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Abstract

This paper addresses non-linear gyrokinetic simulations of ion temperature gradient (ITG) turbulence in
tokamak plasmas. The electrostaticGysela code is one of the few international 5D gyrokinetic codes able
to perform global, full-f and ux-driven simulations. Its has also the numerical originality of being based on
a semi-Lagrangian (SL) method. This reference paper for th&ysela code presents a complete description
of its multi-ion species version including: (i) numerical scheme, (ii) high level of parallelism up to 500k cores
and (iii) conservation law properties.

Keywords: plasma turbulence, gyrokinetic global full-f ux-driven simulations, semi-Lagrangian method,
high-performance computing

1. Introduction

In magnetic fusion devices, the power gain increases non-linearly with the energy con nement time. The
quality of the plasma energy con nement then largely determines the size and therefore the cost of a fusion
reactor. This con nement time is mainly governed by the plasma turbulence as deserved in such devices
{ leading to uctuations with relative magnitude of a few percents in the hot core { and the associated
transport. Understanding its origin and properties in view of a possible control is one of the critical issues
in fusion science [75]. The inhomogeneities in density, temperature, and magnetic eld place the plasma
naturally out of thermodynamical equilibrium, and tend to excite several micro-instabilities over a wide
spectral range. These plasmas exhibit a low collisionality so that conventional uid models are questionable
and kinetic descriptions are more appropriate. A kinetic formalism is also needed to account for wave-
particle interaction. In such rst-principle descriptions of plasmas, the six dimensional evolution equation
for the distribution function { Vlasov or Fokker-Planck equations { is solved for each species, coupled to the
self-consistent equations for the electromagnetic elds, namely Maxwell's equations. Fortunately, as far as
turbulent uctuations are concerned, they develop at much lower typical frequencies than the high frequency
cyclotron motion. Therefore, this 6D problem can be reduced to a 5D one by removing, using phase space
reduction, the gyromotion and other high-frequency dynamics. The useful part of the distribution function
then evolves in a ve dimensional phase space generated by four slow variables and an adiabatic invariant.
This model is known as thegyrokinetic model. For detailed gyrokinetic theory see review papers by Brizard
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& Hahm (2007) [16] and Krommes (2012) [79]. But even with this dimensional reduction, building such a
simulation tool remains quite challenging.

The rst-principle gyrokinetic codes, developed for this purpose, make already an intensive use of mas-
sively parallel supercomputers and require state-of-the-art high performance computing (HPC). Neverthe-
less, solving 5D non-linear gyrokinetic equations for several ion species proves so challenging that to date
no code is able to treat all the physics involved. Several strategies based on di erent simpli cations have
been developed to decrease these extreme numerical costs. We encourage the reader to refer to the paper
by Garbet et al. (2010) [53] for an overview of these dierent strategies for numerical simulations and
their comparisons with fusion experiments. A rst strategy is to reduce the simulation domain to a small
plasma volume aligned with the magnetic eld lines and su ciently small to neglect the radial variations
of macroscopic quantities such as the density and temperature elds and their gradients. Such so called
ux-tube codes €.g. GS2 [44], GENE [76], GYRO [22], GKW [100]) have the advantages to drastically re-
duce CPU time and memory consumption compared to theglobalapproach where computing over the whole
plasma domain requires huge 3D meshes. Despite this constraint, a global approach must be considered
whenever the \global" scales are comparable to that of the turbulence. This allows one in particular to
address some aspects of the barrier physics. Gyrokinetic models can also be split in two distinct families
with respect to the representation of the distribution function: either full- f or f models. In the f model,
only perturbations with respect to some prescribed background equilibrium (usually Maxwellian in velocity)
are computed. Conversely, in fullf models, the whole distribution function is evolved. Especially, the back
reaction of turbulent transport is accounted for in the time evolution of the equilibrium. In global and full- f
simulations, the turbulent regime is evanescent if no free energy is injected in the system to prevent the
inevitable relaxation of equilibrium pro les below the { linear or non-linear { threshold of the underlying
instability. A heat source is mandatory in view of exploring the long time, typically on energy con nement
times, behavior of turbulence and transport, leading to the so-calledux-driven simulations.

Finally, the existing codes di er also by their numerical schemes which have evolved all along the last
twenty- ve years, in direct link with the evolution of HPC resources. Historically, particle in cell methods
(PIC) {pioneered for gyrokinetics by Lee [88]{ have been most popular, and represent widely adopted
approaches to numerical simulations of kinetic plasmas. They used to be considered as the most e cient tool
to describe plasma dynamics, essentially because they are capable of describing many physical phenomena
in the full dimensional case, at relatively small computational costs. Many gyrokinetic codes are PIC codes.
Let us mention, Parker's code [97], Sydora's code [117], PG3EQ [42], GTC [90], ELMFIRE [63], GT3D [73],
ORB5 [12, 77] , GTS [123] and XGC1 [26]. However, it is well known that the relative numerical noise
inherent to PIC methods constitutes a strong limiting factor to accurately describe the distributioB function
in phase space on long time scales. Moreover, the numerical noise only slowly decreases, like N, when
the number N of particles is increased. The main problem for non-linear gyrokinetic simulations is that
the noise levela priori accumulates in time [96]. Even small errors in the evaluation of these moments can
cause a systematic corruption of the simulation results on relatively short periods of time. Consequently,
the reduction of numerical noise has been right from the start a matter of intense research, and many
improvements have taken place during the past ten years, making use of di erent statistical methods: (i)
control variate method of variance reduction (with f scheme [5, 97] or \adjustable control variate" method
[60]); (ii) importance sampling (with \optimized loading" [61]). These techniques have enabled to reduce the
numerical noise by orders of magnitude. Let us speci cally mention the achievements made on the ORB5
gyrokinetic PIC-code [77] on the noise issue, which are summarized in [120]. Another approach to avoid the
issue of marker sampling noise is the Eulerian approach. It consists in discretizing the phase space on a xed
grid, and in applying nite di erences, nite volumes and/or Fourier transforms to model the di erential and
integral operators (seee.g. [20] for a review). The main drawback stems from the fact that these numerical
schemes are based on explicit time integration, so they are limited by the Courant-Friedrichs-Lewy (CFL)
stability condition, which slaves the maximum time step to the grid space resolution. Several gyrokinetic
codes are based on this approach as proved by this non-exhaustive list of Eulerian codes: GS2 [78, 44],
GENE [76, 93], GYRO [22], GKV [124], GKW [101] and GT5D [70, 74].

