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Collective charge excitations of strongly correlated electrons,
vertex corrections, and gauge invariance
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We consider the collective, long-wavelength charge excitations in correlated media in presence of short- and
long-range forces. As an example for the case of a short-range interaction, we examine the two-dimensional
Hubbard model within dynamical mean-field theory (DMFT). It is shown explicitly that the DMFT susceptibility
including vertex corrections respects the Ward identity and yields a manifestly gauge-invariant response in
finite dimensions. For computing the susceptibility, we use a different expression and establish its formal
equivalence to the standard DMFT formula. It allows for a more stable analytical continuation. We find a
zero-sound mode expected for short-range forces. The relation between the vertex corrections, gauge invariance,
and the appearance of the collective modes is discussed. Long-range forces are treated within extended dynamical
mean-field theory. In order to obtain a gauge-invariant response, it is necessary to additionally incorporate some
nonlocal vertex corrections into the polarization. In doing so, we obtain plasmons in the three-dimensional
Hubbard model. The plasma frequency is determined by the (single-particle) density distribution as a consequence
of gauge invariance. We compare this result with the plasma frequency extracted from the analytical continuation

of the susceptibility. It is in good agreement with the prediction from the gauge-invariance condition.

DOI: 10.1103/PhysRevB.90.235105

I. INTRODUCTION

In the last two decades, dynamical mean-field theory
(DMFT) [1] and its various cluster [2] and diagrammatic [3-7]
extensions have emerged as promising and useful tools to solve
several aspects of strongly correlated fermion problems. For
example, DMFT has shed new light on the Mott transition
problem [1] and cluster extensions of DMFT have successfully
described some aspects of high-temperature superconductors
(see Ref. [8] for a recent example). Furthermore, DMFT is
now routinely used in combination with density functional
theory to provide an ab initio electronic-structure method for
strongly correlated systems [9]. For long-range interactions,
the extended DMFT (EDMFT) [10-13] as well as more refined
GW4-DMEFT approaches [14-17] have been developed.

Two-particle quantities and response functions can also
be computed within the DMFT theoretical framework [1].
For example, systematic computations of antiferromagnetic or
superconducting susceptibilities from high to low temperatures
have been used to locate continuous phase transitions in cluster
extensions of DMFT (see, e.g., Refs. [18-20]). More recently,
interest in two-particle vertex functions is increasing [21-23].
A new generation of approaches [3,4,6,7] has emerged which
uses certain two-particle functions in the self-consistency
condition itself. From a technical point of view, the task
of computing these two-particle quantities is significantly
more challenging than the computation of the single-particle
quantities used in the DMFT self-consistency loop, because
of the need to include vertex corrections. However, due to
the advent of continuous-time quantum Monte Carlo solvers
[24-26], they can now be computed reliably and up to high
precision [27].

In this paper, we study in particular the long-wavelength
collective charge excitations in the Hubbard and the ex-
tended Hubbard models in presence of short- and long-range
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interactions, respectively. For short-range interactions, we use
a regular DMFT scheme and obtain a zero sound mode in the
metallic regime which persists up to the Mott transition. For
long-range interactions, we use a simplified version of the dual
boson method and obtain a plasmon mode. In the latter case,
we discuss the failure of EDMFT to properly describe the low-
energy excitations, even at a qualitative level. In both the short-
and the long-range cases, we obtain a low-energy analysis
similar to the standard textbook weak-coupling random phase
approximation (RPA) analysis.

From a technical point of view, in order to compute the
two-particle response, we employ a formula inspired from
recent work on the dual boson approach [6]. While we prove
it to be mathematically equivalent to the standard computation
procedure of computing the DMFT susceptibility [1], it turns
out to yield a much better numerical accuracy in practice.

Moreover, we show that a proper and complete treatment
of the (nonlocal) vertex corrections in the DMFT framework
is essential for the correctness of the result at low energy.
Simplified approximations (like a simple bubble approxima-
tion) lead to qualitatively wrong results. We trace the origin
of this difficulty in constructing simple approximations to the
role of gauge invariance and the associated Ward identities.
It has been known since the 1960s that gauge invariance is
closely related to the collective modes [28] and the criteria
for obtaining conserving approximations that respect gauge
invariance have been formulated at the time [29,30]. For weak
coupling, these requirements are fulfilled within the RPA.
However, the description of correlated systems requires a
frequency-dependent self-energy. Designing gauge-invariant
approximations is much less straightforward in this case
because dynamical vertex corrections are required. We check
explicitly that the DMFT susceptibility, which includes these
corrections, fulfills the Ward identity in finite dimensions.
While our methodology can straightforwardly be generalized
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to treat the magnetic (spin) excitations and we expect vertex
corrections to be important in general, we focus here on the
charge excitations.

The paper is organized as follows: We first introduce
the model in Sec. II. In Sec. III, we consider the case of
short-range forces on the level of DMFT. We first recall
DMFT and the standard calculation of susceptibilities and
then introduce the new formula for the response function
that follows from the dual boson approach. Results for the
charge response are discussed in detail in Sec. IIID and are
compared to the RPA. We then discuss gauge invariance and
show explicitly that it is fulfilled within DMFT. In Sec. IV,
we address the case of a long-range interaction. We show that
EDMEFT does not provide a valid description of plasmons.
By including nonlocal vertex corrections into the polarization
within the dual boson approximation, we demonstrate that
the polarization obtains the proper momentum dependence
required by gauge invariance. The energy of the appearing
collective mode is compared with the plasma frequency and
thereby identified as a plasmon mode. A detailed derivation of
the employed relations and a proof of the equivalence of the
dual boson formula and the DMFT susceptibility are provided
in the Appendix.

II. MODEL

In the following, we consider the extended Hubbard model
in finite dimensions. In particular, we focus on the two-
dimensional square and three-dimensional cubic lattices. The
model is described by the Hamiltonian

H=— INZ(CL;CI-,&; + Ci_g(,cm)

réo

1 /
+U annri +3 Z VI —rnmp. (1)
r

rr’

Here, r denote the discrete positions of the lattice sites and the
sum over & implies a sum over the displacement vectors § =
a(1,0,0),a(0,1,0) in two dimensions and additionally a(0,0,1)
in the three-dimensional case, respectively. For simplicity, we
restrict ourselves to nearest-neighbor hopping 7 only. The tilde
is used to distinguish from the symbol ¢ which is used for
time. The lattice spacing a is set to unity in the following.
We further denote spin by o = 1,| and n = ny +n,. In the
above, we have written the local Hubbard interaction with
Coulomb repulsion U explicitly. The last term contains the
nonlocal part of the interaction, which may be long ranged.
Its Fourier transform will be denoted V(q). For the Hubbard
model, V(q) = 0. The energy unit is chosen such that 47 = 1
in both two and three dimensions and all results are obtained
at temperature 7 = 0.02.

III. SHORT-RANGE FORCES

In order to address the collective excitations in presence
of short-range forces and strong correlations, we consider the
two-dimensional Hubbard model, which can be treated within
dynamical mean-field theory (DMFT). First, we briefly recall
the DMFT procedure and the calculation of the susceptibilities
in DMFT, as they can be found in the review of Ref. [1].
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A. Recollection of DMFT

In DMFT, the lattice problem (1) with V = 0 is mapped
onto a local quantum impurity problem subject to a self-
consistency condition. The lattice Green’s function has the
form

1

G,(k) = , 2
k) PR —— @)

where ¢y is the Fourier transform of the hopping, ¥, is the local
but frequency-dependent electronic self-energy, and v stands
for the discrete Matsubara frequencies v, = 2n+ )i T
with T denoting temperature. Here and in the following,
it is convenient to write frequency labels as subscripts to
obtain a more condensed notation. We further consider the
paramagnetic case and spin labels are omitted. In DMFT, the
self-energy is a functional of the local Green’s function only
and has to be determined self-consistently. In practice, it is
obtained from the solution of an Anderson impurity model,
which, starting from an initial guess, is solved repeatedly until
the following self-consistency condition is fulfilled:

1
o= ; G, (k). 3)

It relates the local part of the lattice Green’s function to
the impurity Green’s function denoted g, and implicitly
determines the self-energy.

B. DMFT susceptibility
Response functions may be computed once a self-consistent
solution to the DMFT equations has been found. Here and
in the remainder of the paper, we will focus on the charge
response. The charge susceptibility is given by the connected
part of the density-density correlation function'

where n =) _n, is the operator of the total density. The
charge susceptibility is expressed in terms of the generalized
susceptibility x,,,(q) as

Xo(@ = 2T Xuvo(@), (5)

where the factor of 2 stems from the spin degeneracy. The
generalized susceptibility in turn is the solution to an integral
equation which involves an irreducible vertex. Defining

1
0 —
Xoo(@ = I Ek Grrok + @G, (K), (6)
this equation reads as

1 0 0 irr
Xovo (@) = X0 @B = X33, (@) TZ i X @ (7)
v
Itis depicted graphically in Fig. 1(a). In DMFT, the irreducible
vertex '™ is given by the irreducible vertex of the impurity ™,
i.e., '™ = "™ and hence local. In practice, it is extracted from

'"We define the susceptibility with a minus sign relative to the
convention used in Ref. [1].
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FIG. 1. Diagrammatic representation of (a) the Bethe-Salpeter
equation for the generalized susceptibility x and (b) the relation of

the generalized susceptibility and the reducible vertex function T'.
Lines are fully dressed propagators.

