F. Chiti and C. Dobson, Protein Misfolding, Functional Amyloid, and Human Disease, Annual Review of Biochemistry, vol.75, issue.1, pp.333-366, 2006.
DOI : 10.1146/annurev.biochem.75.101304.123901

R. Kodali and R. Wetzel, Polymorphism in the intermediates and products of amyloid assembly, Current Opinion in Structural Biology, vol.17, issue.1, pp.48-57, 2007.
DOI : 10.1016/j.sbi.2007.01.007

J. Pedersen, C. Andersen, and D. Otzen, Amyloid structure - one but not the same: the many levels of fibrillar polymorphism, FEBS Journal, vol.257, issue.22, pp.4591-4601, 2010.
DOI : 10.1111/j.1742-4658.2010.07888.x

L. Volpatti, M. Vendruscolo, C. Dobson, and T. Knowles, A Clear View of Polymorphism, Twist, and Chirality in Amyloid Fibril Formation, ACS Nano, vol.7, issue.12, pp.10443-10448, 2013.
DOI : 10.1021/nn406121w

I. Usov, J. Adamcik, and R. Mezzenga, Polymorphism Complexity and Handedness Inversion in Serum Albumin Amyloid Fibrils, ACS Nano, vol.7, issue.12, pp.10465-10474, 2013.
DOI : 10.1021/nn404886k

J. Orgel, T. Irving, A. Miller, and T. Wess, Microfibrillar structure of type I collagen in situ, Proc. Natl. Acad. Sci, pp.9001-9005, 2006.
DOI : 10.1073/pnas.0502718103

T. Oda, M. Iwasa, T. Aihara, Y. Maéda, and A. Narita, The nature of the globular- to fibrous-actin transition, Nature, vol.457, issue.7263, pp.550-550, 2009.
DOI : 10.1038/nature08440

E. Nogales, S. Wolf, and K. Downing, Structure of the ?? tubulin dimer by electron crystallography, Nature, vol.391, issue.6663, pp.199-203, 1998.
DOI : 10.1038/34465

E. Nogales, M. Whittaker, R. Milligan, and K. Downing, High-Resolution Model of the Microtubule, Cell, vol.96, issue.1, pp.79-88, 1999.
DOI : 10.1016/S0092-8674(00)80961-7

S. Strelkov, H. Herrmann, N. Geisler, A. Lustig, S. Ivaninskii et al., Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments, Journal of Molecular Biology, vol.306, issue.4, pp.773-781, 2001.
DOI : 10.1006/jmbi.2001.4442

H. Herrmann and U. Aebi, Intermediate Filaments: Molecular Structure, Assembly Mechanism, and Integration Into Functionally Distinct Intracellular Scaffolds, Annual Review of Biochemistry, vol.73, issue.1, pp.749-789, 2004.
DOI : 10.1146/annurev.biochem.73.011303.073823

A. Chernyatina, S. Nicolet, U. Aebi, H. Herrmann, and S. Strelkov, Atomic structure of the vimentin central ??-helical domain and its implications for intermediate filament assembly, Proc. Natl. Acad. Sci, pp.13620-13625, 2012.
DOI : 10.1073/pnas.1206836109

M. Van-raaij, A. Mitraki, G. Lavigne, and S. Cusack, A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein, Nature, vol.401, issue.6756, pp.935-938, 1999.