As described in the following, one peculiarity of theGysela code is to be based on a semi-Lagrangian
method, which is a mix between PIC and Eulerian approaches. The objective is to try to take advantages
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of both methods, namely limited numerical dissipation with limited numerical noise. We had shown good
properties of energy conservation of semi-Lagrangian scheme for a 4D drift-kinetic model [55]. Thaysela
code exhibits now not only accurate radial force balance [38] but also good properties of local conservation
laws for charge density, energy and toroidal momentum [2]. These conservation properties are detailed
in the following in section 5. Such conservation properties are comparable to those obtained with the
GT5D code [68], which is based on a fourth-order non-dissipative conservative nite di erence scheme
[71, 70] which conserves bothL! and L? norms. Anyway, each of these three numerical approaches {
PIC, Eulerian or semi-Lagrangian{ has advantages and drawbacks (see [56] for a review). But for sure,
the wide variety of gyrokinetic codes, coming from all these di erent choices, is a strength for the fusion
community. Indeed, due to the extremely challenging computing requirements, each gyrokinetic code runs at
the limit of its applicability range. For instance signi cant advances like taking into account kinetic electrons
and electromagnetic e ects are extremely time consuming for global codes. This has been rstly achieved
in the GYRO code [21], then in the GENE code [54] and in the ORB5/NEMORB codé' [13] and more
recently in the GKW code [67]; this list is not exhaustive. Conversely, the fullf and ux-driven regimes are
two necessary ingredients to investigate, among others, the mechanism underlying self-consistent transport
barrier creation. Benchmarks between the di erent approaches are therefore primordial €.g. [118, 48]).
Di culties reside generally in nding common domains of validity (set of parameters, initial and boundary
conditions,...). The choice of a global fullf approach has been done for the electrostatic non-linear 5D
gyrokinetic code Gysela described in this paper. Electrons are at present considered adiabatic. Within the
community of the 5D gyrokinetic codes,Gysela is close to GT5D code [72] in the sense that they are both
global full-f ux-driven codes. They mainly di er by their numerical schemes and their ux driven choice
where the source term is compensated by a sink term in GT5D [69].

In the following, all the components of the semi-LagrangianGysela code will be detailed both in terms
of physical equations and numerical methods as well as the veri cation and benchmarks that have been
performed. Such ux-driven ITG simulations are extremely challenging and would not be possible without
a high level of parallelism which will also be addressed. The code is currently using Peta ops HPC resources
and is actively preparing its evolution for the future exascale era. The paper is a comprehensive description
of the multi-ion species version of the code with a detailed description of all the numerical schemes employed
and with a precise presentation of the parallelisation of the code. The last same exercise has been performed
in 2006 [55] on the initial 4D drift-kinetic version of the code. The upgrade to a 5D gyrokinetic version
in 2007 [57] and the recent development of a multi-ion version [47] have completely changed the needs in
parallelization. Several important physical results have been obtained with the 5D version of the GYSELA
code in the ux-driven regime, although there was so far no reference paper for it. These results will be
highlighted in the various section of the paper. They deal with: (i) ux driven regime and non-local transport
[105, 37], (ii) neoclassical theory with the implementation of a collision operator [51, 36], (iii) poloidal and
toroidal rotation issues and [39, 106] (iv) the possible control of turbulence by means of sheared ows,
including transport barrier generation and stability [115, 116]. Each of these physical studies have been
made possible thanks to the constant upgrade of the code and critical numerical developments, which are
exhaustively detailed (and benchmarked whenever it is relevant) in the present paper. It is organized as
follows. The physical model is presented in section 2. The numerical methods and the hybrid OpenMP/MPI
parallelism are described in section 3. The code veri cation via invariance tests and benchmarks are detailed
in section 4. The conservation law properties are analyzed in section 5. Discussion and conclusion close the
paper in section 6.

2. GYSELA gyrokinetic global full- f model

Gysela is a global code presently used with a simpli ed concentric circular magnetic con guration
(section 2.2) similar to the Tore Supra equilibria. The new version of the code still considers adiabatic

INEMORB seems to have been the rst electromagnetic branch of ORB5. Apparently, the ORB groups have meanwhile
decided to avoid distinction between the di erent branches. So for the rest of the paper, we will refer to the code with the
unique ORB5 name.



electrons but the possibility to address transport of impurities has been added. The time evolution of
the full distribution function of each ion species (major species as e.g Deuterium + one minor impurity)
is governed by a 5D non-linear gyrokinetic Vlasov equation (section 2.3) self-consistently coupled to a 3D
Poisson equation (section 2.4). The required gyroaverage operator (section 2.5) that used to be approximated
by a Padce expansion in the past versions ofGysela can now be computed with a direct average on gyro-
circles. Collisions are taken into account. With a linearized intra-species collision operator (section 2.7)
neoclassical e ects are recovered. Inter-species collisional transfers are now also considered (section 2.8).
The problem of initialization and radial boundary conditions inherent to global full- f codes likeGysela are
addressed in section 2.6. Concerning boundary conditions, three modes are available in the code: (i) tixed-
gradient mode where the temperature pro le is xed at both radial boundaries, corresponding to decaying
turbulence regimes (relaxation of equilibrium pro les below instability thresholds cannot be avoided); (ii)
the gradient-driven mode, equivalent to the previous one but where gradient pro les are maintained by an
arti cial Krook-type operator and nally (iii) the  ux-driven mode (the most often used) where temperature
is still xed at the outer boundary but can evolve freely at the inner one. In the gradient-driven mode the
strength of the drag force of the Krook operator governs the dynamics of the mean (ux surface averaged)
gradient pro les: they remain all the more sticked to their initial value if the Krook coe cient ¢ is large.
More precisely, signi cant departures of the mean proles w.r.t. their initial value are only possible on
short time scales ¢ K 1), while the long time behaviour ensures that they remain unchanged when time
averaged. Concerning the ux-driven mode, the turbulence is forced with a constant-in-time incoming ux
generated by a heat source independent of the distribution function (section 2.9) leading to possible long-
time simulation. A simulation over several con nement times has been recently performed for comparison
to Tore-Supra experiments [41].

