D. E. Clapham, Calcium Signaling, Cell, vol.131, issue.6, pp.1047-1058, 2007.
DOI : 10.1016/j.cell.2007.11.028

J. Srivastava, D. L. Barber, and M. P. Jacobson, Intracellular pH Sensors: Design Principles and Functional Significance, Physiology, vol.22, issue.1, pp.30-39, 2007.
DOI : 10.1152/physiol.00035.2006

S. Roche, S. Bressanelli, F. A. Rey, and Y. Gaudin, Crystal Structure of the Low-pH Form of the Vesicular Stomatitis Virus Glycoprotein G, Science, vol.313, issue.5784, pp.187-191, 2006.
DOI : 10.1126/science.1127683

S. Roche, F. A. Rey, Y. Gaudin, and S. Bressanelli, Structure of the Prefusion Form of the Vesicular Stomatitis Virus Glycoprotein G, Science, vol.315, issue.5813, pp.843-848, 2007.
DOI : 10.1126/science.1135710

URL : https://hal.archives-ouvertes.fr/hal-00167649

S. Bressanelli, Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation, The EMBO Journal, vol.23, issue.4, pp.728-738, 2004.
DOI : 10.1038/sj.emboj.7600064

F. A. Rey, F. X. Heinz, C. Mandl, C. Kunz, and S. C. Harrison, The envelope glycoprotein from tick-borne encephalitis virus at 2 ?? resolution, Nature, vol.375, issue.6529, pp.291-298, 1995.
DOI : 10.1038/375291a0

Y. Modis, S. Ogata, D. Clements, and S. C. Harrison, A ligand-binding pocket in the dengue virus envelope glycoprotein, Proc. Natl Acad. Sci. USA, pp.6986-6991, 2003.
DOI : 10.1073/pnas.0832193100

Y. Modis, S. Ogata, D. Clements, and S. C. Harrison, Structure of the dengue virus envelope protein after membrane fusion, Nature, vol.427, issue.6972, pp.313-319, 2004.
DOI : 10.1038/nature02165

J. S. Harrison, Role of Electrostatic Repulsion in Controlling pH-Dependent Conformational Changes of Viral Fusion Proteins, Structure, vol.21, issue.7, pp.1085-1096, 2013.
DOI : 10.1016/j.str.2013.05.009

S. C. Harrison, The pH sensor for flavivirus membrane fusion, The Journal of Cell Biology, vol.70, issue.2, pp.177-179, 2008.
DOI : 10.1038/nsb990

P. W. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, vol.4, issue.7082, pp.297-302, 2006.
DOI : 10.1038/nature04586

D. R. Han, DNA Origami with Complex Curvatures in Three-Dimensional Space, Science, vol.332, issue.6027, pp.342-346, 2011.
DOI : 10.1126/science.1202998

E. S. Andersen, Self-assembly of a nanoscale DNA box with a controllable lid, Nature, vol.211, issue.7243, pp.73-76, 2009.
DOI : 10.1038/nature07971

A. Chworos, Building Programmable Jigsaw Puzzles with RNA, Science, vol.306, issue.5704, pp.2068-2072, 2004.
DOI : 10.1126/science.1104686

C. J. Delebecque, A. B. Lindner, P. A. Silver, and F. A. Aldaye, Organization of Intracellular Reactions with Rationally Designed RNA Assemblies, Science, vol.333, issue.6041, pp.470-474, 2011.
DOI : 10.1126/science.1206938

M. S. Ardejani, X. L. Chok, C. J. Foo, and B. P. Orner, Complete shift of ferritin oligomerization toward nanocage assembly via engineered protein???protein interactions, Chemical Communications, vol.273, issue.34, pp.3528-3530, 2013.
DOI : 10.1039/c3cc40886h

Y. T. Lai, D. Cascio, and T. Yeates, Structure of a 16-nm Cage Designed by Using Protein Oligomers, Science, vol.336, issue.6085, pp.1129-1129, 2012.
DOI : 10.1126/science.1219351

M. S. Ardejani and B. P. Orner, Obey the Peptide Assembly Rules, Science, vol.340, issue.6132, pp.561-562, 2013.
DOI : 10.1126/science.1237708

J. M. Fletcher, Self-Assembling Cages from Coiled-Coil Peptide Modules, Science, vol.340, issue.6132, pp.595-599, 2013.
DOI : 10.1126/science.1233936