(a)

‘ l—irr

the impurity model on the final DMFT iteration by inverting
the local Bethe-Salpeter equation

[yﬂ)_l]vu’ = [y&i)rr_l]vv’ + TX‘?@‘SVV,' (8)

Here, x° = g,1,g» and the reducible impurity vertex y is
defined through

oo’ . <C”“Ct+w,(fc"’+ws“’c:’o”> - X\?qu,
yuu’a) = (9)
gvogv+u),<rgv’+a)tr/gv’a’
and
Xm())j:), = (8vs&vo'0w — &vtw,08vaOudoc)/ T (10)
(see also Appendix H).

In an equivalent formulation, the susceptibility is expressed
in terms of the (reducible) vertex function of the lattice as
follows:

Xo(@ = 2T Y x5 (@ = 277 Y %0 (@00 (@) X, (@)-

an

This relation is graphically depicted in Fig. 2(a). The vertex
function is obtained as the solution to the integral equation

Povo(@ =Ty, = T Y Tht, X0 @Tuva(@,  (12)

'

which is called the Bethe-Salpeter equation [BSE, see
Fig. 2(b)]. Diagrammatically, the BSE corresponds to the
infinite sum of ladderlike diagrams to the vertex function with
DMEFT Green’s functions as rails and the irreducible vertex
appearing as rungs of the ladders. This can be seen by iterating
it. Its physical content is the repeated particle-hole scattering
processes which give rise to the collective excitations of the
system. The BSE has the formal solution

[T @], =[To '], + T xou(@8u- (13)

(a) .
KRS

o
=
Il

|
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The lattice vertex depends on the transferred momentum q
only due to the locality of the irreducible vertex.

The equivalence between the two approaches is readily
established using the representation of the generalized suscep-
tibility in terms of the vertex function

1
Xove(Q) =7x8w<q)8wf — X0 (DT o @@ (14)

as shown in Fig. 1(b). Inserting (14) into the right-hand side
of Eq. (7) and using the Bethe-Salpeter equation for the vertex
function (12) again recovers (14).

C. Alternative expression for the susceptibility

In the following, we are primarily interested in the suscep-
tibility on the real frequency axis. This requires an analytical
continuation from Matsubara frequencies. The details of the
analytical continuation are summarized in Appendix A. Here,
we discuss the calculation of the susceptibility on Matsubara
frequencies. Instead of a straightforward implementation of
the equations discussed in the previous section, we employ
the following approach, which leads to better results and less
artifacts. It is a reformulation of the above equations and
was first derived in the context of the dual boson approach
[6]. In Appendix H, we show that this formulation is exactly
equivalent to the DMFT susceptibility [Eqgs. (11) and (12)].

In the alternative formulation, the susceptibility is separated
into a local impurity and a lattice contribution:

Xw(q) = Xo + 2T2 Z Xw)‘vvav’w(q))‘-v’-‘rw,—a)Xw' (15)

vy’

Here, x, := — (nynw)con denotes the impurity susceptibility
which includes local vertex corrections. The lattice vertex I'
includes nonlocal vertex corrections. The expression further
involves the three-leg vertex of the impurity model A (see
Appendix H):

20 _(Cv(fcj_’_w’gnw) — 8vo (n) Su)/T (16)

vo T
8vo 8 vtw,o Xo

and we have defined

1
T @ = = Tuo( @3 = Xt @Twvo @y (@- (17)
In the above, j,,(q) denotes the nonlocal part of the bubble:
oo = X @) = Xy (18)

where in turn the impurity bubble is defined as x° = g,8,+0-
We note that the lattice contribution in Eq. (15) contains a local
part, which includes contributions from long-range collective
excitations. When summed over q, the first term in Eq. (17)
vanishes,? while the second in general does not. In DMFT,
the local part of the lattice susceptibility and the impurity
susceptibility differ.

The lattice vertex I' is the same as in the DMFT susceptibil-
ity [Eq. (11)] and can be obtained from the irreducible vertex

FIG. 2. Diagrammatical representation of (a) the susceptibility
and (b) the Bethe-Salpeter equation for the vertex function. Lines are
fully dressed propagators.

2The local part of the dual bubble [Eq. (18)] vanishes, which can
be seen by summing (6) over q and replacing (1/N) )", G,(k) by g,
according to (3).
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through the Bethe-Salpeter equation (12). It is convenient to
combine the latter with the impurity BSE for the irreducible
vertex. Using the the nonlocal part of the bubble, the resulting
BSE reads as

[T @], = [ve ']y + T (@80, (19)

where y is the reducible impurity vertex. There is hence no
need to explicitly compute the irreducible impurity vertex ™.
This is similar to the dual fermion approach [31]. Such a
reformulation is important to avoid unphysical singularities
in the low-frequency behavior of the irreducible two-particle
vertex [32], which occur in the proximity of the metal-insulator
transition [33].

D. Results

Let us now turn to the results for the charge susceptibility
in the two-dimensional Hubbard model. To set the stage for
the discussion, we examine the noninteracting case first. In the
upper panel of Fig. 3 we plot the (negative) imaginary part of
the noninteracting susceptibility

T
x2q) = 5 kZ G,k + q)G%K) (20)

on real frequencies. Its features are best understood in terms
of the noninteracting dispersion €k, which we plot in the
panel below. The maximum energy up to which one can see
significant spectral weight is found at the M point [q = (7,7)].
This wave vector connects maximum and minimum in the
dispersion and its energy is correspondingly given by the
bandwidth W = 2. One can also see a structure of high
intensity at very low energy and in the vicinity of the M point,
which is due to the nesting of the Fermi surface. The maximal
intensity at the M point is found here. The strongest overall
response occurs at the X point. Its dominant contribution
in the convolution stems from those k points for which the
wave vector X connects two extremal points (I'-X and X-M,

“NWAUION®OO

0000000000

1.0

0.5

€k

0.0

-0.5

-1.0

r X M r

FIG. 3. (Color online) Top  panel:  Lattice  susceptibility
—ﬂl Im x,(q) for the half-filled noninteracting two-dimensional
model (i.e., U =0) with full bandwidth W =2 and at finite
temperature 7 = 0.02, along a high-symmetry path in momentum
space. I', X, and M denote the wave vectors (0,0), (0,7), and (,7),
respectively. Lower panel: Noninteracting dispersion.
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respectively) and therefore corresponds to the energy o = 1,
which is equal to the half bandwidth. One can further see that
the energy of the particle-hole excitations approaches zero in
the long-wavelength limit.

In Fig. 4, we show results for the interacting case obtained
from a standard random phase approximation (RPA) calcula-
tion. In RPA, the charge correlation function reads as

RPA Xo(@)
XK@ = T v @1

with XO defined in (20) [the minus sign in the denominator
comes from the minus sign in the definition of x,(q), Eq. (4)].
By construction, the RPA is of course only reliable for small
values of U. Here, we plot RPA results for larger values of the
interaction for a comparison with the correlated case. For U =
0.5, we observe a picture that is similar to the noninteracting
case. The same structures are present also for larger values
of U, albeit some of them, e.g., the structure which has an
energy minimum at the M point, become less visible. As U
increases, the largest overall response shifts from X to the
to M point above U = 1. The collective excitation becomes
better defined. Because the interaction is short ranged, this
collective mode, the zero-sound mode, goes to zero energy in
the long-wavelength limit for all values of U. For values of
U larger than the bandwidth, the maximum energy at the M
point is determined by the energy scale U instead of W.

Using DMFT, we can now investigate whether and how
this physical picture is modified in a strongly correlated
metal, close to a Mott transition. For completeness, let us
start by briefly showing some well-known aspects of the
Mott transition in DMFT, as illustrated in Figs. 5 and 6.
Figure 5 shows the corresponding quasiparticle weight Z =
(1 —dReX,/dw)”" as a function of U computed using a
polynomial extrapolation of the self-energy on Matsubara
frequencies.3 On this lattice, the transition occurs at U, =
2.36 £ 0.01. Z vanishes at the Mott transition, corresponding
to a divergent effective mass [1] m*/m ~ 1/Z. The static
homogeneous charge susceptibility limg_, lim,_o x(w,q) =
—dn/du is shown in the same figure. It is proportional to
the compressibility and therefore vanishes in the insulator. In
Fig. 6, we plot the local density of states for different values
of U. One can see a well-defined quasiparticle peak and the
Hubbard bands at w ~ U. For values above the transition, the
density of states exhibits a gap.

The DMFT susceptibility including vertex corrections is
shown in Fig. 7 for the same parameters as the RPA results in
Fig. 4. We obtain it by analytical continuation from Matsubara
frequencies. In the weakly correlated regime, for U up to
about 1, the results are similar to the RPA, albeit we observe
a somewhat broader spectrum. In particular, one can see the
minimum at the M point, which is present up to atleast U ~ 1.
In the moderately correlated regime U ~ 1.5, this feature is
no longer resolved in our data, but the spectra retain a similar
shape as in RPA, showing a well-defined mode for all wave
vectors. Its maximum at M is still approximately equal to

3We have used polynomials up to degree six. The results are
converged for all values of U for polynomials of degree five.
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U = 0.50

r X M r
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r X M r

FIG. 4. (Color online) RPA results for the imaginary part of the charge susceptibility —% Im x,(q) of the half-filled Hubbard model for

various values of U and T = 0.02.

the bandwidth. As the transition is approached, however, the
spectrum changes substantially. It is considerably broadened
and damped at the X point, while at the M point it gains relative
intensity. For large interaction, the maximum at the M point
occurs at the scale of U.