2.1. Toroidal coordinate system

Let us introduce the notations used in the paper. We consider a set of coordinates labelle'g, the
metric tensor fg; g is the product of the transposed Jacobian matrixJT and the Jacobian matrix J, i.e
fgi g= JT J. For a set of cartesian coordinatesX ', the elementsJ; of the Jacobian matrix are de ned as
Jij = @ X'. Let g represents the determinant of the metric tensor (.e g = detfg; g), then the Jacobian in

spacely is de ned asJy = P gandisequaltod, = r x* rr x? r x3 ! i.e the volume element isJ, d3x.
The tensor fgi g is the inverse of the tensorf gj 9. The element of the contravariant metric tensor veri es
the relation g = r x' r xI. With these notations, each vectorA can be de ned in terms of its covariant
componentsA; asA = Ajr x' and the equivalent norm is given bykAk = ° (A1)2g'! + (A2)2g%2 + ( A3)2g3.
At present, in the code, the coordinate system used is the toroidal ond,e the set of coordinates &*; x?; x3)
isequalto (r; ;' ) wherer is the radial position, is the poloidal angle and' the toroidal angle. Therefore,
g'=g" =1, ¢g®¥=9g =1=r?,¢g®¥=¢g =1=R%?andgl =0forall i 6j. R(r; )= Ro+ rcos with Rg
the major radius of the torus at the magnetic axis. The JacobianJy is then equal toJyx = rR.

2.2. Simpli ed magnetic con guration and current

Consistently with the chosen coordinate system, the magnetic topology is xed and consists of concentric
toroidal magnetic surfaces with circular poloidal cross-sections. The magnetic eldB is dened as B =
(BoRo=R)[ (r)e + e ]with (r)= r=(qRy). Bo corresponds to the magnetic eld on the magnetic axis.
The vectorse = rr ande = Rr ' are the unit vectors in the poloidal and toroidal periodic directions.
The safety factor pro le q(r) is de ned by three parametersq;, ¢, and ¢z asq(r) = o + g exp (6 log(r=a)).
With this choice of angles,B r '=B r = q(r)Ro=R, namely the local eld line pitch depends not only
onr but also on . The current is decoupled from the eld and the magnetic eld is assumed to satisfy the
Ampere equation, but not the force balance equation. Then the Ampere equation leads to a current of the

form oJ = oJ7Rr' with oJy = BeRe_ 1408 L cos

2.3. Full-f gyrokinetic Vlasov equation
Let us consider the gyro-center coordinate system Xg;Vgk; s) Where xg corresponds to 3D space
coordinates, Vg is the velocity parallel to the magnetic eld line and ¢ = mgv3, =(2B) the magnetic
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moment. Let Fs be the particle distribution function of speciess and F4 the one associated to the guiding-
centers. The global gyrokinetic codeGysela models for each species, the time evolution of the guiding-

center distribution function Fg, with no separation between equilibrium and perturbation. The non-linear

time evolution of Fg is governed by the 5D collisional gyrokinetic equation described by Brizard and Hahm
[16]

where H the Hamiltonian of the system is de ned asH = %msvék + sB + gU and where [;:]5. are the
gyrokinetic Poisson brackets expressed as (see equation (150) in [16])
B

X;Ylee = —=— X@,.Y @,XrY
mSBks ks

(rX rry) (2)

with b = B =kBk the unit vector along the magnetic eld line at the guiding-center position. Here, U = J :U
is the gyro-average of the uctuating electrostatic potential U. It corresponds to an average over a cyclotron
motion: J :U = 02 U%, where' . stands for the cyclotron phase. This gyro-average operatod will be
discussed in more detail in section 2.5. The scalaB,, corresponds to the volume element in guiding-center

velocity space. It is simplyB,, = Bs b with B¢ de ned as

m
Bs B + iVGkr b (3)

Bis B+ Vb (1 b) (4)
In our case, the right hand sideR hs of the previous Boltzmann equation (1) is given by
Rhs(Fs) = By Di(Fs)+ K(Fs)+ C(Fs)+ S

where D, and K are respectively a di usion term and a Krook operator applied on a radial bu er region

(see section 2.10)C corresponds to a collision operator (see section 2.7) anfl refers to source terms which
are detailed in section 2.9.

Let us de ne the Poisson bracket asfF;G]= b (r F rr G), and the parallel projection asr \F = b, r F.

Let be represent the covariant components of the unitary magnetic eld vectorb and Jx the Jacobian in
space of the system. Then it can be easily checked thaFfG] = J, ! 'k @F @Ghc where ¥ is the Levi-
Civita symbol and b r F = by @F . By using this formalism, it can be proven that the Hamiltonian form

(1) is equivalent to the following conservative form

3 dxg @ dvgk
Bks@?’ r B Fs # @ur Bis—gp Ts = Rhs(Fs) (5)
where the evolution of the gyro-center coordinates of species are described (within the electrostatic limit)

by:

d i . i .
:j(tG = vVekbg X5+ Ve B, I X5+ Vp, I Xg (6)
dv msV
Me dfk = sbg TB by ruU+ SBGkvE 5. I'B 7



where by is de ned as’

B MsVek
b.= — + (8)
° Bks 0‘SBksB
The i-th contravariant components of the 'E B’ drift are given by
i =yl _ 1 Ly
° Bks
and the i-th contravariant components of the ‘grad{B' and “curvature' drifts read (atlow = nT=(B?=2 ()
limit) I
_ _ mgv2, + B _
vp, Fxb=vh = 2B 7 gyl (10)

s B, B

Besides, using the fact that the axi-symmetric equilibrium is determined by three of the ideal MagnetoHy-
droDynamic (MHD) equationsr p=J B,r B = gJandr B =0, the i-th contravariant components
of b, appearing in equation (6) read

B r x L MsVek od T Xy
Bks oﬁBks B

by rxk=0b= (11)
2.4. Self-consistent coupling with the quasi-neutrality equation

The electron densityne is supposed to follow an adiabatic (Boltzmann) response on a ux surface, namely
Ne(X;t) = ney(r)exp(e[U(x;t) h Uigs(r;t)]=Te(r)) with Te the electron temperature. hU igs represents
the ux surface average of the electrostatic potential U, i.e

R
U ) d d

hU igs(r) =
Fs(r) 3. d d

Let us de ne, for each speg,ies, its initial raF_JJaI density prole ng, and its concentration cs, Ns=Ne, -
We also assume thatne, = _Zsns, so that ¢, Zs = 1. Under these assumptions, the quasi-neutrality
equation, self-consistently coupled to the gyrokinetic equation (5), reads

