G. W. Anderson, A. Guionnet, and O. Zeitouni, An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, 2009.

G. Akemann, J. Baik, and P. D. Francesco, The Oxford Handbook of Random Matrix Theory, Oxford Handbooks in Mathematics, 2011.

V. A. Kazakov, M. Staudacher, and T. Wynter, Character expansion methods for matrix models of dually weighted graphs, Communications in Mathematical Physics, vol.119, issue.No. 4, pp.451-468, 1996.
DOI : 10.1007/BF02101902

K. Efetov, Supersymmetry in Disorder and Chaos, 1996.

T. Tao and V. Vu, Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge, Communications in Mathematical Physics, vol.177, issue.1, pp.549-5720908, 1982.
DOI : 10.1007/s00220-010-1044-5

DOI : 10.1093/biomet/20A.1-2.32

V. A. Marchenko and L. A. Pastur, Distribution of eigenvalues for some sets of random matrices, Mat. Sb, pp.72-507, 1967.

M. V. Berry and M. Tabor, Level Clustering in the Regular Spectrum, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.356, issue.1686, pp.356-375, 1977.
DOI : 10.1098/rspa.1977.0140

O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws, Phys. Rev. Lett, pp.52-53, 1984.

G. Hooft, A planar diagram theory for strong interactions, Nuclear Physics B, vol.72, issue.3, pp.72-461, 1974.
DOI : 10.1016/0550-3213(74)90154-0

E. Brézin, C. Itzykson, G. Parisi, and J. Zuber, Planar diagrams, Communications in Mathematical Physics, vol.16, issue.1, pp.35-51, 1978.
DOI : 10.1007/BF01614153

R. Dijkgraaf and C. Vafa, Matrix models, topological strings, and supersymmetric gauge theories, Nuclear Physics B, vol.644, issue.1-2, pp.3-20, 2002.
DOI : 10.1016/S0550-3213(02)00766-6

M. Kontsevich, Intersection theory on the moduli space of curves and the matrix airy function, Communications in Mathematical Physics, vol.1, issue.2, pp.1-23, 1992.
DOI : 10.1007/BF02099526

V. Bouchard, A. Klemm, M. Mariño, and S. Pasquetti, Remodeling the B-Model, Communications in Mathematical Physics, vol.0407, issue.2???3, pp.117-178, 2009.
DOI : 10.1007/s00220-008-0620-4

B. Eynard and N. Orantin, Computation of Open Gromov???Witten Invariants for Toric Calabi???Yau 3-Folds by Topological Recursion, a Proof of the BKMP Conjecture, Communications in Mathematical Physics, vol.118, issue.3, pp.483-567, 2015.
DOI : 10.1007/s00220-015-2361-5

URL : https://hal.archives-ouvertes.fr/hal-00694552

R. C. Penner, Perturbative series and the moduli space of Riemann surfaces, Journal of Differential Geometry, vol.27, issue.1, pp.35-53, 1988.
DOI : 10.4310/jdg/1214441648

V. S. Dotsenko and V. A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys, pp.240-312, 1984.

V. S. Dotsenko and V. A. Fateev, Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge C???1, Nuclear Physics B, vol.251, pp.251-691, 1985.
DOI : 10.1016/S0550-3213(85)80004-3

B. Eynard, A Matrix model for plane partitions and (T)ASEP, J.Stat.Mech, p.910, 2009.

M. Mineev-weinstein, P. B. Wiegmann, and A. Zabrodin, Integrable Structure of Interface Dynamics, Physical Review Letters, vol.84, issue.22, pp.5106-5109, 2000.
DOI : 10.1103/PhysRevLett.84.5106

I. Kostov, I. Krichever, M. Mineev-weinstein, P. Wiegmann, and A. Zabrodin, ? -function for analytic curves, Random Matrix Models and their Applications, pp.285-299, 2001.

H. L. Montgomery, The pair correlation of zeros of the zeta function Analytic Number Theory, Proc. Sympos. Pure Math. XXIV, pp.181-193, 1973.