The collective mode is visible all the way to the transition.
Its frequency vanishes in the long-wavelength limit. This is
expected for reasons we shall explain below. We cannot strictly
exclude even qualitative changes in particular of the high-
energy features in the spectra because of the ill-conditioned
nature of the analytical continuation problem (see Appendix A
for a discussion of the analytical continuation procedure).
We can, however, further substantiate the results for the
low-energy collective mode directly from the Matsubara data:
The polarization I1,(q) defined by

o) = ———— 22
Xo(q) T+ UM, (22)
1.0
0.8
=
0.6 Il
)
04 r 7
;
0.2 !
0.0
0

FIG. 5. (Color online) Quasiparticle weight Z and
lim,_,o lim,_o Xo(qQ) = —dn/dp as a function of U. Both
vanish in the insulating phase. Close to the transition Z is
proportional to dn/d .

is a function of g/w for small ¢, as explained in Sec. IIIE.
We fit the Matsubara data with an expression of the form
,(q) = —b(q/iwy,)?/[1 + c*(q/iw,)?*], for a small Matsub-
ara frequency m = 3, where b and c are the free parameters.
We can readily analytically continue this function by letting
iw — @+ i0". The dispersion is defined by the zeros of
the denominator in (22) and can be expressed in terms of
the fit parameters as w(q) = g+/c% + bU. The thus obtained
dispersion is indicated by a white line in Fig. 7. In Fig. 8§,
we plot the maximum of the charge susceptibility for small
wave vectors together with the linear dispersion obtained
from the fits. The data are in good agreement showing that
the Padé approximation is reliable within this energy range.
There is no appreciable change in slope of the mode with
increasing interaction. Although it is less visible in Fig. 7 due
to decreasing contrast close to the transition, it remains well
defined as can be seen from a fixed momentum cut of the
susceptibility shown in the inset of Fig. 8. In the insulator,

—

FIG. 6. (Color online) The finite-temperature maximum entropy
density of states for various values of U at T = 0.02, showing the
evolution from a weakly to a moderately and strongly correlated
system. The Mott transition occurs at U ~ 2.36.
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FIG. 7. (Color online) Imaginary part —ni Im x,(q) of the DMFT charge susceptibility including vertex corrections obtained via analytical
continuation using Padé approximants. The low-energy dispersion obtained from a fit of the Matsubara data is indicated by a white line

(cf. text).

this mode disappears as expected. All excitations acquire a
minimum energy ~U.

We are now going to show that the nonlocal (reducible)
vertex corrections play an essential role to obtain a correct
description of the low-energy physics, even at a very quali-
tative level. Because incorporating the full vertex corrections
is technically demanding, they are often neglected and the
susceptibility is often approximated by a simple bubble
approximation, i.e., by a product of interacting DMFT Green’s
functions x2(¢) = (T/N) Y\, Gvio(k + @G, (K). In Fig. 9,
we plot the susceptibility for U = 2.2, obtained within this
bubble approximation. It is essentially featureless for all wave
vectors. In the long-wavelength limit, it exhibits spectral
weight at finite energy in contradiction to the foregoing and the

0.6 :
—— U =10.50
05 —— U =1.00
—— U =1.50
[l I
£03¢ U =235 -~
302 Soot0 /f ‘
: 3 0.005
0.1 go.ooo [ \k
"“ 0 02505075 1
0.0 w :
r q(27/a) 0.17

FIG. 8. (Color online) Maxima of the charge susceptibility of
Fig. 7 (lines with symbols) and dispersion obtained from a fit of the
Matsubara data (lines, cf. text) for small q vectors up to about one third
the way to the X point indicating the slope of the zero-sound mode.
Inset: cut at small fixed momentum g = 0.03125 (27 /a) through the
charge susceptibility for U = 2.2. The arrow indicates the maximum
which corresponds to the point marked by an arrow in the main panel.

standard textbook RPA approximation. For small but finite U,
the bubble approximation still exhibits a mode which goes, at
least approximately, to zero in the long-wavelength limit. In the
correlated regime (larger U), however, the vertex corrections
are essential for a qualitatively correct description of the collec-
tive excitations. In the next section, we will relate the existence
of the zero sound to the gauge invariance and the associated
Ward identities. The failure of the bubble approximation can
be traced back to a violation of gauge invariance.

We note that in contrast to the susceptibility, the optical
conductivity in DMFT is unaffected by the vertex corrections
in the long-wavelength limit. Vertex corrections drop out
of the conductivity as a consequence of the locality of the
irreducible vertex and the inversion symmetry of the lattice (see
Refs. [1,34]).

A natural question to ask at this stage is whether an
approximation with only local vertex corrections could be
sufficient to capture the zero-sound mode. To gain more insight
into this question, we consider a more advanced approximation
than the bubble. Namely, we compute the susceptibility within
an approximation that includes short-range vertex corrections,

r X M r

FIG. 9. (Color online) —% Im x2(q) in the bubble approxima-
tion, i.e., without vertex corrections for local interaction U = 2.2
and otherwise the same parameters as in Fig. 7. In the bubble
approximation, the zero-sound mode disappears.
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U =2.20 0.12

r X M r

FIG. 10. (Color online) Lattice susceptibility —% Im x,(q) ob-
tained by neglecting nonlocal, long-range vertex corrections, more
precisely by neglecting the second term in Eq. (17). Parameters are
the same as in Fig. 9. The plasmonlike mode at finite energy and
long wavelengths is an artifact of the approximation. Local vertex
corrections are not sufficient to restore the zero-sound mode.

but neglects correlations from the reducible vertex of the
lattice I". To be precise, we compute it using Egs. (15)-(18),
however neglecting the second term containing the lattice
vertex ' in Eq. (17). We note that this approximation is
not exactly the same as a bubble approximation with local
vertex corrections added. The important point here is that
such an approximation neglects ladder diagrams containing
many repeated particle-hole scattering processes on different
lattice sites contained in I'. The result is shown in Fig. 10.
As expected, the long-wavelength properties are clearly
not reproduced correctly in this approximation. It wrongly
predicts a finite-energy collective mode. We note that in the
long-wavelength limit, the ladder diagrams contribute at all
orders. Low-order diagrams that describe charge correlation
contain independent particle-hole propagation (described by
the bubble) over large distances, which is unlikely. Therefore,
it is physically clear that higher-order diagrams are important.
Features at finite wave vectors sufficiently far from the I" point
are, however, remarkably well captured. Here, the short-range
vertex corrections are necessary, but also appear to be sufficient
to reproduce qualitative features.

E. Gauge invariance

In this section, we discuss the consequences of gauge
invariance. The failure of the bubble approximation to describe
the low-energy collective modes can explicitly be traced
back to its violation. We will first check that the standard
DMEFT susceptibility [1] as described in Sec. III B [Egs. (11)
and (12)] and in the review Ref. [1] yields a response that
obeys local charge conservation and leads to gauge-invariant
results. We recall that for the response to be conserving,
two conditions have to be fulfilled [29,30]: (i) The self-
energy and the irreducible vertex function have to be given
by functional derivatives of the Luttinger-Ward functional
@[Gij], i.e., Eij = Sq)/(SG], and Fll;rkl = 82©/8Gj,-8G1k. (11)
The generalized susceptibility L has to be constructed such
that it gives the change in G through a perturbation A to linear
order: L := —8G/8A = G(G™'/8A)G. With G~' = G, "' —
A — ¥[G] and for approximations for which ¥ depends on the
perturbation through G only, this leads to the integral equation

8%
L=-6GG-GG—=-GG-GG——
SA

L _GG+GGEL (23)
— oL
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Combined with condition (i), one identifies '™ := § % /6G =
82/ G2. Condition (ii) is evidently fulfilled in DMFT since
the above equation is equivalent to the integral equation (7)
(written in terms of x := —L instead of L). To address the
first condition, we recall that in DMFT, the Luttinger-Ward
functional depends on the site-diagonal Green’s functions only
[1], allowing for a decomposition in terms of local functionals
®[Gi )1 =), ¢[Gii]. This implies that the self-energy is
local:

_0UGiyl _ 991G o

Y= i 24
! 8G i 8Gy 7 )
The same holds for the irreducible vertex function
i 8*®[Gyj 1 8*PlGrr]
= 8118181k - (25)

UHTUSG 0G| G

The functional ¢[G;/;/] as well as X and [ are generated from
the impurity model subject to the self-consistency condition
(3). If the self-energy and vertex function are obtained
numerically exactly from the solution of the impurity model,
condition (i) is hence fulfilled. Note that the dimensionality of
the lattice does not enter this argument. It therefore holds on
finite-dimensional lattices, where DMFT is an approximation.
It also holds for cluster extensions of dynamical mean-field
theory.