1 X Ns U h Uigs 1 X

—  Zgr —2r,U +e ———= = — Z(n NG.: 12

e SF20 g0 T e, s(Ne, Ng,:eq) (12)

S S

with ¢ = Bo=ms andr , = @; %@ . Here, the polarization density (rst term of eq. (12)) is ap-
proximated by its expression in the limit of large wavelengths with respect tg, the Larmor radius (limit
ko s 1). The gyro-center density ng, of speciessis de ned by ng (x;t) = Jyd dvgx J :Fs(x;v;t)
{where J, = (2 B ,,=ms) stands for the Jacobian in the velocity space{ similarly ng_.eq is the gyro-center
density for Fs = Fs.eq. In practice, the right hand side of (12) the charge density of guiding-centers , is

computed as L X z z
(x;t)y= — Zs dJ: Jv dvgk (Fs  Fseq) (13)

n
€o s

To avoid the problem of the singularity in 1=r, the problem is solved within aring rmin  r  rmax Where
rmn 10 5. One di culty with equation (12) is to deal with the ux surface average term hU igs. This
term is non-linear in , because the space Jacobian depends on Therefore, it does not allow one to project
simply in 2D Fourier space. To overcome this problem, solving (12) is performed in two steps as proposed

B MsVgk b rB

2Let us mention that in this de nition by is not equal to Bs=B,, butequalto bs = ¢ oA 5
ks ks
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P
in [32]. Let us de ne the di erential operator L = ni VAN 5”030 r.- andh i.. the average on
eo S

and ' directions. Then, the rst step consists in nding U solution of the following di erential system,

|_+T3 U= h i. with UFr; )=U®r: ) h Ui () (14)

e

The second step consists in solving the following 1D radial di erential equation

LhUigs=h i.. + L+T3 hU ies (15)

e

In this equation, ' plays the role of a parameter. A Fourier projection is performed in the direction.
In the radial direction, for both di erential systems (14) and (15), nite di erences are used. Finally, the
electrostatic potential is reconstructed with the formula U = U h Uigs + hU ikis. For both equations
(14) and (15), Dirichlet boundary conditions are applied at the outer boundary at rmax , While Dirichlet
or Neumann can be chosen at the inner boundary atn,, . Notice that these boundary conditions then
apply to U, not to the actual electric potential U. Given the relationship betweenU and U, imposing the
Dirichlet condition U(rgc ) =0, with rgc = frmin ;rmax 9, iS then equivalent to the following conditions on
U: U(rge) = hJi .+ (rgc) and Jigs(rgc) = 0. The Neumann condition proceeds in a similar way. In
GYSELA, it can be only applied to the inner boundary provided r i, 10 2. In this case, Jy(min ; ) is
fairly independent of , so that the ux surface average is almost equal to the average over both angles:
hirs hi . . Inthe framework of this approximation, imposing the Neumann condition @U(rmin ) =0 is
equivalent to @U(rmin ) = @hJi + (rmin )  @hJigs(rmin ) = 0. The fact that this solution is equivalent
to solving directly equation (12) and the detailed numerical scheme associated are explained in Appendix
AppendixA.

2.5. Gyro-average operator

The gyro-radius s is transverse tob = B=B and depends on the gyrophase anglé, i.e s =
(b v)=g= s(cos' ce,;+sin' .e,,). Here e;; and e;, are the unit vectors of a basis in the plane
perpendicular to the magnetic eld direction b. Let xg be the guiding-center radial coordinate andx the
position of the particle in real space. These two quantities di er by a Larmor radius s asx = Xg+ s. The
gyro-averageg of any function g depending on the spatial coordinates corresponds to the following operation

I 2 d I 2 '
O(Xg;Ve) = 5 g(x) = 5 Sexp(s I') 9(Xo) (16)
0 0

The operator e =" corresponds to the change of coordinatesx({p) ! (Xg;pg). This gyro-average process
consists in computing an average on the Larmor circle. It weakens uctuations that develop at sub-Larmor
scales. Introducingd{k) the Fourier transform of g, with k the wave vector, it is possible to prove that the
gyro-average operation reads

Z 1 d3k

O(XG;V2) = R Jo(k> s)B(k)e™ xe (17)

where k, is the norm of the transverse component of the wave vectok, = k (b k)b, and Jg is the
Bessel function® of rst order. Considering the expression (17), in Fourier space the gyro-average reduces
to the multiplication by the Bessel function of argument k, . This operation is straightforward in simple
geometry with periodic boundary conditions, such as in local codes. Conversely, in the case of global codes,
the use of Fourier transform is not applicable for two main reasons: (i) radial boundary conditions are non
periodic, and (ii) the radial dependence of the Larmor radius has to be accounted for. Several approaches
have been developed to overcome this di culty.

2R
! o exp(iz cos )cos(n )d .

3The Bessel function of the rst kind are de ned as  Jn (z) =

7



2.5.1. A Pac approximation for the gyro-average operator

The rst one, currently used in the code, consists in simplifying the treatment of the gyro-average
operator by approximating the Bessel function with a Pace expansionJpae (ko ) = 1= 1+ (ko s)°=4
(e.g. see [108]). The advantage of this Pade representation is that it does no longer requires to use the
Fourier space as required by the Bessel function. Indeed, since it involves , it can easily be treated in the
con guration space by using the relationr 2 $ k2 : Using this Laplacian equivalence, the gyro-average
operation of any g function is de ned such that each m Fourier mode of g is solution of the equation

1 BO @ 1@ m2 m . ! -— m W !
2§m755 @JrF@rrT g'(rn')=4g"(r" )

(18)

where at rst approximation B(r; ) has been replaced byBy to be consistent with the quasi-neutrality
equation. In this di erential equation, rst and second derivatives are computed using a Taylor expansion
of second order leading to a tridiagonal matrix system. This Pace approximation is asymptotically correct
in the large wavelength limit k, s 1 (indeed: Jo(k» s) 1 k3 2=4fork, s 1), while keepingJpae

nite in the opposite limit k, ¢! 1 . The drawback is a Itering of small scales: in the limit of large
argumentsx ! 1, Jpae (X)  4=x?, whereasJo(x) (2=x)2cosk =4).

