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Abstract— Usually, the joint transmission friction model for 

robots is composed of a viscous friction force and of a constant 

dry sliding friction force. However, according to the Coulomb 

law, the dry friction force depends linearly on the load driven 

by the transmission, which has to be taken into account for 

robots working with large variation of the payload or inertial 

and gravity forces. Moreover, for robots actuating at low 

velocity, the Stribeck effect must be taken into account. This 

paper proposes a new inverse dynamic identification model for 

n degrees of freedom (dof) serial robot, where the dry sliding 

friction force is a linear function of both the dynamic and the 

external forces, with a velocity-dependent coefficient. A new 

sequential identification procedure is carried out. At a first step, 

the friction model parameters are identified for each joint (1 

dof), moving one joint at a time (this step has been validated in 

 [23]). At a second step, these values are fixed in the n dof 

dynamic model for the identification of all robot inertial and 

gravity parameters. For the two steps, the identification 

concatenates all the joint data collected while the robot is 

tracking planned trajectories with different payloads to get a 

global least squares estimation of inertial and new friction 

parameters. An experimental validation is carried out with an 

industrial 3 dof robot. 

I. INTRODUCTION 

HE usual identification method is based on the inverse 

dynamic model (IDM) which is linear in relation to the 

dynamic parameters, and uses least squares (LS) technique. 

This procedure has been successfully applied to identify 

inertial and friction parameters of a lot of prototypes and 

industrial robots  [1]- [10]. An approximation of the sliding 

Coulomb friction, ( )CF sign qɺ , is widely used to model 

friction force at non zero velocity qɺ , assuming that the 

friction force FC is a constant parameter. It is identified by 

moving the robot without any load (or external force) or with 

constant given payloads  [9]. 

However, the Coulomb law suggests that FC depends on 

the transmission force driven in the mechanism. It depends 

on the dynamic and on the external forces applied through 

the joint drive chain. Consequently for robots with varying 

load, the identified IDM is no more accurate when the 

transmission uses industrial speed reducer, screw-nut or 

worm gear because their efficiency significantly varies with 

the transmitted force. The significant dependence on load 

has been often observed for transmission elements  [15]- [19] 

 
 

through direct measurement procedures. Moreover, the 

mechanism efficiency depends on the sense of power transfer 

leading to two distinct sets of friction parameters. In 

addition, when the robot moves at very low velocity, as for 

teleoperation, one observes a velocity-dependence of the dry 

friction. 

This paper presents a new inverse dynamic identification 

model for n degrees of freedom (dof) serial robot, where the 

dry sliding friction force 
CF  is a linear function of both the 

dynamic and the external forces, with asymmetrical behavior 

depending on the signs of joint force and velocity, and a 

variation depending on the velocity amplitude. A new 

identification procedure is proposed. All the joint position 

and joint force data collected in several experiments, while 

the robot is tracking planned trajectories with different 

payloads, are concatenated to calculate a global least squares 

estimation of both the inertial and the new friction 

parameters. 

An experimental validation is carried out on the 3 first 

joints of the Stäubli TX40 industrial robot  [26]. 

II. USUAL INVERSE DYNAMIC MODELING AND 

IDENTIFICATION 

A. Modeling 

In the following, all mechanical variables are given in SI 

units in the joint space. All forces, positions, velocities and 

accelerations have a conventional positive sign in the same 

direction. That defines a motor convention for the 

mechanical behavior. 

The dynamic model of a rigid robot composed of n 

moving links is written as follows  [11]: 

dyn f off ext= + + +τ τ τ τ τ  (1) 

where: 

• 
dynτ  is the (nx1) vector of dynamic forces due to the 

inertial, centrifugal, Coriolis, and gravitational effects: 

( ) ( ) ( )dyn ,= + +ɺɺ ɺ ɺτ M q q C q q q Q q  (2) 

where q, ɺq  and ɺɺq  are respectively the (nx1) vectors of 

generalized joint positions, velocities and accelerations, 

M(q) is the (nxn) robot inertia matrix, ( , )ɺC q q  is the (nxn) 

matrix of centrifugal and Coriolis effects, Q(q) is the (nx1) 
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vector of gravitational forces. 

• τ  is the (nx1) input torque vector on the motor side of 

the drive chain, without offset: 

f f=τ g v  (3)  

where 
fv  is the (nx1) vector of current references of the 

current amplifiers, gf is the (nxn) matrix of the drive gains. 