M. Rossmann, Structure of viruses: a short history, Quarterly Reviews of Biophysics, vol.16, issue.02, pp.133-180, 2013.
DOI : 10.1126/science.1089316

A. Klug, From Macromolecules to Biological Assemblies(Nobel Lecture), Angewandte Chemie International Edition in English, vol.22, issue.8
DOI : 10.1002/anie.198305653

A. Luque and D. Reguera, The Structure of Elongated Viral Capsids, Biophysical Journal, vol.98, issue.12, pp.2993-3003, 2010.
DOI : 10.1016/j.bpj.2010.02.051

A. Luque, R. Zandi, and D. Reguera, Optimal architectures of elongated viruses, Proceedings of the National Academy of Sciences, vol.107, issue.12, pp.5323-5328, 2010.
DOI : 10.1073/pnas.0915122107

O. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. Serpell, Molecular basis for amyloid fibril formation and stability, Proceedings of the National Academy of Sciences, vol.102, issue.2, pp.315-320, 2005.
DOI : 10.1073/pnas.0406847102

R. Nelson, M. Sawaya, M. Balbirnie, A. Madsen, C. Riekel et al., Structure of the cross-?? spine of amyloid-like fibrils, Nature, vol.11, issue.7043, pp.773-778, 2005.
DOI : 10.1107/S0021889892008240

M. Sawaya, S. Sambashivan, R. Nelson, M. Ivanova, S. Sievers et al., Atomic structures of amyloid cross-?? spines reveal varied steric zippers, Nature, vol.234, issue.7143, pp.453-457, 2007.
DOI : 10.1038/nature05695

M. Ivanova, S. Sievers, M. Sawaya, J. Wall, and D. Eisenberg, Molecular basis for insulin fibril assembly, Proceedings of the National Academy of Sciences, vol.106, issue.45, pp.18990-18995, 2009.
DOI : 10.1073/pnas.0910080106

J. Colletier, A. Laganowsky, M. Landau, M. Zhao, A. Soriaga et al., Molecular basis for amyloid-?? polymorphism, Proc. Natl. Acad. Sci, pp.16938-16943, 2011.
DOI : 10.1073/pnas.1112600108

A. Laganowsky, C. Liu, M. Sawaya, J. Whitelegge, J. Park et al., Atomic View of a Toxic Amyloid Small Oligomer, Science, vol.335, issue.6073, pp.1228-1231, 2012.
DOI : 10.1126/science.1213151

K. Makabe, D. Mcelheny, V. Tereshko, A. Hilyard, G. Gawiak et al., Atomic structures of peptide self-assembly mimics, Proceedings of the National Academy of Sciences, vol.103, issue.47, pp.17753-17758, 2006.
DOI : 10.1073/pnas.0606690103

A. Fitzpatrick, G. Debelouchina, M. Bayro, D. Clare, M. Caporini et al., Atomic structure and hierarchical assembly of a cross-?? amyloid fibril, Proc. Natl. Acad
DOI : 10.1073/pnas.1219476110

C. Valéry, M. Paternostre, B. Robert, T. Gulik-krzywicki, T. Narayanan et al., Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension, Proc. Natl. Acad. Sci, pp.10258-10262, 2003.
DOI : 10.1073/pnas.1730609100

C. Valéry, F. Artzner, R. B. Gulick, T. Grabielle-madelmont, C. Torres et al., Self-Association Process of a Peptide in Solution: From ??-Sheet Filaments to Large Embedded Nanotubes, Biophysical Journal, vol.86, issue.4, pp.2484-2501, 2004.
DOI : 10.1016/S0006-3495(04)74304-0

E. Pouget, N. Fay, E. Dujardin, N. Jamin, P. Berthault et al., Elucidation of the Self-Assembly Pathway of Lanreotide Octapeptide into ??-Sheet Nanotubes: Role of Two Stable Intermediates, Journal of the American Chemical Society, vol.132, issue.12, pp.4230-4241, 2010.
DOI : 10.1021/ja9088023

URL : https://hal.archives-ouvertes.fr/hal-00470362

C. Valéry, E. Pouget, A. Pandit, J. Verbavatz, L. Bordes et al., Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: A Mutational Approach, Biophysical Journal, vol.94, issue.5, pp.1782-1795, 2008.
DOI : 10.1529/biophysj.107.108175