We can make the argument more explicit by recalling that
charge conservation is commonly expressed in terms of a Ward
identity. It can be viewed as the Green’s function analog of
the continuity equation and relates the single-particle Green’s
function to a vertex function. The above two conditions are
sufficient for the Ward identity to be fulfilled, as can be shown
by considering a perturbation which corresponds to a gauge
transformation [30].

On a discrete lattice, gauge invariance and charge conser-
vation can be preserved exactly, even for finite lattice spacing
[35]. Projecting the continuum system onto a discrete Wannier
basis under the assumption of weak and slowly varying fields
leads to the gauge theory described here (see Appendix B and,
e.g., Refs. [36,37]). In Appendix D, we show that with the
proper definition of the current and a suitable generalization
of the notion of the derivative to the lattice, the Ward identity
can be written

i Tuk.q) = G (k) — G™'(k +q). (26)

where we have introduced four-vector notation for clarity (only
in this section). Summation over the time (« = 0) and spatial
components i = 1,2,3 is implied using the metric (—1,1,1,1).
The corresponding continuity equation is dn/dt + V¥ - j = 0,
where V¥ denotes a forward derivative. It corresponds to a
finite difference expression owing to the discrete structure of
the lattice. In the above, the main difference to the continuum
case is the appearance of the momentum q;f = (iw,q")
associated with a forward derivative. On a finite lattice of
N sites with periodic boundary conditions it has the spatial
components q(f = —(i/a)[exp(igqa) — 1], where the index g,
takes on the discrete values ¢ = 27n/N, with n integer. In
the above equation, I',, is the renormalized current vertex,
which describes the interaction of the interacting electrons
with the electromagnetic field. The Ward identity hence relates
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B - 5[]

FIG. 11. Diagrammatic representation of the Bethe-Salpeter
equation for the renormalized current vertex I',. Lines are fully
dressed propagators.

a vertex function to the single-particle properties described by
the Green’s function G.

Let us now explicitly check the Ward identity in DMFT. The
current vertex obeys a ladder equation, which follows from
the Bethe-Salpeter equation for the susceptibility [Eq. (7)]. In
DMEFT, the ladder equation for the current vertex reads as (see
Fig. 11 and Appendix E)

T irr
Fp.;v(ksq) = Vu(le) - N Z Fvu’w

VK
X Gy (K)Gy oK + QT (K Q). (27)
Here, the bare current vertex is given by

ifa(e”®etde) —o=the) =@ =x,y,z
Yu = (28)
1, nw=0

which itself obeys the Ward identity qf vulk,q) = Gy (k) —
G, '(k +¢) with the noninteracting Green’s function
G, (k) = iv 4+ u — ex. In order to demonstrate that the DMFT
susceptibility is conserving, we have to show that the current
vertex obeys the Ward identity (26). To this end, we form the
quantity ¢, T, (k,q) using (27):

T .
4 (6,0 = 4,7k @) — - 3 TU,
V'K

X Gv’(k,)Gu’-‘rw(k/ + Q)[qlfru;u'(k/,Q)]- (29)

Inserting the Ward identity (26) for the interacting and nonin-
teracting current vertices on both sides and using the definition
of the Green’s function (2), all momentum dependence cancels
exactly. Since the irreducible vertex is local, the DMFT
self-consistency condition (3) further allows us to express the
local part of the lattice Green’s function in terms of the impurity
Green’s function. We thus obtain the purely local equation

Toto— Ty =—TY T, [8vio—gvl. (0

v

which involves impurity quantities only.* We therefore con-
clude that the Ward identity is fulfilled if this equation
is satisfied. It can be viewed as a local version of the
Ward identity,> which is fulfilled for the impurity model.
Gauge invariance and local charge conservation are hence

“The minus sign on the right-hand side of Eq. (30) stems from
the fact that our convention for the irreducible vertex is such that
'™ = —U to lowest order in U.

By writing Eq. (30) in differential form, '™ is identified as the
functional derivative § X /8g: The variation of a self-energy diagram
is given by the functional derivative of ¥ with respect to g times the
variation in g.
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FIG. 12. (Color online) Numerical illustration of the fulfillment
of the local Ward identity. Both sides of the equation (30) are
plotted for different bosonic frequencies w,, = 2mm/f for the two-
dimensional Hubbard model in DMFT for two different values of U
somewhat below (left) and above (right) the Mott transition. Results
for the left-hand side of the equation %, , — X, are marked by lines
with triangles and for the right-hand side -7 )", FL‘:’w[gV,+’U —gv]
by circles, showing good agreement. Note that for w, =0, the
equation is identically fulfilled as both sides vanish.

guaranteed for the susceptibilities. This is completely in line
with the previous argument: Charge conservation of the DMFT
susceptibility follows if the self-energy and irreducible vertex
function are determined from the exactly solvable impurity
model.® While being an approximation in finite dimensions,
the DMFT susceptibility preserves local charge conservation
exactly, even on a finite-dimensional lattice.

In our calculations we obtain the vertex, self-energy, and
Green’s function by solving the impurity model numerically
exactly. That the Ward identity is indeed fulfilled numerically
is illustrated in Fig. 12, where we plot both sides of Eq. (30)
for different bosonic frequencies. In order to evaluate the
frequency sum on the right-hand side, we have replaced the
irreducible vertex by —U above the frequency cutoff up to
which it is calculated explicitly. The identity is evidently
well fulfilled. For high frequencies, deviations occur which
partly originate from the numerical noise which increases
with frequency, as well as from the finite frequency cutoff
of the vertex function. The latter is computed by inverting a
local BSE, which is affected by the finite frequency cutoff. In
general, for a correct description of the collective excitations,
the low-energy behavior of the vertex function is decisive,
which is well captured in our calculations. Note that the
numerical error seen in this figure does not propagate into the
calculation of the lattice susceptibility because the irreducible
vertex does not have to be computed (see Sec. II1C).

We would like to point out the relation of the above
to the self-consistent Hartree-Fock approximation and RPA
[38]. In static mean-field theory, the above equations still
hold with £ = U (n) and I'"™ = —U. As a consequence,
Eq. (30) is identically fulfilled, showing that the Hartree-Fock

®For an approximate impurity solver, the susceptibility is conserving
as long as Eq. (30) is fulfilled.
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approximation is conserving. The Bethe-Salpeter equation for
the response function is then equivalent to the random phase
approximation (RPA) for the susceptibility [Eq. (21)].

As mentioned previously, it is known that the zero-sound
mode is a consequence of gauge invariance. To see this,
consider the electromagnetic response kernel K, defined
through

Ju(@) = Kun(@)Av(q), €29

where J, is the expectation value of the current. Gauge
invariance and local charge conservation imply the two
conditions (see Appendix F)

Ku(@)q! =0, (32)

g5 Kuw(q) = 0. 33)

For the longitudinal response (q pointing along direction
3), one obtains Kgzg —iwKyp =0 and K339 —iwKgz = 0.
(In the following, we are interested in the long-wavelength
behavior for which we may replace g7 by ¢.) The other
components do not contribute by symmetry. Combining these
two equations yields the continuity equation

e
(iw)?
In the long-wavelength limit, only the diamagnetic contri-
bution to the response kernel contributes to K33, which is
independent of g and w (see Appendix F and Ref. [39]).
Hence, the susceptibility x.(q) = —Kqo(g)/e? is a function

of the ratio ¢ /w. The same holds for the polarization since it
is related to x through a simple geometric series:

1+ UM,

The dispersion of the collective mode is determined by the
poles of x, or as the solution to the equation 1 + UT1,(q) = 0.
Since the interaction U is constant (in general, a short-range
interaction remains finite in the limit ¢ — 0), the solution to
the above equation must be a kind of sound, i.e., g /w = const.
The analysis is the same as in the textbook RPA case, except
that the polarization I1,(q) is a function produced by the
DMEFT calculation instead of the Lindhardt function in the
RPA case. The key fact is that for small momentum, I1,(q)
is a function of ¢g/w and hence not a continuous function of
(w,q) at (0,0). As shown above, this is a consequence of gauge
invariance. Moreover, every approximation that violates the
Ward identity is likely to miss this singularity of the function,
and will not be able to reproduce the correct low-energy
behavior.

Since we use a quantum Monte Carlo impurity solver, it is
useful being able to observe the restriction imposed by gauge
invariance also on the level of the imaginary-time data. To this
end, we rewrite (34) as

(iw)*Koo(q) = (q)*K33(q). (36)

Using again that in the limit ¢ — 0 K33 remains finite, we find
the following condition imposed on the susceptibility:

(i) xo(q) = 0. (37
q—0

Koo(q) = K33(q). (34)

Xo(@) = (3%)
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FIG. 13. (Color online) The DMFT susceptibility x,(q) for q =
0 (red curve) and w = 0 (blue curve), for U =1, T = 0.02. As a
consequence of gauge invariance, the limits @ — 0 and q — 0 of
X»(q) do not commute. For a frequency-dependent self-energy, this
condition is respected by including vertex corrections. It is violated
for the bubble approximation for which the limits commute.