• fτ  is the (nx1) vector of the loss force due to viscous 

and dry frictions, without offset: 

( )f V C= − −ɺ ɺτ F q F sign q  (4) 

where FV is the (nxn) diagonal matrix of viscous 

parameters, FC is the (nxn) diagonal matrix of dry friction 

parameters, and sign(.) denotes the sign function (Fig. 1.a). 

• offτ  is an offset force that regroups the amplifier offset 

and the asymmetrical Coulomb friction coefficient. 

• 
extτ  is the (nx1) external forces vector in the joint space. 

 

Then (1) can be rewritten as the inverse dynamic model 

(IDM) which calculates the motor torque vector τ as a 

function of the generalized coordinates: 

( ) ( ) ( ) ( )

( )

C V off ext

out C V off

,= + + + + + −

= + + +

ɺɺ ɺ ɺ ɺ ɺ

ɺ ɺ

τ M q q C q q q Q q F sign q F q τ τ

τ F sign q F q τ
(5) 

where out dyn ext= −τ τ τ  is the output force (the load force) of 

the drive chain. For more details, see  [23] 

B. Identification 

The choice of the modified Denavit and Hartenberg 

frames attached to each link allows to obtain a dynamic 

model linear in relation to a set of standard dynamic 

parameters 
Stχ   [6],  [11]: 

( )St St, ,= ɺ ɺɺτ D q q q χ  (6) 

where ( )St , ,ɺ ɺɺD q q q  is the regressor and 
Stχ  is the vector of 

the standard parameters which are the coefficients XXj, XYj, 

XZj, YYj, YZj, ZZj of the inertia tensor of link j denoted 
j
Jj, the 

mass of the link j called mj, the first moments vector of link j 

around the origin of frame j denoted 
j
Mj = [MXj MYj MZj]

T
, 

the friction coefficients FVj, FCj, the actuator inertia called 

Iaj, and the offset τoff j. The velocities and accelerations are 

calculated using well tuned band pass filtering of the joint 

position  [7]. 

The base parameters are the minimum number of 

parameters from which the dynamic model can be calculated. 

They are obtained by eliminating and by regrouping some 

standard inertial parameters  [12],  [13]. The minimal inverse 

dynamic model can be written as: 

( ), ,= ɺ ɺɺτ D q q q χ  (7) 

where ( ), ,ɺ ɺɺD q q q  is the minimal regressor and χ is the vector 

of the base parameters. 

The inverse dynamic model (7) is sampled while the robot 

is tracking a trajectory to get an over-determined linear 

system such that  [6]: 

( ) ( ), ,= +ɺ ɺɺY τ W q q q χ ρ  (8) 

with Y(τ) the measurements vector, W the observation 

matrix and ρ the vector of errors. 

The LS solution χ̂  minimizes the 2-norm of the vector of 

errors ρ. W is a (r×b) full rank and well conditioned matrix 

where 
er N x n= , with Ne the number of samples on the 

trajectories. The LS solution χ̂ is given by: 

( )
1

T Tˆ
−

+= =χ W W W Y W Y  (9) 

It is calculated using the QR factorization of W. Standard 

deviations 
iχ̂σ  are estimated using classical and simple 

results from statistics. The matrix W is supposed to be 

deterministic, and ρ, a zero-mean additive independent noise, 

with a standard deviation such as: 

( )T
E

2

rρρ ρσ= =C ρρ I  (10) 

where E is the expectation operator and Ir, the (r×r) identity 

matrix. An unbiased estimation of σρ is: 

( )
22 ˆˆ r bρσ = − −Y Wχ  (11) 

The covariance matrix of the standard deviation is 

calculated as follows: 

T 2 T 1

χχ ρ
E ( )( ) σ ( )ˆ ˆ

ˆ ˆ − = − − = C χ χ χ χ W W  (12) 

i

2
ˆ ˆ ˆ iiCχ χχσ =  is the i

th
 diagonal coefficient of ˆ ˆχχC . The 

relative standard deviation 
ri

ˆ% χσ  is given by: 

ri i
ˆ ˆ i

ˆ% 100χ χσ σ χ=  (13) 

However, experimental data are corrupted by noise and 

error modeling and W is not deterministic. This problem can 

be solved by filtering the measurement vector Y and the 

columns of the observation matrix W as described in  [7],  [8]. 