J. D. Hartgerink, E. Beniash, and S. I. Stupp, Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials, Proc. Natl Acad. Sci. USA 99, pp.5133-5138, 2002.
DOI : 10.1073/pnas.072699999

C. Tarabout, Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact, Proc. Natl Acad. Sci. USA, pp.7679-7684, 2011.
DOI : 10.1073/pnas.1017343108

URL : https://hal.archives-ouvertes.fr/inserm-00716817

F. Gobeaux, Directing peptide crystallization through curvature control of nanotubes, Journal of Peptide Science, vol.19, issue.03, pp.508-516, 2014.
DOI : 10.1002/psc.2647

URL : https://hal.archives-ouvertes.fr/cea-01201911

F. Gobeaux, Structural Role of Counterions Adsorbed on Self-Assembled Peptide Nanotubes, Journal of the American Chemical Society, vol.134, issue.1, pp.723-733, 2012.
DOI : 10.1021/ja210299g

URL : https://hal.archives-ouvertes.fr/hal-00910874

C. Valery, Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension, Proc. Natl Acad. Sci. USA, pp.10258-10262, 2003.
DOI : 10.1073/pnas.1730609100

C. Valery, Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: A Mutational Approach, Biophysical Journal, vol.94, issue.5, pp.1782-1795, 2008.
DOI : 10.1529/biophysj.107.108175

URL : https://hal.archives-ouvertes.fr/hal-00364066

A. Barth, The infrared absorption of amino acid side chains, Progress in Biophysics and Molecular Biology, vol.74, issue.3-5, pp.141-173, 2000.
DOI : 10.1016/S0079-6107(00)00021-3

S. H. Li and M. Hong, Protonation, Tautomerization, and Rotameric Structure of Histidine: A Comprehensive Study by Magic-Angle-Spinning Solid-State NMR, Journal of the American Chemical Society, vol.133, issue.5
DOI : 10.1021/ja108943n

J. Colletier, Molecular basis for amyloid-beta polymorphism, Proc. Natl Acad. Sci. USA, pp.16938-16943, 2011.

E. Pouget, Elucidation of the Self-Assembly Pathway of Lanreotide Octapeptide into ??-Sheet Nanotubes: Role of Two Stable Intermediates, Journal of the American Chemical Society, vol.132, issue.12, pp.4230-4241, 2010.
DOI : 10.1021/ja9088023

URL : https://hal.archives-ouvertes.fr/hal-00470362

B. K. Vainshtein, Diffraction of X-rays by chain molecules, 1966.

D. K. Laimou, Structural elucidation of Leuprolide and its analogues in solution: insight into their bioactive conformation, Amino Acids, vol.26, issue.3, pp.1147-1160, 2010.
DOI : 10.1007/s00726-010-0549-8

O. Yildiz, K. R. Vinothkumar, P. Goswami, and W. Kuhlbrandt, Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation, The EMBO Journal, vol.254, issue.15, pp.3702-3713, 2006.
DOI : 10.1038/sj.emboj.7600330

V. Garlatti, Structural Basis for Innate Immune Sensing by M-ficolin and Its Control by a pH-dependent Conformational Switch, Journal of Biological Chemistry, vol.282, issue.49, pp.35814-35820, 2007.
DOI : 10.1074/jbc.M705741200

F. Gobeaux, Experimental Observation of Double-Walled Peptide Nanotubes and Monodispersity Modeling of the Number of Walls, Langmuir, vol.29, issue.8, pp.2739-2745, 2013.
DOI : 10.1021/la304862f

URL : https://hal.archives-ouvertes.fr/hal-00814021

N. P. King, Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy, Science, vol.336, issue.6085, pp.1171-1174, 2012.
DOI : 10.1126/science.1219364

R. Oda, I. Huc, M. Schmutz, S. J. Candau, and F. Mackintosh, Tuning bilayer twist using chiral counterions, Nature, vol.399, issue.6736, pp.566-569, 1999.
DOI : 10.1038/21154

I. A. Banerjee, L. T. Yu, and H. Matsui, Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation, Proc. Natl Acad. Sci. USA, pp.14678-14682, 2003.
DOI : 10.1073/pnas.2433456100

B. S. Li, -Valine-Containing Polyacetylene by pH Change, Nano Letters, vol.1, issue.6, pp.323-328, 2001.
DOI : 10.1021/nl015540o

URL : https://hal.archives-ouvertes.fr/tel-00807841

C. M. Dobson, Protein folding and misfolding, Nature, vol.426, issue.6968, pp.884-890, 2003.
DOI : 10.1038/nature02261