2.5.2. Integration on gyro-circles using Hermite interpolation

A second widespread method for this gyro-averaging process is to use a quadrature formula. In this
context, the integral over the gyro-ring is usually approximated by a sum over four points or more on the
gyro-ring [88]. This is rigorously equivalent to considering the Taylor expansion of the Bessel function at
order two in the small argument limit, namely Jo(k» s)' 1 (k» s)>=4, and equivalent to computing the
transverse Laplacian at second order using nite di erences. This method has been extended to achieve
accuracy for large Larmor radius [61],i.e the number of points (starting with four) is linearly increased with
the gyro-radius to guarantee the same number of points per arclength on the gyro-ring. In this approach
{used e.g. in [73] and [77]{ the points that are equidistantly distributed over the ring are rotated for each
particle (or marker) by a random angle calculated every time step. This is performed on a nite element
formalism and enables therefore high order accuracy by keeping the matricial formulation. In [30] the
in uence of the interpolation operator (which is of great importance when the quadrature points do not
coincide with the grid points) has been studied and it is shown that the cubic splines are appropriate. The
direct integration on gyro-circles proposed in [30] has been recently generalized to arbitrary coordinates
[113] and implemented in the code. For the distribution function the gyro-average operator is applied on
Fs Fseq to deal with values close to 0 at the domain boundaries. Two interpolations {cubic splines and
Hermite polynomial{ have been tested on analytical cases and basic gyrokinetic simulations with a 4D drift-
kinetic model, one Larmor radius and the standard linear Cyclone benchmark case (see [113] for more details
and comparison with Pace approximation). Both appear to give the same results. However, the Hermite
interpolation is slightly faster and its local character is more favourable for parallelization. The number
of points per circle is an input parameter comprised between 4 and 16. There is no adaptive number of
points depending on the Larmor radius value because the CPU time is in fact determined by the maximum
number. As shown in [113] the method converges with the number of points, so there is no interest in
decreasing the number of points at small radius. It is shown in [104] that 16 points is a good compromise
between accuracy and CPU time consumption (2 times slower than the previous Pade approximation due to
its higher algorithmic complexity). All numerical results presented in the following are performed with the
Pace approximation. The reason for not choosing the Hermite interpolation is just chronological: this latter
method has been developed only recently. First analyses of new simulations with gyro-average operators
based on Hermite show similar results in terms of conservation laws. The impact on non-linear cases will
be addressed in a future paper.

2.6. Initial and boundary conditions
Boundary conditions are periodic in and ' directions. Concerning the radial direction, Gysela is a
globalcode,i.e it considers a large fraction of the plasma radius. This is in contrast to ux-tube codes which
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focus on a small volume around magnetic eld lines by proceeding from a scale separation assumption, the
uctuation scale length being smaller than that of the equilibrium. In such codes, periodicity is almost
always assumed along the radial direction. Conversely, global codes &ysela face the delicate problem of
radial boundary conditions. Non-axisymmetric uctuations of the electric potential and of the distribution
function {i.e (m;n) 6 (0;0) modes, withm and n the poloidal and toroidal wave numbers{ are forced to zero
at both radial boundaries of the simulated domain. As far as the axisymmetric component is concerned, the
value of the potential is prescribed at the outer boundary, while the radial electric eld is set to zero at the
inner boundary. In addition, so as to avoid possible numerical instabilities, which might occur in the case
where turbulent uctuations reach the frontiers of the simulation domain, bu er regions have been added at
both radial boundaries. They are characterized by non-vanishing ad-hoc dissipative coe cients, which aim
at keeping all gradients nite and damping out all uctuations (see section 2.10).

Initial conditions consist of an equilibrium distribution function Fg.q perturbed by a sum of accessible
(m; n) Fourier modes (m and n being the poloidal and toroidal wave numbers, respectively). That means,
Bs = Fsieq* Fs where the perturbation part Fs reads Fs = Fs.eq O(r) h(vek) P(;' ) with p(;' ) =

mn COS (m +n" + 4,) where the amplitude is xed and the phases n,, have arbitrary values. The
radial function g(r) (resp. h(vgk)) has a polynomial dependence and vanishes at both radial (respvgy)
boundaries. Concerning the initialization of the equilibrium distribution function two choices are possible:
(i) the rst one is a local conventional Maxwellian, (ii) and the second one is acanonical Maxwellian, i.e
depends on the motion invariants. The Maxwellian distribution function is de ned as

Feeq(E) = ng,(r)  [27T s(r)=ms] £ exp (19)

E
Ts(r)

where E stands for the kinetic energymsvék=2 + B (r; ) which is the second invariant of the system (at
vanishing electric potential). The initial radial pro les of the ion temperature and density (respectively Ts(r)
and ng, (r)) are deduced by numerical integration of their gradient pro les given by the two parameters and

r: dlogTs(r)=dr = T, Cosh 2((r rp)= r,) with r, corresponding to the middle of the radial box.
Fs,eq is constant on a magnetic surface labelled by the radial coordinate. As shown in [38], such initial state
does not constitute an equilibrium of the system solved byGysela at vanishing electric eld. A stationary
equilibrium of the collisionless equations of the code must depend on the three motion invariants, namely
the adiabatic invariant , the total energy E and the toroidal kinetic momentum P. = ¢ + mgRv: with

the poloidal ux and v- the toroidal uid velocity. In Gysela , a convenient choice for this equilibrium is
provided by the canonical Maxwellian (19) in which the radial coordinate r is replaced {as proposed in [4[{
by an e ective radial coordinate r, with the dimension of a length, derived from P-

h i h i

m
= 20 () e Rver Row (20)

R
where (r)= Bg , r’=qdr® The last term vy in (20) is de ned as,
. p—pPp _———
Vek = sign(vgk) 2=ms E B maxH(E B max)

with H the Heaviside function and Bnax the maximum of the magnetic eld on the whole simulation box.

It has been chosen to minimize parallel ows. With this expression the di erence betweenr and r is of
order , the ratio of < the Larmor radius of speciess and the minor radius a. In the case of a decaying
turbulence it is important to choose Fg.¢q as a function of the motion invariants, especially for studying
zonal ows. It had been observed in [73, 4] that breaking this rule leads to the development of large scale
steady ows, which can prevent the onset of turbulence. This phenomena has also been observedGysela
simulations where a study of the di erence between both equilibrium initialization has been performed in
detail [38, 40]. In [40] it has also been shown that when the system is driven by an external source of free
energy, the choice of a canonical equilibrium is less crucial. The turbulence onset is only delayed and its
ultimate nature is unaltered; namely characterized by the same level of parallel and axisymmetric ows, the
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same level of transport and the same correlation times and lengths.