III. NEW DRY FRICTION MODEL AND IDENTIFICATION 

In this section, we introduce a dry friction model 

dependent on the load, that is 
outτ , and on the velocity ɺq . 

This model is more detailed in  [23] (see also  [24]). 

A. Load- and Velocity-Dependent Friction Model 

The Coulomb friction is still written ( )C sign ɺF q , with FC a 

(nxn) diagonal matrix. 

But here, for each link j, 
C jF  (the (j,j)

th
 element of the 

matrix 
CF ) depends linearly on the absolute value of the 
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load of joint j which is out jτ  (Fig. 1.b),  [15]- [19]: 

C j j out j jF α τ β= +  (14) 

At low velocity, taking into account the Stribeck effect 

improves the model accuracy,  [20]- [22]: 

( ) j sq / q

C j slj stj sljF F F F e
−

= + −
ɺ ɺ

  (15) 

where 
Sjqɺ  is a velocity constant, 

stjF  is the dry friction in 

stiction and 
sljF  is the dry friction in sliding mode. 

To combine both load (14) and velocity (15) variations 

one takes:  

  and  slj j out j j stj j out j jF Fα τ β γ τ δ= + = +  (16) 

Then, the dry friction model becomes (Fig. 1.c): 

( ) j Sjq q

C j j out j j j out j j j out j jF eα τ β γ τ δ α τ β
−

= + + + − −
ɺ ɺ

 (17) 

where 
jα , 

jβ , 
jγ  and 

jδ  are parameters to be identified. 

These new parameters depend on the mechanical structure of 

the reducers used to actuate the robot. 
 

 
Fig. 1.  a) Usual friction model with constant dry friction + viscous friction. 

b) Model with load-dependent dry friction + viscous friction. 

c) Model with load- and velocity-dependent dry friction + viscous friction. 
 

To simplify, by using ( )out j out j out jsign=τ τ τ  and 

( ) ( ) ( ) ( )out j j out j j out jsign sign q sign q sign P= =ɺ ɺτ τ , one obtains: 

( )
( )

( ) ( ) ( )

( ) ( )

j Sj

j Sj

q q

C j j j j j out j out j

q q

j j j j

F sign q e sign P ...

... e sign q

α γ α τ

β δ β

−

−

= + − +

+ −

ɺ ɺ

ɺ ɺ

ɺ

ɺ

 (18) 

For each joint, the frame ( )j out jq ,ɺ τ  is divided in 4 

quadrants which can be grouped two by two (Fig. 2.a). In the 

quadrants 1 and 3, the output power 
out jP  is positive and the 

actuator has a motor behavior. In the quadrants 2 and 4, 

out jP  is negative and the actuator has a generator behavior. 

In the model (18), 
jα , 

jβ , 
jγ  and 

jδ  take generally 

different values depending on the actuator behavior: 

mjα ,
mjβ , 

mjγ  and 
mjδ  for the motor quadrants, and 

gjα ,
gjβ , 

gjγ  and 
gjδ  for the generator quadrants. See Fig. 2.b: 

illustration of (19) with (14) for a constant velocity 0qɺ , 

and 2 different sets of friction parameters (motor and 

generator), in frame ( )out,τ τ .  

 
Fig. 2.  a) Four quadrants frame ( )

j out j
q ,τɺ  for motor or generator behavior.  

b) Asymmetrical friction for a given velocity 
0

qɺ and the stiction area. 

 

For each joint j, the dynamic model can be written as 

follows: 

( )j out j C j j V j j off jF sign q F qτ τ τ= + + +ɺ ɺ  (19) 

Considering 

mj mj mja = −γ α ,
mj mj mjb = −δ β ,

gj gj gja = −γ α , and 

gj gj gjb = −δ β , the inverse dynamic model for joint j is 

written with 2 expressions and becomes: 

( )

( ) ( )

( )

( ) ( )

j Sj

j Sj

j Sj

j Sj

q q

out j j mj out j mj out j

q q

mj j mj j V j j off j

q q

out j j gj out j gj out j

q q

gj j gj j V j j off j

P 0 1 a e ...

... sign q b e sign q F q

P 0 1 a e ...

... sign q b e sign q F q

−

−

−

−

 > ⇒ = + + +



+ + + +


< ⇒ = − − +

+ + + +

ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ

i

ɺ ɺ ɺ

i

ɺ ɺ ɺ

τ α τ τ

β τ

τ α τ τ

β τ





 (20) 

B. Friction Identification Method 

In order to keep a model linear in relation to the 

parameters and to use the linear least square method, one has 

an identification in 3 steps. 

