reaction of diarylethene polymers attached to gold nanoparticles in the solid state, Journal of Photochemistry and Photobiology A: Chemistry, vol.221, issue.2-3, pp.256-260, 2011.
DOI : 10.1016/j.jphotochem.2011.03.003

A. Reynolds and K. H. Drexhage, New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers, Optics Communications, vol.13, issue.3, pp.222-225, 1975.
DOI : 10.1016/0030-4018(75)90085-1

C. De-mello, H. F. Wittmann, and R. H. Friend, An improved experimental determination of external photoluminescence quantum efficiency, Advanced Materials, vol.77, issue.3, pp.230-232, 1997.
DOI : 10.1002/adma.19970090308