2.7. Simpli ed collision operator recovering neoclassical e ects

Although fusion plasmas are weakly collisional, so that a kinetic approach is mandatory, the e ect of
collisions cannot be fully neglected. Collisional transport plays an important role in regions where turbulent
transport is low, such as transport barriers. Even more importantly, collisional friction damps low frequency
ows, and hence controls the equilibrium radial electric eld. Collisions also regularize ne structures in
velocity space. Finally, collisions have also an impact on microinstabilities, e.g via particle detrapping that
is partially stabilizing Trapped Electron Modes (TEMs). In tokamak con gurations, collisions depend on
Coulomb binary interactions between particles (see Landau [80] for calculations). Then it is shown in [62]
that the collision operator applied to the distribution functions can take the classical Fokker-Planck operator

form: @ @
Gsso(Fs; Fso) = @ D (Fso) @ + V(Fs0) Fs (21)

whereV is a dynamical friction term and D is a di usion term of the order of D v%s sso With the collision
frequency ss0 being de ned as

D n 1 1 20 lo 3=2
s0 + %% 109 v%s + v%so (22)

Vi ms ms meo  (1+ o)?

ss0

where ngo is the density of speciess®, ¢ (resp. ) is the particle charge of speciess (resp. sY, ms is
the pargtlcle mass of speciess, o the permittivity of free space, log 17 the Coulomb logarithm and
vr, = Ts=mg is the thermal velocity of speciess. Let us rst underline that the frequency <o is di erent

from <o5. Besides, let us compare the coII|S|0n frequencies for the di erent folIowmg partlcle populations: (i)

ion-ion collisions: j / Z%n;= P m; T (||) electron-electron collisions: e¢e / Ne= eTe , (iii) electron-
ion collisions: g Z < and (iv) ion- electron collisions: e meZ2 i ce- Therefore the
ion-electron collisions can be neglected. At the moment in the code the electrons are considered adiabatic,
therefore only the ion-ion collisions and impurity-ion collisions (see section 2.8.1) are taken into account.
The full gyro-averaged and linearized Landau operator has been derived in [126] but such a full Coulomb
collisional operator is di cult to implement in  Gysela without severe loss of parallelisation e ciency . As
described in section 3.2, theGysela parallelization takes advantage of the fact that the magnetic moment
is an adiabatic invariant, that plays the role of a parameter in Boltzmann equation. A unique value of is
assigned to each processor. It was shown that the predictions of the neoclassical theory at low collisionality
could be entirely recovered with a reduced collision operator acting in the, direction only [36]. In short, this
results from the fact that the main ions of tokamak plasmas are weakly collisional. In this so-called banana
regime, collisions essentially perturb the banana orbits at their turning points, where the parallel velocity
of trapped particles vanishes. This corresponds to the trapped-passing boundary in thevg; v, ) plane.
Accounting for di usion in v, then reveals su cient to model such a transport, governed by the broadening
of the trapped-passing boundary due to collisions. It also has the advantage of keeping invariant, hence
not degrading the e ciency of the code parallelization. The operator implemented in the code is a simpli ed
version of the Lenard-Bernstein operator [89]. This simpli ed version has been derived in [51] where it is
especially shown that it recovers the exact neoclassical transport in the banana and plateau reginfe¢see
Helander's book [64] p.149 for complete neoclassical transport regime description). This generic energy and
momentum-conserving collision operator has been implemented and successfully tested in the code (see [2],
[36]). A new version also valid for the P rsch-Schalter regime is under development. The current collision

4The physics of neoclassical transport depends on the collisionality . If the collisionality is low, < 1, the particle
orbits are completed by a typical thermal particle. In this so-called banana regime, trapped particles almost fully determine
the transport coe cients. In the opposite limit, > 3=2 the particle orbit is not fully completed because its motion is

disturbed by collisions before. This high collisionality regime is called the P rsch-Schslter regime or uid regime. In-between,
the plateau regime is characterized by a weak dependance of the transport on the collisionality of the plasma.
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operator is expressed as a simpli ed Lorentz-type operator where only the/g, contribution is taken into

account: T @ @ -
F)= =——— By DisFu,— — 23
G(Fs) B, @ux PV G Fu (23)
where Fy . is a shifted Maxwellian distribution {chosen such that G,(Fyu.) = 0{ de ned as:
Y Vis coll )2
FMS — nso = exp ms( Gk ks,coll) sB (24)
(2 T s.coll =ms) - 2Ts;coll Ts;coll
The collision term Dy reads for each s:
P—,3 3=2
v) G(v . VT, o
Dys(r;v) = Ag(r) % with As(r)=3 7Q%Ro s (25)

wherev(r;vgk) = E=Ts.con- The scalar ¢, associated to the mains species, is a dimensionless ion-ion
collisionality parameter depending on the ion-ion collision frequency ¢s such that:

p—

gRo . 4 ns €* log
= 1 - th = 26
s VTs: coll 3=2 > " > 3 (4 0) 2 mgv'gl's; coll ( )

wherevr, , denotes the initial thermal velocity vr ., = ( Ts;con =Ms)*=2, g the safety factor, R = Ro+r cos

the major radius, = r=Rg the inverse aspect ratio andns the density of ion speciess. The explicit expression
(25) also involves the error function and the Chandrasekhar function G de ned as
Z v
G(v) = %‘;%’) with  ( v) = é e dx and )= ée v? (27)
0

Considering that the ¢ scalar which is given (as input data) in the code corresponds to the main species,
the collision frequencies soso for minority species s° are deduced from this value as

VT50,con 572 . Nso Zso N Ts;coll
= sl with = = = ’ 28
s°° qRO s° s° Ns Zs Tso;coll S ( )
Let us express for each g, the operator Vs as
Vok  Vks;coll , q
VkS(r; V) = 2—500 DkS(ri V) Wlth VTs; coll = TS;COH :ms (29)
Ts: coll

then the collision operator (23) can be expressed with a more classical Fokker-Planck structure as:

1 @ @5
Biks @ur Bys Dks =— V «sFs (30)