At a first step, 
Sjqɺ  is identified with the measurements of 

several constant velocities trajectories: the amplitude of the 

transitional behavior, on the graph of the mean input torque 

with respect to the mean velocity (Fig. 4), is 3 times Sjqɺ . 

One introduces a new variable 
xp jE , defined by: 

j Sjq q

xp jE e
−

=
ɺ ɺ

 (21) 

At a second step, one identifies each joint separately to 

obtain especially the values of the friction parameters of each 

joint. However, the model (20) depends on the sign of 
out jP  

which is unknown. To overcome this problem, the samples 

of τ  measurements are selected outside of the dissipative 

area (Fig. 2.b) in order to get the same sign for 
out jτ  and 

jτ . 

This allows to get the sign of 
out jP  with: 

( ) ( ) ( ) ( )out j out j j j j jsign P sign q sign q sign Pτ τ= = =ɺ ɺ  (22) 

One can then write the IDM linear in relation to 

parameters and use the LS technique. To have only one 

a) 

jqɺ  
Poutj > 0 

Motor 

Poutj > 0 

Motor 

Poutj < 0 

Generator 

τoutj 

Poutj < 0 

Generator 

1 

4 3 

2 

b) τoutj 

τj 

1 

Approximated 

dissipative area 

Friction 
1 + αmj 

1 

1 – αgj 

1 

motor

g
en

er
at

or

motor

g
en

er
at

or

 
0

q 0
<

ɺ

 
0

q 0
<
ɺ

 
0

q 0
>
ɺ

 
0

q 0
>ɺ

Friction 

b) 

qɺ  

β 

-β 

outτ  

increases 

a) 

qɺ  

Fc 

-Fc 

f−τ  c) 

qɺ  

outτ  

increases 

f−τ  
f−τ  
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expression instead of two in (20), 2 variables are introduced, 

jP+  and jP−  defined by: 

( )j

j

1 sign P
P

2

+
+

= , 0 1j jP P
+> ⇔ = , 0 0j jP P

+< ⇔ =  (23) 

( )j

j j

1 sign P
P P

2

− +
−

= =   (24) 

The inverse dynamic model of joint j is then written: 

( ) ( )

 ( ) ( ) ( ) ( )

 

j j mj mj xp j out j j gj gj xp j out j

j mj mj xp j j j gj gj xp j j

V j j off j

P 1 a E P 1 a E ...

... P b E sign q P b E sign q ...

... F q

+ −

+ −

= + + + − − +

+ + + +

+

ɺ ɺ

ɺ

τ α τ α τ

β β

τ

 (25) 

out jτ  is linear in relation to inertial and gravity parameters 

and can be written 
out j outj outjD=τ χ . For a known value 

Sjqɺ  

(from step 1), the variable (21) allows to obtain a linear 

identification model (25) where the parameters to identify 

are: ( )mj outj1+α χ , 
mj outja χ , ( )gj outj1−α χ , 

gj outja χ , and all 

the friction parameters alone. By using exciting trajectories 

and the LS technique, one can then obtain the values of mjα , 

mja , 
gjα , and 

gja . 

The same method, with products of parameters to have a 

linear model, is hard to apply to a multi-dof robot as the 

number of parameters to identify would increase a lot with 

the number of joints (for example, with the 3 dof robot here: 

15 parameters for the usual model will give 67 parameters 

for the new one). That is why the second step is needed to 

identify the friction parameters alone, and set their values for 

the third step: the multi-dof identification. 

At a third step, the values of 
Sjqɺ , 

mjα , 
mja , 

gjα , and 
gja  

of each joint are added in the global observation matrix of 

the robot W. Then, the global inverse dynamic model is 

linear in relation to the inertial and gravity parameters, and 

to the parameters 
mβ , 

mb , 
gβ , 

gb , 
VF  (which are all (nxn) 

diagonal matrices) and 
offτ . All these parameters can be 

identified. 

IV. EXPERIMENTAL SETUP AND IDENTIFICATION 

 

            
Fig. 3.  The Stäubli TX40 Robot: picture without payload, picture with 

1.195 kg payload, and drawing with frame for each joint. 

 

A. Study case: Stäubli TX40 Robot 

The Stäubli TX40 robot (Fig. 3) is an industrial robot with 

6 rotational joints. The 3 first joints are studied here and the 

links 4, 5 and 6 are locked in position 0. 