The charge susceptibility has to vanish for any finite frequency
in this limit and hence also for subsequently taking the limit
@ — 0. On the other hand, taking the limit @ — O first leads
to the the static response lim,_.qlim, 0 xo(q) = —dn/du
which is finite in the metallic phase. Hence, the limits lim,,_ ¢
and lim,_,o do not commute, which implies a discontinuous
jump in the susceptibility. The Lindhardt bubble, correspond-
ing to the noninteracting result, has the required property
[40,41]. The noncommutativity of the susceptibility comes
from the product of Green’s functions X]?q = G Gj44, which
enters the vertex through the Bethe-Salpeter equation for the
vertex function [Eq. (12)]. It is singular in this limit because
the poles of the Green’s functions merge when g — 0 (see,
e.g., Ref. [39], Chap. 6, Sec. 4).

Figure 13 shows that the susceptibility including vertex
corrections indeed vanishes for finite frequencies and displays
a discontinuity.” The bubble approximation computed from
interacting Green’s functions, on the other hand, clearly
violates gauge invariance. The result is continuous, which
explains the failure of the bubble approximation observed
previously.

One can expect that the discontinuity (which can be
used as a rigorous test for the implementation) will only be
restored by summing an infinite number of diagrams beyond
the bubble. Physically, it is clear that in order to describe
the long-wavelength behavior of the two-particle excitations
and the response functions, repeated particle-hole scattering
generated through the Bethe-Salpeter equation is essential.
At the same time, the Bethe-Salpeter equation accounts for
the collective mode and ensures gauge invariance. In this
sense, the collective excitations are key to the gauge-invariant
character of the theory. A different way of seeing this is the fact
that the effective quasiparticle interaction determined by the
vertex function generates the backflow of electrons around a
quasiparticle moving through the medium [39]. This backflow

"The condition (37) can be used to benchmark the accuracy of the
simulation. Deviations from zero occur due to Monte Carlo noise in
the vertex function and an insufficient frequency cutoff.
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is necessary to fulfill the continuity equation and hence to
assure local charge conservation. In the insulator, dn/du = 0
because of the gap so that the discontinuity disappears and
with it the zero-sound mode.

IV. LONG-RANGE INTERACTION: THE DUAL
BOSON APPROACH

Plasmons are long-wavelength excitations of the electron
gas with a finite energy, which appear in presence of a
Coulomb potential. Here, we use the following expression
for a Coulomb-type potential in three dimensions,

2 Y g #0,
Viq) = 7 38
(@) 0 =0 (38)

where e is the electron charge. Setting the interaction to zero
for ¢ = 0 corresponds to adding a homogeneous positively
charged background which compensates the negative charge
of the electron gas.

Nonlocal interactions can be treated on the basis of extended
dynamical mean-field theory [11,12,42]. In EDMFT, the lattice
model is mapped to a local impurity problem which contains a
local, but retarded interaction W,,. The self-energy in EDMFT
is determined through the self-consistency condition (3) as in
DMEFT. The dynamical interaction accounts for the dynamical
screening of the local charge due to the nonlocal interaction
V(q). It is determined through an additional self-consistency
condition

Xo =Y Xo(K), (39)
k

which is written in terms of the two-particle propagator (the
lattice susceptibility)

1
X(;l +Ww_V(q)

We denote it by X,,(q) in order to distinguish it from the DMFT
susceptibility x,(q). In the above, y,, is the impurity charge
susceptibility. This equation can be understood as follows.
Consider the representation of the susceptibility in terms of
the polarization IT:

Xo(q) = —TI1,(q) + () V(I (q) F - - -
14+ V(@@ —Tu(@~' = V(g)’

which is a simple geometric series. IT contains all diagrams
irreducible with respect to the interaction Vy. In EDMFT,
the polarization is obtained from the impurity model, which
yields a nonperturbative, albeit local result. The impurity
susceptibility x, contains polarization diagrams. However,
it cannot directly be used as the polarization because it
contains diagrams reducible in W. Let us denote [TV = — .
We can easily take out these reducible contributions by
writing T1Y as a geometric series: 1Y = IT/(1 + W,,I1,,) or
! =mY)"!' —=w, = —x, ! — W,. Inserting this into (41)
recovers (40).

In case of a Coulomb potential, the collective charge
excitations are plasmons, whose dispersion relation w(q) is

(41)
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FIG. 14. (Color online) Polarization I1,,(q) as a function of
momentum g, for g, = 0 and different Matsubara frequencies w,,.
For w,, > 0 and small g, we clearly observe the ~q? behavior of the
polarization as required by gauge invariance. Dashed lines show fits
toa —b(q/iw,)?/[1 + c*(q/iwy,)*] behavior for w,, > 0 (b and ¢ are
fit parameters). When ¢ is small compared to the frequency, the g>
behavior is clearly visible. For small w,,, it is less visible due to the
finite momentum resolution.

solution of
1+ V(QIl,(q) = 0. (42)

In the standard RPA analysis (where IT is just the Lindhardt
function), for ¢ — 0, w finite, one has (with f some function,
and g the coupling constant)

M.,(q) ~ gq° f(w) + O(g™), (43)

which yields the plasmon dispersion relation w(q) = w, +
aq’ at small g, where a is a constant and w, the plasma
frequency. ), is the solution of

1+ ge*Vf(w,) = 0. (44)

From the previous discussion of gauge invariance, we know
that the susceptibility vanishes in the long-wavelength limit
for finite frequencies X, (q — 0) = 0. By virtue of (41), we
expect the same behavior for the polarization, i.e., I1(q —
0,w) = 0. This behavior can be observed directly on the
Matsubara data, as shown in Fig. 14: for finite Matsubara
frequencies, the polarization vanishes in the long-wavelength
limit. At small momenta, the data are well described by a
function of the form —b(q/iw,)?/[1 + ¢*(q/iwn)?*]. For ¢
small compared to i w,,, the polarization is clearly proportional
to ¢2. One therefore expects that the standard RPA analysis still
holds in the correlated regime.

In the EDMFT approximation, however, the polarization
is computed from the local susceptibility and hence momen-
tum independent. Therefore, the equation for the dispersion
relation is

VI,
— =0. (45)
q

The polarization has to decrease as a function of large
frequencies and to leading order we expect it to behave
as [M(w) ~ 1/w*, with some o > 0. As a consequence, the
frequency of the excitation will diverge in the long-wavelength
limit: @ ~ 1/¢%. This behavior is shown in the left panel
of Fig. 15. We note that a priori a solution with a finite

1+
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FIG. 15. (Color online) —Ime~!(E,q) for small values wave
vectors (up to |q| ~ 27 x 0.34) for U =V =1and T = 0.02. The
energy of the collective mode diverges in EDMFT for |q| — 0 due to
violation of gauge invariance. This unphysical behavior is corrected
by including nonlocal vertex corrections, yielding a finite-energy
plasmon mode.

plasma frequency could exist if the polarization were to vanish
for a finite w. We do not observe this in our calculations,
however. We therefore find that EDMFT does not provide a
valid description of plasmons.

Let us now consider the dual boson approach [6], which can
be viewed as a diagrammatic expansion around extended dy-
namical mean-field theory. Additional details on the approach
and its convergence properties can be found in Refs. [6,43]. In
this approach, the description of the collective modes amounts
to replacing (40) by

1
X, @+ W, — V('

where x,(q) is given by Egs. (15)—-(18), which includes
nonlocal vertex corrections into the EDMFT susceptibility. In
EDMFT, there is an ambiguity of calculating the susceptibility.
It is either given by the bosonic propagator (40), or can be
obtained similarly as in DMFT. In the latter case, one computes
the susceptibility from (46) with x,(q) computed from the
DMEFT expressions of Sec. III B. In dual boson, the bosonic
propagator is also given by (46), however, with x,(q) given
by the alternative expressions described in Sec. IIIC. As we
have shown (see Appendix H), the two expressions for x,(q)
are equivalent, so that the dual boson approach resolves this
ambiguity.

The resulting polarization Il,(q) =[—x, Yq) — W,1™!
depends on momentum, in contrast to EDMFT. It can be
proven that this approach yields a gauge-invariant response
in the long-wavelength limit [6]. Let us now show that this
approach indeed describes plasmons.

(46)

A. Results

In this section, we present results for the three-dimensional
extended Hubbard model with the infinite-range potential (38)
of strength V. We use a momentum-space discretization of
32 x 32 x 32 k points.® All results are for temperature T =
0.02.

$Momentum-dependent quantities including the vertex function are
calculated on the irreducible part of the Brillouin zone only and the
vertex function is stored for a single momentum at a time.

PHYSICAL REVIEW B 90, 235105 (2014)

0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

FIG. 16. (Color online) —Ime~!(E,q) for small values wave
vectors up to |q| ~ 27 x 0.34 showing the plasmon mode in the
three-dimensional Hubbard model with Coulomb interaction V(q)
q%. Data are shown for V = 0.5 and different valuesof U at T = 0.02.
The plasma frequency corresponding to the maximum intensity of
the peak for ¢ — 0 (indicated by the horizontal line) decreases with
increasing U.

To begin with, we compare the physical content of the
two approximations for the polarization operator which enter
Egs. (40) and (46), respectively. To this end, we examine the
inverse dielectric function

€' (q) = 1+ V(@)X (q). (47)

Here, X,(q) is analytically continued to the real axis using
Padé approximants. The dielectric function is experimentally
accessible through electron energy-loss spectroscopy (EELS).
In Fig. 15, we plot the inverse dielectric function for small
momenta and on real frequencies. As mentioned before, the
energy of the collective mode diverges in the long-wavelength
limit in EDMFT (left part of the figure). Including vertex
corrections into the polarization corrects this unphysical result
and we observe a plasmon mode at finite energy in the long-
wavelength limit (right panel). The dispersion of this mode is
roughly consistent with a g behavior.