G(Fs) = @¥r

where the operatorsD,s and Vs respectively model a di usion and a drag in the parallel velocity direction.
The conservation properties of parallel momentum and energy are ensured by constraininD,s to depend
on s only and de ning the local uid velocity Vys.con and ion temperature Ts.con as follows (see Appendix
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AppendixB for more details)

g +
m
Vsl = P 1 Bis@ek(BksDkSVGk) MsDysVok
% ks n #
1 D , , E
Bi@Gk(BksDks) msDksVGk (31)
h  “ D E i
Ts;coll = P ! msDks ngksVék msDksVGk mngsVGk (32)
where * + * +
m 1
P = msDys Bis@ek(BksDksVGk) mM2DysVek B—@Gk(BksDks) (33)
ks ks

with the brackets h i corresponding to the velocity space integrah i = R Jyd sdvgiFs. The impact of the

collisions on the evolution of the distribution function Fg is taken into account by stepping the evolution of
the distribution function @Fs = G(Fs) with a Crank-Nicolson scheme. This collision operator forces the
system to relax towards the Maxwellian distribution function, calculated from the instantaneous and local

parallel ow Vig.con and the isotropic temperature Ts.cot  Ts:coll k-

2.8. Collisional transfer between two species

The inter-species operator currently implemented in the code is highly simplied. It only ensures the
moment transfers and energy transfers between species. A more complete version, satisfying neoclassical
results for impurity transport, is under development.

2.8.1. Collisional energy transfer
The energy exchange between two species is approached by the following reduced collision operator

dFs ISESO Tsso Ess° 3 Esso c
- = — eXx 2 C Es 34
dt (2 T mean :ms)3—2 Tmean  Tmean 2 P Tmean sso(Bes?) (34)
dFsO SESO Tsog Egos 3 Exos .
] = 7 & Csis(Es 35
dt (2 T mean =m30)3_2 Tmean Tmean 2 p Tmean SOS( 05) ( )

where ddt stands for the phase space Lagrangian derivative and the following de nitions have been adopted

_ Ts+ Teo

Tmean = 5 ; Tsso = Ts  Teo = Tsos (36)

Vimean = w ; Veso = Viks  Viso (37)

Eao= Ms Vgk ; Vinean - + B ; Eaop = Mso VGk2 Vinean + B (38)

The temperatyges and uidgyelocities which enter these de nitions are ux surfgge averaged,i.e. by consid-
eringh irs = Jgd d'= Jxd d' . Then velocities correspond toVis(r) = h vgk Fs d3v igs=Ns(r) with

density Ng(r) = h Fs d%v irs, the volume element being de ned as dv = J, dvg, d s. Temperatures are

dened as Ts(r) =2=3h E Fs d3 irs=Ns(r) where Es = (ms=2) vgr  Vks 24 sB. The parameter Eso
has been designed so that particles and parallel momentum are conserved
P )
E _ 8"3%2 mg ﬁ Nso Ts;col =Mg 1+ V7o

07 P= . 7. qRo vZ s

2 3=2

(39)
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where the normalized ion-ion collision frequency s is given by eq.(26) (for detailed calculation see Appendix
AppendixC.1). Numerically, equation (34), is solved asFs(t + t)= Fs(t)+ tCEo(Esoit).

2.8.2. Parallel momentum transfer
Parallel momentum exchange between two species can be modelled by the following approximate collision
operator:

dF E . 1

T: = \Slseok VssoVgk €Xp Tm:an C;ISGok(Es) with Es = EmsVék + B (40)
dFso Eso

dts = S5 VeosVg i €XP Tm:an Cos(Eso) (41)

where Trmean is de ned by equation (36).  Vsso is equivalent to eq.(37). The parameters .o and .5 are

designed such that only parallel momentum exchanges are induced by this operator, thus leading to

" P — 2 3=2
= neom? 3=2 1 Tsicol Zso VT, and Vex = Ms Ve
= 0 _ S — _ =

2 dRo TSR, Zs v O = ms s?

mean

VG k
ss0

(42)

where the velocityvr, corresponds to the maximum value betweewr, and vro (for more details see Appendix
AppendixC.2).

2.9. Flux-driven code with source terms

2.9.1. Sources of heating, momentum and vorticity
As introduced previously Gysela is a full-f code, namely the back reaction of turbulent transport

is accounted for in the time evolution of the equilibrium. In such a framework, the turbulence regime
is evanescent if no free energy is injected in the system. Turbulent transport results in the attening of
the temperature pro le, which would ultimately reach marginal stability in the absence of any forcing. A
heat source is mandatory in view of exploring the long time {on energy con nement times{ behaviour of
turbulence and transport. In Gysela , the possibility to drive the system by a prescribed source was added
in 2009 [105]. This source consists of the sum of the product of Hermite and Laguerre polynomials g, and

s, respectively, in the spirit of the pioneering work by Darmet et al [34]. It is versatile enough to allow for
separate injection of heat, parallel momentum and vorticity. Such a versatility imposes serious constraints
on the expression of the source in phase space. The separation between these three kinds of sources is
achieved using projections onto the bases of orthogonal Hermite polynomials ing, and orthogonal Laguerre
polynomials in 5. The retained expression for the source is the following (see Appendix AppendixD for
detailed description)

dF

Tts = Sheat (I ;V cks s) * Smoment (I} ;Veks s)+ Svorticity (rsvek s) (43)
where the pure heating source is de ned as:
n # E
1 Jks 2S; E V2 s
Sheat = V& 5 (2  s) 2vg,s ks = Sre °« (44)
o202 szB ‘ @T s;srce:ms)3 2 Ts:srce r

. P P ——
with s =  sB=Ts srce, Vg,s = Vek= 2Ts:srce=Ms, Jkp 2msTs;srce:(quz) oJkx and = (ms:cé)
Ts:srce=(2B2). Smoment iS @ pure momentum source expressed as

Ve k
S0 VG k

2
Sk e ok ® (45)
4 32 (Ts;srce=m3)2

Smoment = 2Vg,s(2 s) Jke 1+2vg,s s
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while Syoriciy IS @ pure source of vorticity

h 2 | SO
Svorticity = VAV s -
« 2T s;srce:ms)3 2

V(Z_‘a kS s
S e (46)