The nominal velocity is 5.01 rad/s for the joints 1 and 2, 

and 7.52 rad/s for the joint 3. The maximum acceptable load 

at the extremity is about 2 kg. 

B. Data Acquisition 

The identification of dynamic parameters is carried out 

with and without payloads: five different additional masses 

can be fixed to the arm extremity. To excite properly the 

friction parameters to be identified, sinusoidal and 

trapezoidal velocities trajectories were used. 

The estimation of qɺ  and qɺɺ  are carried out with pass band 

filtering of q  consisting of a low pass Butterworth filter and 

a central derivative algorithm. The Matlab function filtfilt 

can be used  [25]. The motor torque is calculated using the 

current reference (3). In order to cancel high frequency 

ripple in τ , the vector Y  and the columns of the 

observation matrix W  are both low pass filtered and 

decimated. This parallel filtering procedure is carried out 

with the Matlab decimate function  [2],  [10]. 

C. First Identification Step 

As the Stribeck effect is increased when the joint is 

loaded, one takes for each joint the measurements with the 

highest load (positive and negative) and for several constant 

velocities (positive and negative) to observe the amplitude of 

the exponential transient behavior. For each joint, 
Sjqɺ  is 

measured on the graph of the input torque functions of the 

velocity (Fig. 4) : S1q 0.1=ɺ , S 2q 0.1=ɺ , and S 3q 0.15=ɺ . 
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Fig. 4. Graphs of the Stribeck effect: joints 1, 2, and 3, and zoom for joint 2 
 

D. Second Identification Step 

Each joint j is identified alone to obtain the values of 
mjα , 

mja , 
gjα , and 

gja . To identify the load-dependent friction, 

measurements with known payloads are used and the robot 

x0 

z0, z1 
z2 

z3 

x1, x2 

z5 

z4, z6 

x3 
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configuration is chosen so that the load variation is bigger. 

Gravity and inertial forces due to the additional mass fixed to 

the robot extremity have to be added in the IDM. Details are 

given for the joint 2: the measurements are done with the link 

3 aligned with link 2 (all links are locked except for the 2
nd

). 

And the inverse dynamic model of joint 2 is given by: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2 2 2 R2 2 R2 2 a k a k 2

a k a k 2 C2 2 V 2 2 off 2

J q MX gcos q MY g sin q M L q ...

...M L gcos q F sign q F q

= + + + +

+ + +

ɺɺ ɺɺ

ɺ ɺ

τ

τ
 (26) 

where: 

• 
2 2 R2J Ia ZZ= +  is the inertia moment 

2Ia  of the drive 

chain plus the inertia moment R2ZZ  of the arm, 

• 
R2ZZ , 

R2MX , 
R2MY  are the inertial parameters of link 2 

regrouped with those of link 3 to 6 which are locked, 

• 
2 m/sg 9.81=  is the gravity acceleration, 

• ( )a kM  [ ]( )k 1 : 5∈  is the mass of one of the five 

additional payloads, with accurate weighed values: 

0.00 kg, 0.6744 kg, 1.1955 kg, 1.6990 kg, and 2.2173 kg, 

• ( )a kL  is the length from the joint 2 to the gravity center of 

the mass of the additional payload (measured distances): 

0.00 m, 0.5335 m, 0.5395 m, 0.5465 m, and 0.5415 m. 

All variables and parameters are given in SI units on the 

joint space. 

One defines ( )ma2 kτ  which is the output torque due to the 

additional payload k, applied on joint 2: 

( )( ) ( ) ( ) ( ) ( )ma2 k a k a k a k 2 2M L L q g cos qτ = +ɺɺ  (27) 

Then, 
out 2τ  is defined by: 

( ) ( )out 2 2 2 2 2 2 2 ma2J q MX g cos q MY g sin qτ τ= + + +ɺɺ  (28) 

and the IDM of joint 2 with the proposed friction model is 

written as in (25): 

( )( ) ( )

 ( ) ( ) ( ) ( )

 

2 2 m2 m2 xp2 2 g2 g2 xp2 out2

2 m2 m2 xp2 2 2 g2 g2 xp2 j

V 2 2 off 2

P 1 a E P 1 a E ...

... P b E sign q P b E sign q ...

