E. Berlekamp, A class of convolution codes, Information and Control, vol.6, issue.1, pp.1-13, 1963.
DOI : 10.1016/S0019-9958(63)90074-3

C. Bessenrodt and R. Stanley, Smith normal form of a multivariate matrix associated with partitions, arXiv:1311, p.6123

L. Carlitz, D. Roselle, and R. Scoville, Some remarks on ballot-type sequences of positive integers, Journal of Combinatorial Theory, Series A, vol.11, issue.3, pp.258-271, 1971.
DOI : 10.1016/0097-3165(71)90053-7

H. Cohn, N. Elkies, and J. Propp, diamond, Duke Mathematical Journal, vol.85, issue.1, pp.117-1660008243, 1996.
DOI : 10.1215/S0012-7094-96-08506-3

P. , D. Francesco, and R. Kedem, Q-systems as cluster algebras II, Lett. Math. Phys, vol.89, issue.3, pp.183-216, 2009.

P. and D. Francesco, The solution of the A r T-system for arbitrary boundary, Elec. Jour. of Comb, vol.17, issue.1, 2010.

P. , D. Francesco, and R. Kedem, T-systems with boundaries from network solutions, Elec. Jour. of Comb, vol.20, issue.1, 2013.

P. and D. Francesco, T-system, networks and dimers, to appear in Comm, Math. Phys, 2014.

P. , D. Francesco, R. Soto, and ?. Garrido, Arctic curves of the octahedron equation, to appear in, J. Phys. A: Math. and Theor, 2014.

A. Henriques, A periodicity theorem for the octahedron recurrence, Journal of Algebraic Combinatorics, vol.62, issue.2, pp.1-260604289, 2007.
DOI : 10.1007/s10801-006-0045-0

A. Kuniba, A. Nakanishi, and J. Suzuki, FUNCTIONAL RELATIONS IN SOLVABLE LATTICE MODELS I: FUNCTIONAL RELATIONS AND REPRESENTATION THEORY, International Journal of Modern Physics A, vol.09, issue.30, pp.5215-5266, 1994.
DOI : 10.1142/S0217751X94002119

A. Kuniba, A. Nakanishi, and J. Suzuki, T -systems and Y -systems in integrable systems, J. Phys. A: Mathematical and Theoretical, vol.44, issue.10, 2011.

B. Lindström, On the Vector Representations of Induced Matroids, Bulletin of the London Mathematical Society, vol.5, issue.1, pp.85-90, 1973.
DOI : 10.1112/blms/5.1.85

D. Speyer, Perfect matchings and the octahedron recurrence, J. Algebraic Comb, pp.309-348, 2007.

I. M. Gessel and X. Viennot, Binomial determinants, paths, and hook length formulae, Advances in Mathematics, vol.58, issue.3, pp.300-321, 1985.
DOI : 10.1016/0001-8708(85)90121-5