P. Pankajakshan, G. Engler, L. Blanc-féraud, and J. Zerubia, Deconvolution and Denoising for Confocal Microscopy, Modeling in Computational Biology and Biomedicine, 2013.
DOI : 10.1007/978-3-642-31208-3_4

P. Sarder and A. Nehorai, Deconvolution methods for 3-D fluorescence microscopy images, IEEE Signal Processing Magazine, vol.23, issue.3, pp.32-45, 2006.
DOI : 10.1109/MSP.2006.1628876

C. Chaux, L. Blanc-féraud, and J. Zerubia, Waveletbased restoration methods: application to 3d confocal microscopy images, Proc. SPIE, pp.67010-67010, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00733457

N. Boussion, C. Cheze-le-rest, M. Hatt, and D. Visvikis, Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging, European Journal of Nuclear Medicine and Molecular Imaging, vol.17, issue.2, pp.1064-1075, 2009.
DOI : 10.1007/s00259-009-1065-5

URL : https://hal.archives-ouvertes.fr/inserm-00537782

N. Dey, L. Blanc-feraud, C. Zimmer, P. Roux, Z. Kam et al., Richardson???Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution, Microscopy Research and Technique, vol.59, issue.4, pp.260-266, 2006.
DOI : 10.1002/jemt.20294

M. Laasmaa, M. Vendelin, and P. Peterson, Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images, Journal of Microscopy, vol.295, issue.2, pp.124-140, 2011.
DOI : 10.1111/j.1365-2818.2011.03486.x

K. Margret, S. Thorsten, M. Temerinac-ott, J. Padeken, P. Heun et al., Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (otf), Conference on Computer Vision and Pattern Recognition (CVPR). 2013, pp.2179-2186

J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, 1981.
DOI : 10.1007/978-1-4757-0450-1

L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, issue.3, pp.338-353, 1965.
DOI : 10.1016/S0019-9958(65)90241-X

M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Transactions on Medical Imaging, vol.21, issue.3, pp.193-199, 2002.
DOI : 10.1109/42.996338

S. Belhassen and H. Zaidi, A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET, Medical Physics, vol.69, issue.3, pp.1309-1324, 2010.
DOI : 10.1118/1.3301610

H. Ayasso and A. Mohammad-djafari, Joint NDT Image Restoration and Segmentation Using Gauss–Markov–Potts Prior Models and Variational Bayesian Computation, IEEE Transactions on Image Processing, vol.19, issue.9, pp.2265-2277, 2010.
DOI : 10.1109/TIP.2010.2047902

L. Bar, T. F. Chan, G. Chung, M. Jung, N. Kiryati et al., Mumford and shah model and its applications to image segmentation and image restoration, Handbook of Mathematical Methods in Imaging, pp.1095-1157, 2011.

A. Koenig, L. Hervé, J. Boutet, M. Berger, J. M. Dinten et al., Fluorescence diffuse optical tomographic system for arbitrary shaped small animals, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1593-1596, 2008.
DOI : 10.1109/ISBI.2008.4541316

A. Garofalakis, A. Dubois, B. Kuhnast, D. M. Dupont, I. Janssens et al., In vivo validation of free-space fluorescence tomography using nuclear imaging, Optics Letters, vol.35, issue.18, pp.3024-3026, 2010.
DOI : 10.1364/OL.35.003024.m001