We can study the dependence of this mode on the interaction
strength. In Fig. 16, we plot the inverse dielectric function for
different values of the local interaction U but fixed strength
of the long-range potential set to V = 0.5. We see that with
increasing onsite interaction, the mode shifts to lower energies,
as indicated by the horizontal bars which mark the center of
the peak at low g. The spectral weight also decreases with
increasing interaction.

B. Plasma frequency

In order to show that the observed mode is indeed the
collective plasmon excitation, we can compare the maximum
of the spectral intensity to the plasma frequency for this model.
The derivation of the plasma frequency is essentially based
on gauge invariance. One can obtain the expression either
starting from the continuity equation (34) for the response
kernel or, alternatively, from the electrical conductivity and
using the f-sum rule [44]. Details of the derivation are given
in Appendix G. The result is

a)i = 2’ fV N, (48)
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FIG. 17. (Color online) Fixed momentum cuts of the imaginary
part of the inverse dielectric function for the smallest momentum
g > OandforU = 1,T = 0.02, and different values of V. The arrows
indicate the plasma frequency computed from Eq. (48).

where we have defined

2
N = ~ gcos(kza) (ko) - (49)

Here, we have assumed the field to be oriented along the z
axis. In order to rationalize this expression, we note that by
linearizing the dispersion in the vicinity of the Fermi level
and identifying the coefficient (the velocity) with k/m, we
see that 7 ~ 1/m, where m is the bare band mass. Further
letting @ = 1, V = 47, and replacing N with n, it formally
takes the same form as the plasma frequency in the continuum
a)f, = 47ne’/m. The appearance of N instead of the local
density is a peculiarity of the lattice model and a consequence
of the fact that the electromagnetic potential couples to the
bonds rather than to the local charge density (see Appendix B).

In Fig. 17, we show low-momentum cuts of the inverse
dielectric function (the data for V = 0.5 are the same as in
the first panel of Fig. 16). They exhibit a well-defined peak,
the position of which is well captured by the expression for
the plasma frequency [Eq. (48)]. The agreement is remarkable
given that the dielectric function has been obtained by
analytical continuation. We emphasize that this coincidence
is nontrivial: the position of the peak (the energy of the
collective mode) is determined by the two-particle properties
of the system, while the plasma frequency is computed from
single-particle properties (i.e., the density distribution) only.
This relation is a consequence of gauge invariance, which is
seen to be fulfilled in our calculation. The connection of single-
and two-particle properties is reminiscent of the Ward identity.
We further note that the result for the plasma frequency is
not restricted to our particular approximation, but applies to
any approximation on a discrete lattice which respects gauge
invariance (including RPA).

The plasma frequency depends on the local interaction
through V. In Fig. 18, we plot the dependence of w, on U.
The plasma frequency decreases with increasing interaction
as observed in Fig. 17. In a simplified picture, the plasma
frequency decreases because it is inversely proportional to
the square root of the effective mass and the effective mass
increases with interaction. According to (49), the frequency
decreases because the density distribution becomes less mo-
mentum dependent as the interaction increases. In the insulator
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FIG. 18. (Color online) Dependence of the plasma frequency on
the local interaction U for fixed V = 0.5 and T = 0.02. The quasi-
particle weight Z is shown for comparison. The plasma frequency
remains finite at the Mott transition.

(nks) remains momentum dependent and hence the frequency
remains finite, but the spectral weight drops to zero.

Clearly, the plasma frequency does not scale with the
quasiparticle Z (which also holds for a short-range interac-
tion). This has the important implication that plasmons in
strongly correlated systems are beyond Fermi-liquid theory
where the quasiparticle contributions are considered dominant
[39,40,45]. From the general theory of interacting Fermi
systems [39,45] it is known that there are two contributions to
the occupation number (ng,): the quasiparticle contribution,
which originates from the pole of the electron Green’s function
and is proportional to Z, and a nonquasiparticle one, which
stems from the branch cut of the Green’s function and relates
to its “incoherent” part. One can clearly see from Fig. 18 that
in the vicinity of the metal-insulator transition, the plasma
frequency is mostly associated with the incoherent (nonquasi-
particle) properties.” The plasmons, however, remain well
defined as one can see from Figs. 16 and 17.

In Fig. 19, we finally plot the doping dependence of the
plasma frequency. w, is seen to decrease with doping but
only appreciably so for an almost empty (filled) band. For

9Within DMFT, the MIT is first order [1] so that strictly speaking
the point Z = 0 cannot be reached, but Z near the transition is small
so our conclusion remains valid.
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FIG. 19. (Color online) Doping (8) dependence of the plasma
frequency fixed interaction V =0.5, T =0.02, and two values

of U.
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sufficiently large U there appears to be a shallow maximum in
the doping dependence of the plasma frequency.

V. CONCLUSIONS

In this paper, we have addressed the collective charge
excitations of strongly correlated electrons in presence of
short- and long-range interactions and discussed the relation
between gauge invariance and vertex corrections. Nonlocal
vertex corrections have been shown to be essential for a
qualitatively correct description of the collective modes in
both cases. Both the zero-sound mode in the case of a short-
range interaction and the plasmon mode emerge through an
RPA-like mechanism and are present up to the Mott transition.
Our results emphasize the importance of including vertex
corrections from a fully frequency-dependent irreducible
vertex when working with a frequency-dependent self-energy.
Respecting gauge invariance is necessary in order to obtain a
proper description of the collective modes in correlated media.

On the technical side, we have proven that the DMFT
susceptibility including vertex corrections yields a gauge-
invariant charge response in finite dimensions. We have further
shown that an alternative expression for the susceptibility
that emerges in the dual boson approach is equivalent to the
DMEFT susceptibility. Such a formulation has the advantage
that it circumvents numerical problems due to a divergence
of the irreducible vertex close to a metal-insulator transition.
It also resolves the ambiguity of calculating the susceptibility
in EDMFT. The approach is straightforwardly generalized to
treat spin excitations.
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APPENDIX A: ANALYTICAL CONTINUATION

The analytical continuation requires accurate input data.
For solving the quantum impurity model, we utilize the
numerically exact hybridization-expansion continuous-time
quantum Monte Carlo method [25], which can treat a lo-
cal retarded interaction without approximation [48,49]. To
maximize accuracy, we employ improved measurements for
the local susceptibility x, self-energy, three-leg vertex A, and
four-leg vertex function y in the simulation [50].

For the analytical continuation of the imaginary-time data
itself, we use a straightforward implementation of the Padé
algorithm as presented in Ref. [51]. Because the analytical
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continuation is an ill-posed mathematical problem, we per-
formed consistency checks. We compared the analytical con-
tinuation of the local part of the susceptibility to the local part
of the analytically continued result with good agreement for all
values of U (the momentum sum and analytical continuation
should commute if the latter was exact). As an additional
check for the Padé algorithm, we numerically integrated the
imaginary part of the analytically continued susceptibility to
verify that the Kramers-Kronig relation

X/(w) — _,P/OO d_w/ X//(Cl)/)

/
o T ®—®

(AD)

is well fulfilled for w = 0. In the calculations, the vertex
function was determined for up to 128 fermionic Matsubara
frequencies (including positive and negative), which corre-
sponds to a cutoff of four times the bandwidth. We took the
same number of positive bosonic frequencies and checked that
the results do not change appreciably for a smaller number
of frequencies. For the single-particle Green’s function and
self-energy, we took a larger cutoff of 192 frequencies, which
is sufficient at this temperature. The analytical continuation of
the Matsubara data turns out to be robust when varying the
number of input frequencies. Despite these checks, we cannot
exclude a qualitative deviation from the real spectra, such as
a splitting into multiple peaks. The analytical continuation
by Padé approximants tends to give a single-peak spectrum
when used in conjunction with data afflicted with statistical
errors [52]. For the long-wavelength excitations we are mainly
interested in, the Padé results are verified independently: by
computing the dispersion from a fit of the Matsubara data in
the case of short-range forces (Sec. III D) and by evaluating the
plasma frequency from the density in the case of long-range
interaction (Sec. IV A).