A. Pandit, N. Fay, L. Bordes, C. Valéry, R. Cherif-cheikh et al., Self-assembly of the octapeptide lanreotide and lanreotide-based derivatives: the role of the aromatic residues, Journal of Peptide Science, vol.40, issue.8
DOI : 10.1002/psc.913

URL : https://hal.archives-ouvertes.fr/hal-00672362

C. Tarabout, S. Roux, F. Gobeaux, N. Fay, E. Pouget et al., Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact, Proc. Natl. Acad. Sci, pp.7679-7684, 2011.
DOI : 10.1073/pnas.1017343108

URL : https://hal.archives-ouvertes.fr/inserm-00716817

E. Maurer, L. Belloni, T. Zemb, and D. Carrière, Ion Exchange in Catanionic Mixtures:?? From Ion Pair Amphiphiles to Surfactant Mixtures, Langmuir, vol.23, issue.12, pp.6554-6560, 2007.
DOI : 10.1021/la070184w

R. Oda, I. Huc, M. Schmutz, S. Candau, and F. Mackintosh, Tuning bilayer twist using chiral counterions, Nature, vol.399, issue.6736, pp.566-569, 1999.
DOI : 10.1038/21154

S. Manet, Y. Karpichev, D. Bassani, R. Kiagus-ahmad, and R. Oda, Counteranion Effect on Micellization of Cationic Gemini Surfactants 14-2-14: Hofmeister and Other Counterions, Langmuir, vol.26, issue.13, pp.10645-10656, 2010.
DOI : 10.1021/la1008768

R. Oda, F. Artzner, M. Laguerre, and I. Huc, Molecular Structure of Self-Assembled Chiral Nanoribbons and Nanotubules Revealed in the Hydrated State, Journal of the American Chemical Society, vol.130, issue.44, pp.14705-14712, 2008.
DOI : 10.1021/ja8048964

URL : https://hal.archives-ouvertes.fr/hal-00672183

J. Stendahl, M. Rao, M. Guler, and S. Stupp, Intermolecular Forces in the Self-Assembly of Peptide Amphiphile Nanofibers, Advanced Functional Materials, vol.33, issue.4, pp.499-508, 2006.
DOI : 10.1002/adfm.200500161

F. Gobeaux, N. Fay, C. Tarabout, F. Meneau, C. Mériadec et al., Experimental Observation of Double-Walled Peptide Nanotubes and Monodispersity Modeling of the Number of Walls, Langmuir, vol.29, issue.8, pp.2739-2745, 2013.
DOI : 10.1021/la304862f

URL : https://hal.archives-ouvertes.fr/hal-00814021

G. Oster and D. Riley, Scattering from cylindrically symmetric systems, Acta Crystallographica, vol.5, issue.2, pp.272-276, 1952.
DOI : 10.1107/S0365110X5200071X

I. Harada and H. Takeuchi, Raman and ultraviolet resonance raman spectra of proteins and related compounds In Spectroscopy of Biological Systems, pp.113-175, 1986.

R. Tuma, Raman spectroscopy of proteins: from peptides to large assemblies, Journal of Raman Spectroscopy, vol.36, issue.4, pp.307-319, 2005.
DOI : 10.1002/jrs.1323

C. Riekel, M. Burghammer, and G. Schertler, Protein crystallography microdiffraction, Current Opinion in Structural Biology, vol.15, issue.5, pp.556-562, 2005.
DOI : 10.1016/j.sbi.2005.08.013

S. Roux, E. Zékri, B. Rousseau, M. Paternostre, J. Cintrat et al., Elimination and exchange of trifluoroacetate counter-ion from cationic peptides: a critical evaluation of different approaches, Journal of Peptide Science, vol.86, issue.3, pp.354-359, 2008.
DOI : 10.1002/psc.951

URL : https://hal.archives-ouvertes.fr/hal-00363502

L. Bail and A. , Monte Carlo indexing with McMaille, Powder Diffraction, vol.567, issue.03, pp.249-254, 2004.
DOI : 10.1107/S0021889869006649