#. Block and . Of-green, s functions 30 # gf_struct = { ' up ':[0 ,1 ,2 ,3 ,4] , ' down ':[0 ,1 ,2 ,3 ,4]} 31 # This can be computed using the TRIQS function as follows : 32 gf_struct = op . s e t _ o p e r a t o r _ s t r, p.33

=. Op, h_int_slater ( spin_names , orb_names , U_mat , off_diag = off_diag ) 45 Construct the solver 47 S = Solver ( beta = beta , gf_struct = gf_struct, p.48

S. Compute, G0_iw with the self -consistency condition 63 for name

G. Kotliar, W. Krauth, and M. J. Rozenberg, Save quantities of interest on the master node to an h5 archive 70 if mpi . is_m aster_n ode (): 71 with HDFArchive ( filename , 'a ') as Results : 72 Results [ ' G0_iw -% s '% i_loop ] = S . G0_iw 73 Results Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys, vol.68, issue.13, 1996.

G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet et al., Electronic structure calculations with dynamical mean-field theory, Reviews of Modern Physics, vol.78, issue.3, 2006.
DOI : 10.1103/RevModPhys.78.865

T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Quantum cluster theories, Reviews of Modern Physics, vol.77, issue.3, p.1027, 2005.
DOI : 10.1103/RevModPhys.77.1027

URL : http://arxiv.org/abs/cond-mat/0404055

A. Toschi, A. A. Katanin, and K. Held, Dynamical vertex approximation: A step beyond dynamical mean-field theory, Physical Review B, vol.75, issue.4, p.45118, 2007.
DOI : 10.1103/PhysRevB.75.045118

A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Dual fermion approach to nonlocal correlations in the Hubbard model, Physical Review B, vol.77, issue.3, p.33101, 2008.
DOI : 10.1103/PhysRevB.77.033101

A. Rubtsov, M. Katsnelson, and A. Lichtenstein, Dual boson approach to collective excitations in correlated fermionic systems, Annals of Physics, vol.327, issue.5, p.1320, 2012.
DOI : 10.1016/j.aop.2012.01.002

A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Continuous-time quantum Monte Carlo method for fermions, Physical Review B, vol.72, issue.3, p.35122, 2005.
DOI : 10.1103/PhysRevB.72.035122

P. Werner, A. Comanac, L. De-'medici, M. Troyer, and A. J. Millis, Continuous-Time Solver for Quantum Impurity Models, Physical Review Letters, vol.97, issue.7, p.76405, 2006.
DOI : 10.1103/PhysRevLett.97.076405

P. Werner and A. J. Millis, Hybridization expansion impurity solver: General formulation and application to Kondo lattice and two-orbital models, Physical Review B, vol.74, issue.15, p.155107, 2006.
DOI : 10.1103/PhysRevB.74.155107

URL : http://arxiv.org/abs/cond-mat/0607136

E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer et al., Continuous-time MonteCarlo methods for quantum impurity models, Rev. Mod. Phys, vol.83, issue.349, 2011.

E. Gull, P. Werner, O. Parcollet, and M. Troyer, Continuous-time auxiliary-field Monte Carlo for quantum impurity models, EPL (Europhysics Letters), vol.82, issue.5, 2008.
DOI : 10.1209/0295-5075/82/57003

K. Haule, Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base, Physical Review B, vol.75, issue.15, p.155113, 2007.
DOI : 10.1103/PhysRevB.75.155113

P. Augustinsk´yaugustinsk´y and J. Kune?, Improved Green???s function measurement for hybridization expansion quantum Monte Carlo, Computer Physics Communications, vol.184, issue.9, p.2119, 2013.
DOI : 10.1016/j.cpc.2013.04.005

P. Sémon, C. Yee, K. Haule, and A. S. Tremblay, Lazy skip-lists: An algorithm for fast hybridization-expansion quantum Monte Carlo, Physical Review B, vol.90, issue.7, p.75149, 2014.
DOI : 10.1103/PhysRevB.90.075149

C. Yee, Towards an ab initio description of correlated materials, 2012.

N. Parragh, A. Toschi, K. Held, and G. Sangiovanni, -invariant interactions for correlated fermions and the advantages for quantum Monte Carlo simulations, Physical Review B, vol.86, issue.15, p.155158, 2012.
DOI : 10.1103/PhysRevB.86.155158

URL : https://hal.archives-ouvertes.fr/hal-00461739

P. Sémon, G. Sordi, and A. S. Tremblay, Ergodicity of the hybridization-expansion Monte Carlo algorithm for broken-symmetry states, Physical Review B, vol.89, issue.16, p.165113, 2014.
DOI : 10.1103/PhysRevB.89.165113

L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, Orthogonal polynomial representation of imaginary-time Green???s functions, Physical Review B, vol.84, issue.7, p.75145, 2011.
DOI : 10.1103/PhysRevB.84.075145

R. E. Tarjan, Efficiency of a Good But Not Linear Set Union Algorithm, Journal of the ACM, vol.22, issue.2, 1975.
DOI : 10.1145/321879.321884

R. Sedgewick, Left-leaning Red-Black Trees, 2008.

R. Sedgewick, Algorithms, Part I, https