APPENDIX B: CURRENT OPERATOR

In order to discuss local charge conservation, we require a
gauge theory on the lattice. While it can be formulated more
generally, it is sufficient for our purposes to consider the case of
weak and slowly varying fields.'” We introduce the coupling
of the Hamiltonian (1) to a vector potential via the Peierls
substitution [53]:

A z T ieA.d T —ieAd
T =—1 E cloe M er_se FCp_s e N g

réo

B

For a discussion on the validity of the Peierls substitution and
the consequences of the above assumptions, see Refs. [36,54].
The coupling only affects the kinetic energy 7. Under a
gauge transformation A8 — A8 + A5 — Ap,cl = cleihr,
¢r — cre A the Hamiltonian remains invariant. The current
is determined in the usual way as the functional derivative
jr = —6H/8A,. Within linear response, the exponential is

expanded up to second order in the vector potential. For the

9By slowly varying we mean that the vector potential does not
change appreciably over an interatomic distance, so that we can write
f:” Adr ~ A.8. We only discuss quantities in absence of external
fields, i.e., in the limit A — 0.
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current, we obtain
= iefZ(CIacr_&, -
do

— 1) (el (Ard)er—so + )5, (Ard)ers )8
o

Cro )8

r 8o
(B2)

The first term is the paramagnetic current j¢ and the second
is the diamagnetic contribution j¢. The momentum represen-
tation of the paramagnetic current is

. sp ,—iqr
L= ke
r

ief 4 -
—i(k+q)8
— Cll(a(e i(k+q)8 _

¢*)8 ciqo.  (B3)

kdo
The individual spatial components can be written
1], = =
ko

C]tg (e—l(ka+11a)a _ elkua)CI(«H]a'- (B4)

This expression can be cast into in the symmetrical form

leta
_ —ikya
ch qole T —e

Symbolically, this can be expressed in terms of a derivative of
the dispersion

thatyo=i4a/20y 00y, (BS)

K= _fZ(e—ikaa + eikaa) (B6)
in the form
['P] — Z 38k —igqa/2 (B7)
Jq N 2ko Ck q/20 9k, € Ck+q/20 -
In the long-wavelength (g — 0) 11m1t, this reduces to
i =% Yo o (Ver)cks. (B8)

For completeness, we provide the result for the diamagnetic
contribution to the current. In momentum space, we obtain

2 .27
.d e“at —i(k +qq iky
[Jq]a == N2 z :CltaAa(k - k/)[e ikytga)a + é' a]Ck’+QU
kk'c
2 .27
e“a“t t itk o i
TN § o A%(q)[e™ Kt 4 e ey o g
kq'o

—ikqa + eik,,a]

e*a’t t o
== 2 Ckaprape AN@)le
kq'o

x e—i(qa/Z—qu/DaCk_,_q/z_q//z(7 ) (B9)

Similarly as for the paramagnetic current, we can rewrite this
as

2 2
a1 _ ¢ 1 “a 076K
liala = =37 22 GleanranaA"@) | 32 Oko Ky
kq'o B
x ef"(q“/qué'/z)aCk+q/2_q'/2a~ (B10)

In the following, we are interested in the continuity equation
in absence of an electromagnetic field and will henceforth
focus on the paramagnetic contribution to the current. We
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introduce the four-vector notation j§ = ( jfl) Jg)» with jg =eng
and define the bare current vertex through

. e t
it=x5 %jc;(gy“(k,q)ckm. (B11)
Using (B4), we obtain
g —i(kg+qa)a __ Likqa
“_ lta(e e ) nw=a=x,y,z
y _{ 1, L—0. (B12)

APPENDIX C: CONTINUITY EQUATION

The Hamiltonian including the coupling to the electromag-
netic field fulfills the continuity equation

ony .
e = —ie[ny, H]
ot
=ief Z(CIO_ Crid0 +CIO_ Cr—so —CL_&T Cro _Ci—éa Cro)
do
— €T ) (cly (Ard)criso +cly (Ard)crso
o

r+3a (Ar8)Cro —Cp_ SG(A d)cro ) (C1H

We can write the right-hand side as a divergence of the current
operator (B2). To this end, we define the forward derivative of
the current
vF . jr — jl"Hs - jl‘ ,
a

(C2)

which should be understood such that the finite difference of
the x direction of the current is formed by displacement § in
the x direction, etc. Using Egs. (C1) and (B2), it is easy to see
that the continuity equation can then be written in the form
ony o
e o + V' .j=0.
In order to recast this equation into momentum space, one
defines @ as the eigenvalue of the operator VI =" 9le,
acting on a plane wave ¢q(r) ~ ¢'9". Denoting ¢, = qq€, as
the o component of q, which takes the discrete values ¢V =
2min/(Na) and correspondingly r, = req, r;, = al,, we have

1 ,
- Z(elqa(la"r])a_ e
a o

(€3)

VFeiqr — i‘]mlua)ea

_ iz(eiqaa ~ et = jqFeld  (C4)
so that a
=Y qle.= —;; D (€4 — De. (C5)
In the long-wavelength limit, this simplifies to
Fx -ty gare =g (6)

We note that by defining the backward derivative as V5 - j, =
(jr—s — jr)/a, we obtain q® = (qF)*. The dispersion can be
expressed in terms of the product 7 - ¢5.
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APPENDIX D: WARD IDENTITY

The derivation of the Ward identity can be found in
textbooks (see, e.g., Ref. [55]). Here, we sketch the derivation
as required for the subsequent discussion. It is convenient to
use four-vector notation throughout.

Withk = (iw,k), z = (7,1), Blf = (9,,VF), q}f = (iw,q"),
and the metric (—1,1,1,1), we have k,z,, = kr — iwt and the
continuity equation becomes 35 Ju(z) = 0. The Ward identity
is obtained by applying the four-divergence to the three-leg
correlation function

Apu(x.y.2) = (Tre()c! (9)ju(2)).- (D1)
We have
Of Ay = (Tec(x)' () [0F ju + 0z00])
+ (Tre()Ljo(2).c"(1)18(y0 — 20))
+{(Tec' (Me), jo(@18(xo — 20)).  (D2)

where the term in angular brackets in the first line vanishes
by virtue of the continuity equation and the two other lines
emerge due to time differentiation while accounting for time
ordering. With j, = en the commutators are

Lio(2),c(1)18(v0 — 20) = ec'(V)8(y — 2),
[e(x), jo(2)]8(x0 — 20) = ec(x)8(x — 2). (D3)

Inserting this back into (D2) and using the definition of Green’s
function G(x — y) := —(Tc(x)c(y)) yields

O Ay = e[8(x —z) — 8(y — )]G (x — y). (D4)
Noting that A, can be expressed in terms of the generalized
susceptibility (see following), this equation is recognized as
the lattice formulation of Eq. (13) in Ref. [30]. Defining the
current vertex I",, through
Ay(x,y,z2) = e/dx//dy’G(x — X" (x' Yy, 2GR —y)
(D5)

and introducing the lattice Fourier transform G(k) =

[dx e " G(x), where [dx =) fo’s dt, one straightfor-
wardly obtains the momentum-space representation of (D4):

G(k)q,, Tuk,q)Gk + q) = G(k + q) — G(k). ~ (D6)
It is commonly written in the form
apTuk.q) = G™'(k) = G™'(k + q). (D7)
which is the Ward identity.

APPENDIX E: CURRENT VERTEX
1. Noninteracting case

In the noninteracting case, the bare current vertex (B12) has
to fulfill the Ward identity

ap vuk.q) = Gy'(k) — Gy (k + q). (E1)

In this case, we have G, 1(k) = ko — &k so the right-hand side
of (26) becomes ey.q — £k — go, While the left-hand side reads
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HOX:

FIG. 20. Diagrammatic representation of the three-leg correlation
function A, in terms of the generalized susceptibility.

Ay =

as qof Yo — qo- Using (B6) and (C5), we see that indeed

qch/a = fZ(eiqaa _ l)(e_i(koz‘H{u)ll . eikaa)
o
= fZ(efikaa _ ei(ka+qa)a _ e*i(kaﬂla)a 4 e*ikaa)
o
= Ek+q — Ek- (E2)

2. Interacting case

In the interacting case, we have
AZ("’Q) = <ckaci+q,o*j(7)
e
= = Do Chg o Ol Gy )Y KD, (E3)
k'o’

where the correlation function in the second line is the
generalized susceptibility (see Fig. 20)

e 4 /
AGq) = = > Xy K ). (E4)
k'o’

The latter can be expressed in terms of the vertex function as
follows:

’
ago

1
X = =7 Gko Glerao koot

+ GioGrigo Ty Giro G sgor- (E5)
Inserting (ES) into (E4) and using the definition of the current
vertex A, (k,q) = eGI',(k,q)G4q, One obtains

o T oo’ ’
Ihkg) = vutk.g) = = > T, Gro Gurrg.ovu k).
k'o’

(E6)
Inserting the Bethe-Salpeter equation for the vertex
g, =i’ — 5 > T Grror Gursqo Ty (ET)
Yo

into (E6), we obtain the ladder equation for the current vertex
o T irroo’ o (1
Fhkg) = yutk.q) = > T GroGirrg.o Ty (K4).
k'o’
(E8)

APPENDIX F: ELECTROMAGNETIC RESPONSE KERNEL

Within linear response, the electromagnetic response kernel
is defined by

Ju(@) = K (@)Au(q), (F1)

where J,(q) is the expectation value of the current. Demanding
the invariance of the kernel under a gauge transformation
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Ay(q@) — Au(q) +iqF Alg) implies K ,,q = 0. On the other
hand, the fact that the expectation value J,, fulfills the continu-
ity equation q,f J.(g) = Oimplies the condition q;f K@) =0
imposed by charge conservation.