... F q

+ −

+ −

= + + + − − +

+ + + +

+

ɺ ɺ

ɺ

τ α α τ

β β

τ

 (29) 

One takes a linear form of this IDM and it is identified (a 

comparison of the results can be made with the usual friction 

model but is not detailed here. See  [23]). The sampled 

measurements, for k from 1 to 5, are concatenated using the 

( )ma2 kτ  corresponding to all experiments k with the motor 

torques ( )2 kτ , to get the linear system: 

 2 2 2 2= +Y W χ ρ  (30) 

with the measurements vector, the observation matrix, and 

the vector of base parameters defined as follows: 

T
T T T T T

2 ( ) ( ) ( ) ( ) ( )2 2 1 2 2 2 3 2 4 2 5
 = =  Y τ τ τ τ τ τ  (31) 

( )

( ) ( ) ( )

( )

( ) ( ) ( )

2 2 2 2 xp2 2 2 2

2 xp2 2 2 2 2 xp2 2

2 ma2 2 xp ma2 2 2 2 xp2 2 2 2

2 xp2 2 2 2 2 xp2 2

2 ma2 2

...

... ...

... ...

... ...

...

+ + +

+ + +

+ + − − −

− − −

− −

= 

−

− −

−

ɺɺ ɺɺ

ɺɺ ɺɺ

W P q P E q P gcos q

P E gcos q P gsin q P E gsin q

P τ P E τ P q P E q P gcos q

P E gcos q P gsin q P E gsin q

P τ P ( ) ( )

( ) ( )

xp2 ma2 2 2 2 xp2 2

2 2 2 xp2 2 2

...

...

+ +

− − 


ɺ ɺ

ɺ ɺ ɺ

E τ P sign q P E sign q

P sign q P E sign q q 1

 (32) 

T

( ) ( ) ( )

( ) ( )

( )

2 m2 2 m2 2 m2 R2 m2 R2 m2 R2

m2 R2 m2 m2 g2 2 g2 2 g2 R2

g2 R2 g2 R2 g2 R2 g2 g2

m2 m2 g2 g2 V2 off 2

1 J a J 1 MX a MX 1 MY ...

... a MY 1 a 1 J a J 1 MX ...

... a MX 1 MY a MY 1 a ...

... b b F

= + + +

+ − −

− −



α α α

α α α

α α

β β τ

χ

(33) 

Here 2

+P , 2

−P , and xp2E  are diagonal matrices, with: 

( )

( ) ( )

( ) ( )

( )

( ) ( )

2 i S

2 i 2 i

2 i ,i 2 i ,i

q q

xp2 i ,i

1 sign 1 sign
,

2 2

e

+ −

−

+ −
= =


 =

ɺ ɺ

P P
P P

Ε

 (34) 

The identification gives the values of the load-dependent 

friction parameters for the joint 2 (Table 1).  

The same method is applied to the joints 1 and 3 and one 

gets all friction parameters which are given in the Table 2. 

 
TABLE 1 

IDENTIFIED FRICTION PARAMETERS FOR JOINT 2 

Parameters 
Identified 

Values 

Standard 

deviation * 2 

Relative 

deviation 

1 + αm2 1.0084 0.0039 0.1952 

am2 0.1928 0.0064 1.6699 

1 – αg2 0.8824 0.0040 0.2269 

ag2 0.2581 0.0065 1.2640 

 
TABLE 2 

IDENTIFIED FRICTION PARAMETERS FOR THE JOINTS 1 TO 3 

                      j 

Parameters 
1 2 3 

 S jqɺ  0.1 0.1 0.15 

1 + αmj 1.0717 1.0084 1.4241 

amj 0.1524 0.1928 0.3170 

1 – αgj 0.8460 0.8824 0.5377 

agj 0.0909 0.2581 0.5039 

 

E. Third Identification Step 

A global identification of the 3 joints is carried out, with 

concatenation of all measurements: measurements joint by 

joint and measurements with all joints moving together. To 

concatenate the samples with different additional payloads 

fixed on the robot extremity, one defines for each joint j, the 

term ( )maj kτ  which is the output torque due to the additional 

mass k, applied on joint j. This torque is calculated thanks to 

known inertial and gravity parameters obtained by masses 
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and dimensions measurements and CAD. Thus, each majτ  

depends on the additional mass and on the positions, 

velocities and accelerations of all joints. 