A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function, Mathematics of Computation, vol.48, issue.177, pp.273-308, 1987.
DOI : 10.1090/S0025-5718-1987-0866115-0

H. Orland and A. Zee, RNA folding and large N matrix theory, Nuclear Physics B, vol.620, issue.3, pp.620-456, 2002.
DOI : 10.1016/S0550-3213(01)00522-3

A. Brini, B. Eynard, and M. Marino, Torus Knots and Mirror Symmetry, Annales Henri Poincar??, vol.17, issue.8, pp.1873-1910, 2012.
DOI : 10.1007/s00023-012-0171-2

M. Caselle and U. Magnea, Random matrix theory and symmetric spaces, Physics Reports, vol.394, issue.2-3, pp.41-1560304363, 2004.
DOI : 10.1016/j.physrep.2003.12.004

M. R. Zirnbauer, The Oxford Handbook of Random Matrix Theory, ch. Symmetry Classes, pp.43-65, 2011.

D. Bernard and A. Leclair, A Classification of Non-Hermitian Random Matrices, Statistical Field Theories, pp.207-214, 2002.
DOI : 10.1007/978-94-010-0514-2_19

B. Eynard, Universal distribution of random matrix eigenvalues near the ???birth of a cut??? transition, Journal of Statistical Mechanics: Theory and Experiment, vol.2006, issue.07, p.605064, 2006.
DOI : 10.1088/1742-5468/2006/07/P07005

URL : https://hal.archives-ouvertes.fr/hal-00071122

M. Bertola and S. Y. Lee, First Colonization of a Spectral Outpost in Random Matrix Theory, Constructive Approximation, vol.20, issue.4, pp.225-263, 2009.
DOI : 10.1007/s00365-008-9026-y

E. Brézin and N. Deo, Correlations and symmetry breaking in gapped matrix models, Physical Review E, vol.59, issue.4, pp.59-3901, 1999.
DOI : 10.1103/PhysRevE.59.3901

B. Eynard and R. Matrices, Random Processes and Integrable Systems, ch. Formal Matrix Integrals and Combinatorics of Maps arXiv:math-ph, CRM Series in Mathematical Physics, pp.415-4420611087, 2011.

M. A. Bershadsky and A. A. , Ising model of a randomly triangulated random surface as a definition of fermionic string theory, Physics Letters B, vol.174, issue.4, pp.174-393, 1986.
DOI : 10.1016/0370-2693(86)91023-3

V. A. Kazakov, Ising model on a dynamical planar random lattice: Exact solution, Physics Letters A, vol.119, issue.3, pp.119-140, 1986.
DOI : 10.1016/0375-9601(86)90433-0

I. K. Kostov, O(n) Vector Model on a Planar Random Lattice: Spectrum of Anomalous Dimensions, Mod. Phys. Lett, pp.4-217, 1989.

M. Gaudin and I. Kostov, O(n) model on a fluctuating planar lattice. Some exact results, Physics Letters B, vol.220, issue.1-2, pp.220-200, 1989.
DOI : 10.1016/0370-2693(89)90037-3

B. Eynard and C. Kristjansen, Exact solution of the O(n) model on a random lattice, Nuclear Physics B, vol.455, issue.3, pp.455-577, 1995.
DOI : 10.1016/0550-3213(95)00469-9

B. Eynard and C. Kristjansen, An iterative solution of the three-colour problem on a random lattice, Nuclear Physics B, vol.516, issue.3, pp.529-5429710199, 1998.
DOI : 10.1016/S0550-3213(98)00042-X

I. K. Kostov, Exact solution of the three-color problem on a random lattice, Physics Letters B, vol.549, issue.1-2, pp.549-245, 2002.
DOI : 10.1016/S0370-2693(02)02887-3

P. H. Ginsparg, Matrix models of 2d gravity

I. K. Kostov, Exact solution of the six-vertex model on a random lattice, Nuclear Physics B, vol.575, issue.3, pp.575-513, 2000.
DOI : 10.1016/S0550-3213(00)00060-2