Following the standard derivation, i.e., by expressing the
kernel as a functional derivative of the current with respect
to the vector potential, we obtain the following result for the
kernel on the discrete lattice:

KMU(I',‘L';I'/,‘[,) = (Trju,(rvr)jv(r,ar/))
— 2@’ T8,,(1 = 80,)8(t — )3 x5
X Z(CIO'TCT_SUT/ + C;ngrcrar’), (F2)
do

where the second term originates from the derivative of the
diamagnetic current [see Eq. (B2)] with respect to the vector

J

PHYSICAL REVIEW B 90, 235105 (2014)

potential and expectation values are taken in the absence of an
external field. Note that the field does not couple directly to the

local density ny = > (cimcrm) because the electromagnetic
potential is a link variable. In momentum space, the kernel
becomes

Ku(qiw) = (T ju(q,iw) j,(—q, — iw))
—e*a’78,,(1 — 80,)N, (F3)

where for simplicity we have defined
1 . .
Ni= g(e—’kv“ + ) ) (F4)

In order to show that the exact kernel obeys the constraint
imposed by charge conservation, we form the expression

- 1 . )
9 K@) = (Te[q; ju(@i0)] (=0, = i)+ {Ljo(@. ju(~@]) = €aT(1 = bo)g) D (e 4 ) (nyg )
ko

~ 1 —i(k,—qy)a —ik,a i a ikya
= (Lio(@.ju(—@) +ie*af(l = o) Y (o™ 1 — o7 4o (0 — ) () (F5)
ko

where (ny,) = (cle Cko ). The first term on the right-hand side vanishes for the exact kernel because of the continuity equation
q /f Jju = 0. To obtain the last line, the explicit expression (C5) was substituted for 7. The commutator arises because the time

derivative does not commute with the time-ordering symbol. It evaluates to

1
{Lio(@, ju(—@)]) = *(1 — Sov) 57 Z[V\)(k +q. —q@) — nk —q)] ()

ko

- 1 : . . .
= iefal(l = By 3 — et — T o ) (F6)
(od

so that the terms on the right-hand side of (F5) cancel, leading
to the required result qlf K,.(q) = 0. In the same way, one

shows that the kernel is gauge invariant, i.e., K ,w(q)q‘fp =0.

APPENDIX G: PLASMA FREQUENCY

The plasma frequency is determined by the uniform
response, i.e., in the limit g, — 0. For small momenta,
we replace g/ — ¢,. From the gauge-invariance condition
KWqVF = Owehave K, 0 = K,,49«/q90. We can take the direc-
tion of the field parallel to the z axis. The transverse response
vanishes by symmetry. Hence, we have Koy = Ko,q/qo, where
q = q;. Similarly, we obtain K, = K,.q/qo, which yields the
continuity equation

2
Koo = q_szz-
9o

(G

Now, we use that the same relation holds when the density-
density and current-current correlation functions in the kernel,
which are reducible in the interaction, are replaced by the
corresponding quantities irreducible in the interaction V(q)
(see, e.g., Ref. [39]). This is possible because the former are
related to the latter through simple geometric series. We denote
the resulting quantities Koy and K... Hence, we can identify
Koo with ¢?IT where IT contains all polarization diagrams

(

irreducible with respect to V(q). In the long-wavelength
limit, only the diamagnetic term in K_. contributes. With the
Coulomb interaction V(q) = >V /q?* for ¢ # 0, we have in
the limit ¢, — 0 and for go — w + i0™,

€ =1lim 1+ V(@To(q) =1 - o) /0’ (G2)
q—
with the plasma frequency
w, = eaViVN. (G3)

Alternatively, the same result may be obtained by relating the
response kernel to the conductivity and using the f-sum rule.

APPENDIX H: EQUIVALENCE OF EQS. (11) AND (15)

We would like to establish the equivalence between the
usual expression for the susceptibility

Xo(@ = 2T > x0(@ = 277 Y X0, (@Tuwo(@ X, (@)

v’

(HI)
and the alternative form given by the equations (see Fig. 21)

Xcu(q) = Xo + X—w2T2 Z )‘-v+w,—w)~(vv/a)(q))‘u’waa (H2)

vy’
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R O

FIG. 21. Diagrammatic representation of Eq. (H2).

1
Tove(q) = Xva,(q)‘svv’ - XUw(q)Fvv w(q)X (Q) (H3)
For simplicity, we consider the paramagnetic case and the
charge susceptibility only. Correspondingly, spin labels are
omitted and the vertex functions are taken in the charge channel
(e.g., T" = ' 4+ '™V, The label “ch” is also suppressed in

the following. We further use the following definitions:

1
x2 (@ = ¥ ; G,(K)G 10k + q), (H4)
5 1 .
%0.(q) = 5 ; G(K)G 10k + q), (H5)
w = &v8vtaws (H6)
G,(K) = G, (k) — g, (H7)

where G is the lattice Green’s function and g is the impurity
Green’s function. The impurity Green’s function, charge
susceptibility, as well as of the three-leg charge vertex and
the four-leg vertex of the impurity are defined in terms of
impurity correlation functions as follows:

8vo = _(Cvac?;g)s (H8)
Xo = _((nwn—w) - (n)(n)éw), (H9)
o6) — va a) T
Ao Sl 8 / (H10)
8vo gu+a) o Xow
g\()t)t;(r (8vo&vo'dw — ngra),agva(va’aaa’)/T

yvu’w =
8vo 8v+w,o 8v'+ws' §v'a’

(H11)

The three- and four-point functions g and g™ in turn are
given by the averages

3 .
gy =

(H12)

—(Coo €y .o Ner)s

Hoa’ . * *
we T +<CVUCv+w,(rCV'+w»U/Cv/(r/>'

(H13)
In the paramagnetic state, g, g, and A are independent of
spin. Here, y is the reducible impurity charge vertex.

The vertices A and y (see Fig. 22) are closely related [6].
Using ny, =T )0 ChosCtw,o» the fact that the Grassmann
numbers anticommute, together with the above definitions of

V+o V+o v+ ®

FIG. 22. Definition of the impurity vertex functions.
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the correlation functions, one finds that

1
8vo v+, a)\Vwa - gl(jja — = 8vo <n>8w

T
=T Z(CUUC?;+(D’UCV/+(U,U’C:’0") + guvo Z(Cl) o CV +w,0' )8
Vo' Vo’
Noo!
=TY ge = 8w Y 8&vodo. (H14)
Vo' Vo'’
Similarly, one obtains
8vo 8v+w,o T Z yﬂ;’rc;gvurwa’gv’o’
Vo'
Noo'
= ngl()v)’cauo — 8vo ng’o" +gvagv+wa~ (HIS)
Vo’ v’
Taken together, one finds the relation
8vo 8v+w,o (T Z yli;(’r;)gvura)a’gv’a’ - 1)
Vo'
= guogv+w,o)¥3wa- (H16)
Further using that
Nneo=TY CigCrwe =T Chipptro (HIT)
Vo'’ Vo’
and
(cv+w,ac:gn—w) = <n—wcv+w,acj¢7>» (H18)

we have

X—u))‘-g.»,.w,_wgv-&-a),agvﬂ
1
3)o
= 8vto,-o Tgv+w0 (n)é, =T Z(CV’er,o’C:/g/CvaCj_Q_w'g>

Vo'

+ Svtw.o Z(cv o’cv w0’ )80

Vo'

o'
= T ng;ﬁ);:, 7 — 8v+wo Z gv’a’sw-
Vo’

Vo’

(H19)

This result can be expressed in terms of the four-leg vertex
similarly to the above. We therefore find the following relations
between the three-leg and four-leg vertices:

vwX(U =T Z yvv wXu 0 (HZO)
X g = Tmeyv . (H21)

From Eqgs. (H4)—(H7), it is further easy to see that
Ko (@) = X0, (@) = X1 (H22)

Now recall that the lattice vertex I" is calculated from the
Bethe-Salpeter equation (BSE)

[T @], =[ve '], + Txou(@8u,

where in turn the local irreducible vertex is calculated from
the BSE of the impurity

[va'l,, =

(H23)

[y, + T xpbov- (H24)
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Combining the BSEs using (H22), one can write

from which it follows that

v

PHYSICAL REVIEW B 90, 235105 (2014)

The charge susceptibility can be expressed in terms of the local vertex and Green’s functions as

Using these relations and inserting (H3) into (H2), one obtains

'y

=27 70 @T oo @0, (@)

vy’

Substituting (H26), all terms involving the impurity vertex cancel and one is left with

Xol@ = 2T > [Zo @+ x5, ] =272 > x5,

_oT? Z X0 Tovo(@xl, — 272 Z X

Mo @], =[vo'],, + TZo (@3 (H25)
Yoo = Tovo@ =T D Yoo o @Tmo@ = T D Tuno(@) £ (@ Vvo- (H26)
Xo =2T )Xoy =277 " X0 Vv X e (H27)
XKo@ = 2T ) [20,(@ + x0,] = 277 Y X0 VivoxX e + 2T Y X0 Vor R @Vorvr X
=272 X0 Vo T @ = 2T ) 20 @Vor X + 2T D X0 Vow K @T v (D 0, (Q)

277 ) R @T oo @ T (@Yo X = 2T Y X Vot Zt (DT e (@ X (@ Vi X

(H28)
Covo(@ X0 @ = 277 Y 20, @Tuvo(@x,
vy’ vy’
O @T oo (@ X0, (@) (H29)
vy’ vy’

(H30)

=27 ) [%0,@ + x%] = 277 D [20,(@ + 10, JTuvo (@[ £ (@ + x0,]-

vy’

Using (H22) this is seen to be equal to (H1).
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