 

One identifies first the usual model. The minimal inverse 

dynamic model is the same as in (7), except that one adds a 

column in the minimal regressor D, and 4 parameters in χ: 

ma1

usual ma2

ma3

0 0

0 0

0 0

 
 

=  
  

τ

τ

τ

D D  (35) 

T
T

usual 1 2 3One One One =  χ χ  (36) 

with 
maje

j

maj

One
τ

τ
= , where 

majeτ  is the estimation of the torque 

majτ  by the identification. If the model is well identified, 

each parameter 
jOne  should be found close to one. 

 

Then, one identifies the proposed model. The minimal 

inverse dynamic model is written from the usual one. At a 

first stage, one modifies the minimal regressor with the 

friction coefficients identified in step 2: 

( )( ) ( )( ) ( )new j,k j mj mj xp j j gj gj xp j usual j,kD P 1 a E P 1 a E D
+ −= + + + − −α α  (37) 

if 
kχ  is an inertial or a gravity parameter (that is to say one 

of the XX, XY, XZ, YY, YZ, ZZ, MX, MY, MZ, m, Ia, or One),  

( ) ( )new j ,k usual j ,kD D=  otherwise. 

At a second stage, one deals with the other friction 

parameters: the parameters FCj and their corresponding 

columns in 
newD  are first removed. Then instead, one adds 

the parameters 
mjβ , 

mjb , 
gjβ , and 

gjb  and their 

corresponding columns in 
newD : 

• if 
mjβ  is the k

th
 parameter in 

newχ , then the column k of 

newD  is defined as follows: 

( )
( )

new j ,k

j j

0 if k j
D

P sign q if k j
+

 ≠
= 

= ɺ
  (38) 

• if 
mjb  is the k

th
 parameter in 

newχ , then the column k of 

newD  is defined as follows: 

( )
( )

new j ,k

j xp j j

0 if k j
D

P E sign q if k j
+

 ≠
= 

= ɺ
  (39) 

• if 
gjβ  is the k

th
 parameter in 

newχ , then the column k of 

newD  is defined as follows: 

( )
( )

new j ,k

j j

0 if k j
D

P sign q if k j
−

 ≠
= 

= ɺ
  (40) 

• if gjb  is the k
th

 parameter in newχ , then the column k of 

newD  is defined as follows: 

( )
( )

new j ,k

j xp j j

0 if k j
D

P E sign q if k j
−

 ≠
= 

= ɺ
  (41) 

For this model too, the parameters 
jOne  should be found 

close to one. Both models are compared using the same 

measurements and the LS technique. 

F. Results 

The significant values identified with usual IDM and OLS 

regressions are given in Table 3 and those with the new IDM 

in Table 4 (the parameters with a large relative deviation are 

not significant and have been eliminated). Moreover, Table 5 

presents the relative norm of errors ρ Y  and the standard 

deviation for the two models.  

 
TABLE 3 

IDENTIFIED VALUES WITH USUAL FRICTION MODEL 

Parameters 
Identified 

Values 

Standard 

deviation * 2 

Relative 

deviation 

ZZ1R 1.3788 0.0049 0.3526 

XX2R -0.5813 0.0125 2.1428 

ZZ2R 1.1214 0.0037 0.3279 

MX2R 2.1369 0.0025 0.1184 

ZZ3R 0.2322 0.0019 0.7977 

MY3R -0.6429 0.0023 0.3521 

FS1 4.4425 0.0037 0.0837 

FV1 7.8791 0.0147 0.1867 

FS2 6.5695 0.0068 0.1042 

FV2 4.4636 0.0156 0.3501 

FS3 6.7221 0.0130 0.1930 

FV3 1.6279 0.0129 0.7950 

One1 1.3004 0.0154 1.1876 

One2 1.0004 0.0020 0.2001 

One3 1.1167 0.0059 0.5313 

 
TABLE 4 

IDENTIFIED VALUES WITH NEW FRICTION MODEL 

Parameters 
Identified 

Values 

Standard 

deviation * 2 

Relative 

deviation 

ZZ1R 1.3041 0.0046 0.3549 

XX2R -0.5749 0.0119 2.0742 

ZZ2R 1.2399 0.0032 0.2572 

MX2R 2.2137 0.0023 0.1028 

ZZ3R 0.2448 0.0013 0.5302 

MY3R -0.5594 0.0016 0.2878 

βm1 5.3913 0.0076 0.1417 

bm1 -2.1524 0.0166 0.7719 

FV1 6.7915 0.0155 0.2279 

βm2 6.1698 0.0157 0.2543 

bm2 3.5588 0.0169 0.4749 

βg2 -2.8371 0.0361 1.2726 

bg2 7.4121 0.0393 0.5303 

FV2 4.4877 0.0142 0.3159 

βm3 5.5496 0.0203 0.3660 

bm3 4.2601 0.0120 0.2825 

βg3 -3.0153 0.0440 1.4608 

FV3 1.4561 0.0103 0.7045 

One1 1.3768 0.0143 1.0406 

One2 0.9962 0.0015 0.1551 

One3 1.0145 0.0029 0.2865 
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TABLE 5 