M. Bertola, Boutroux curves with external field: equilibrium measures without a variational problem, Analysis and Mathematical Physics, vol.295, issue.1, pp.167-211, 2011.
DOI : 10.1007/s13324-011-0012-3

B. Eynard and A. P. Ferrer, Topological expansion of the chain of matrices, Journal of High Energy Physics, vol.2007, issue.07, p.907, 2009.
DOI : 10.1016/0550-3213(74)90154-0

URL : https://hal.archives-ouvertes.fr/hal-00278204

G. Borot and A. Guionnet, Asymptotic expansion of beta matrix models in the multi-cut regime

B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Communications in Number Theory and Physics, vol.1, issue.2, pp.347-452, 2007.
DOI : 10.4310/CNTP.2007.v1.n2.a4

URL : https://hal.archives-ouvertes.fr/hal-00130963

B. Eynard, A concise expression for the ODE's of orthogonal polynomials, " arXiv:math-ph, 109018.

P. Deift, Orthogonal polynomials and random matrices: a Riemann?Hilbert approach of Courant Lecture Notes, 2000.

M. Jimbo and T. Miwa, Solitons and infinite-dimensional Lie algebras, Publications of the Research Institute for Mathematical Sciences, vol.19, issue.3, pp.943-1001, 1983.
DOI : 10.2977/prims/1195182017

K. Ueno and K. Takasaki, Toda lattice hierarchy, Adv. Stud. Pure Math, vol.4, pp.1-95, 1984.

O. Babelon, D. Bernard, and M. Talon, Introduction to Classical Integrable Systems. Cambridge Monographs on Mathematical Physics, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00101459

B. Eynard and M. L. Mehta, Matrices coupled in a chain: I. Eigenvalue correlations, Journal of Physics A: Mathematical and General, vol.31, issue.19, pp.31-4449, 1998.
DOI : 10.1088/0305-4470/31/19/010

M. Bertola, B. Eynard, and J. Harnad, Differential Systems for Biorthogonal Polynomials Appearing in 2-Matrix Models and the Associated Riemann?Hilbert Problem, Communications in Mathematical Physics, vol.243, issue.2, pp.193-2400208002, 2003.
DOI : 10.1007/s00220-003-0934-1

M. Bergère and B. Eynard, Mixed correlation function and spectral curve for the 2-matrix model, Journal of Physics A: Mathematical and General, vol.39, issue.49, pp.15091-15134, 2006.
DOI : 10.1088/0305-4470/39/49/004

C. Itzykson and J. Zuber, The planar approximation. II, Journal of Mathematical Physics, vol.21, issue.3, pp.411-421, 1980.
DOI : 10.1063/1.524438

. Harish-chandra, Differential Operators on a Semisimple Lie Algebra, American Journal of Mathematics, vol.79, issue.1, pp.87-120, 1957.
DOI : 10.2307/2372387

J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Inventiones Mathematicae, vol.30, issue.2, pp.69-259, 1982.
DOI : 10.1007/BF01399506

A. Morozov, PAIR CORRELATOR IN THE ITZYKSON-ZUBER INTEGRAL, Modern Physics Letters A, vol.07, issue.37, pp.7-3503, 1992.
DOI : 10.1142/S0217732392002913

B. Eynard and A. P. Ferrer, 2-Matrix versus Complex Matrix Model, Integrals over the Unitary Group as Triangular Integrals, Communications in Mathematical Physics, vol.264, issue.1, pp.115-144, 2006.
DOI : 10.1007/s00220-006-1541-8

M. Bertola and A. P. Ferrer, Harish-Chandra Integrals as Nilpotent Integrals, International Mathematics Research Notices
DOI : 10.1093/imrn/rnn062

M. Bergère and B. Eynard, Some properties of angular integrals, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.26, p.42, 2009.
DOI : 10.1088/1751-8113/42/26/265201

I. G. Macdonald, Symmetric Functions and Hall Polynomials, 1997.

P. Desrosiers, Duality in random matrix ensembles for all ??, Nuclear Physics B, vol.817, issue.3, pp.817-224, 2009.
DOI : 10.1016/j.nuclphysb.2009.02.019