MODELS COMPARISON 

 
Relative norm 

of error 

Standard 

deviation 

Usual Model 0.08913 1.3853 

New Model 0.07042 1.3064 

 

For each model and each joint, one plots a direct 

validation comparing the actual τ  with its predicted value 

ˆWχ . The graphs Fig. 6 and Fig. 7 show the input torque for 

movements done with the payload of 2.2173 kg and with 

trajectories described by the graphs of the velocities Fig. 5:  

velocities between 40% and 80% of the nominal velocity for 

joint 1, velocity at 0.5% of the nominal velocity for joint 2, 

and velocities between 2% and 6% of the nominal velocity 

for joint 3. The graphs Fig. 6 are obtained for the usual 

model and the graphs Fig. 7 for the new model: the measured 

input torque is plotted in black, the estimated torque is 

plotted in light-gray and the error is plotted in dark-gray. 

 

V. DISCUSSION 

The parameters of both models are identifiable (low 

standard deviation). The parameters jOne  are close to one 

which means that the additional payloads are well-identified 

by the models. As one can see in Table 5, the relative norm 

of error for the global identification is low. One observes a 

decrease of 20% in the relative norm of errors between the 

usual model and the new one. This difference is not very 

large because all measurements were used for the global 

identification: low and high velocities and low and high 

masses for the payload. The improvement is mostly 

important for low velocities and high load variation, whereas 

the models are equivalent at high velocity and low load 

variation. 

The joint 1 has no load variation due to gravity, as it is 

vertical. Thus, the new model will be useful for the joint 1 at 

very low velocities (Stribeck effect) or when there are 

inertial variations: Fig. 6 and Fig. 7 show the input torque for 

a movement with high accelerations and velocities. 
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Fig. 5.  Velocities of joints 1, 2 and 3 for the trajectories used in the torque comparison. 
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Fig. 6.  Comparison between measurement and estimation for the usual model - Joints 1, 2 and 3. 
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Fig. 7.  Comparison between measurement and estimation for the new model – Joints 1, 2 and 3. 
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One sees an improvement especially for the highest velocity. 

For the joint 2, Fig. 6 and Fig. 7 presents a comparison 

between the models, and for a movement at very low 

velocity, to show the improvement due to the modeling of 

the Stribeck effect. When the velocity increases, the 

improvement decreases but there is still an improvement 

with the new model due to the load-dependence. This one is 

not so important for the joint 2, as for the joint 3, as one can 

see in the Table 2: the parameters 
m2α  and 

g 2α  are closer to 

0 than the parameters 
m3α  and 

g 3α . 

For the joint 3, one observes (Fig. 6 and Fig. 7) an 

important improvement thanks to the modeling of the load-

dependence of friction. This modeling is very important at 

low velocity as the dry friction is predominant. 

 

The identification of the new model is carried out with 

three steps, is more time-consuming and the setting up must 

be adapted for the measurements with additional masses. 

However, this model is valid for all type of movement: low 

and high velocities, low and high loads. For some 

movements, it is equivalent to the usual model, whereas for 

others (low velocities or high load variation), it brings a real 

improvement. 

 

The proposed model is important for example in 

teleoperation, where the robots work at reduced velocity and 

can carry payloads or perform tasks with the effector 

subjected to external forces. 

VI. CONCLUSION 

This paper has presented a new dry friction model, with 

load- and velocity-dependence, and its identification method 

for a multi-dof robot. The inverse dynamic model and the 

identification of its parameters have been successfully 

validated on the 3 first joints of an industrial robot. As a 

result, one observes an improvement comparing to the usual 

model, for movements with large load variations and for 

movements at low velocity. Robots carrying important 

masses or with large inertial or gravity variations are 

concerned. The field of applications for which the new 

model can be very interesting is the telerobotics. 

Future works concern the application of this model to 

slave robots for teleoperation and the use for torques 

monitoring and collision detection. 
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