¢

The prescribed radial envelopesSE, S/'°* and S, are chosen as the sum of two hyperbolic tangents but
could be any radial function under the constraint that the integral over the minor radius is normalized to
1 while SF, ngk and S, correspond to the source amplitudes andls.sce t0 the temperature of the source.
They are usually localized close to the inner boundary of the simulation domain [105]. The heat source is
an isotropic source that takes particles at a vanishing velocity and accelerates them up to 1:5vy, . See
schematic view with gure 2. As a remark, there is another choice possible for the heat sourc8nes; in the
code, which corresponds to
E
Sheat = p_ So 352 E g exp

T s srce Ts;srce
3 2 “m. Ts;srce

St (47)

TS;SFCE

There are two main advantages in dealing with a prescribed heat source: (i) the forcing of turbulence
can mimic that in experiments, in contrast to simulations where the mean gradient is prescribed and (ii)
the sum of the spatially and time (on the g time scale) averaged turbulent and neoclassical heat uxes
must balance the prescribed driving ux. In this case, the response is the temperature gradient, which
ultimately governs the internal energy and therefore the performance of the discharge. An example of initial
and nal temperature pro les is shown in gure 1. Flux driven simulations then allow investigating the
impact of heating power on the energy con nement time [106]. The source of vorticity described before has
been e ciently used to polarize the plasma [115] inducing the development of sheared electric elds in the
turbulent core. The creation of ion transport barriers by these externally induced shearede B ows has
been studied in details in [116, 115].

Figure 1: Schematic view of a heat source and bu er regions in the case of a ux driven simulation. Comparison between
initial temperature pro le (black line) and nal temperature (red line).

2.9.2. Energetic particle source

A source of energetic particles (EPs) has been also implemented in the code to study the interaction
between EPs and turbulence. EPs are characterized by energies larger than the thermal energy. The
excitation by EPs of the geodesic acoustic modes (GAMSs) {corresponding to the oscillatory component of
large scaleE B zonal ows{ creates modes which are called energetic geodesic acoustic modes (EGAMS)
[50, 95]. For more details on the impact of EGAMSs on turbulence see [127, 128, 45]. In practice this source
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is coupled to the heating source, such that @Fs = Speat + Sgp Where Sgp is also built, as for the previous
sources, by using projection onto the Laguerre and Hermite polynomial bases, with the constraint to inject
only parallel energy. For symmetry reason, the energetic particle source, is built as

Sep(r; VoK sit)= Sgr (DSEP() (S +S ) with S (;vek; s)= Se(; Voki s)

R
where SE” is the source amplitude andS,EP the radial pro le is normalized such that r drS,EP = 1. After
the same kind of calculation as in the previous sources, the nal expression reads

2
Qe 2Ve,s Vo) Jig) e Yo Ve s (48)

NI =

S = (Vo.s Vo)?

where = B(r; )=Ts» and Qgp = Jyg= 2 JZ(1+2Vv3) with vo = VO:p 2Ts, an arbitrary normal-
ized velocity. The expressions of the parallel current),g and the velocity vg, s are the same as in equation
(44) where Ts.grce is replaced by Tsik. Tsk and Ts, correspond to the normalized parallel and perpendicular
temperatures of the energetic particle source. Each of the term&, and S does not inject neither mass
{which is essential because electrons are considered adiabatic in the code{ nor vorticity. See gure 2 for a
representative view of the source in parallel velocity direction. The source mimics the e ects of two tan-

Figure 2: Schematic view of the energetic particle source as a function of the parallel velocity

gential neutral beam injectors, oriented in the co-and counter-current directions. It is localized around the
mid position r = 0:5 (rmin + rmax) and brings the distribution function out of the equilibrium by creating a
positive slope in energy. As explained in [128)y and Tsy are both critical parameters in view of exciting
EGAMs. Gysela results for EGAMs excitation have been successfully compared to analytical theory [128]
and benchmarked [9] more recently with ORB5 code.

2.9.3. Source of impurities
Finally, it is also possible to add a source of impuritiess® of the form
! !

So*°S: 5 oB  MeVg LT
= e 49
5 Xp (49)

2Ts°;srce Tso;srce

0 =
s 2T 3=2 Tso;srce 2Tso;srce

SOCSI'ES
mgo

Let us notice that this source of matter is not a pure source, due to the fact that it also injects some amount
of vorticity. This injection is balanced by a sink for the major speciess, such that
z z
Zs SpJdv, Ovgrd s+ Zgo Jve0Sn o dvgkd s0=0
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2.10. Diusion terms in the bu er regions

Finally, to avoid strong gradients at the boundaries, radial di usion and arti cial damping can be added
in bu er regions. These bu er regions are de ned at each side of the radial domainr 2 [rmin ; r'max] @S @ sum
of hyperbolic tangents:

r Mmax + BL I—r tanh r 'min BL I—r
BS Lr BS Lr

1
Hopu (r)=1+ > tanh (50)

where L, is the length of the radial domain. B and Bg are respectively the location and the sti ness of
the bu er regions. The function Hy, plays the role of a mask which is equal to 1 in the bu er regions and
0 elsewhere. The di usion term which is applied in the bu er regions is of the form

1 1@ @
D, (Fs) = Biks T ar r (r)Bks@rFs (51)

with  (r)= oHpu (r) ( o being the diusion coe cient). The equation @Fs = D, (Fs) is solved by using
a Crank-Nicolson scheme (see Appendix AppendixE). An arti cial damping term g is introduced in the
bu er regions by de ning a Krook operator K;(Fs) = (r)(Fs Fseq) with (r)= oHpy (r)and solving
@Fs = K;(Fs). Let t be the time step, then an analytic solution of the previous equation is given by
Fs(t+ t)= Fgeqt+ (Fs(t) Fseg)exp( (r) t). This mechanism restores the distribution function to
its initial equilibrium state Fseq, in the bu er regions, by slowly damping all the turbulent modes of the
system. It also plays the role of a heat sink by e ectively coupling the plasma with the outer thermal baths.

3. A highly parallel semi-Lagrangian code

Solving the set of gyrokinetic equations (5)-(12) is very challenging. It consists of (i) one evolution
equation (5) of the distribution function for each ion species (so far, we are limited to 3 distribution functions
in GYSELA. Considering that kinetic electrons will soon become operational, this leaves 2 slots for ions:
either Deuterium and Tritium, or a main ion species plus any kind of impurity, either intrinsic like Helium
or extrinsic, such as Tungsten for instance) in the 4D phase space parametrized by the adiabatic invariant

; (i) the set of four coupled ordinary di erential equations (ODE) for the trajectories (6)-(7); and (iii) 3D
integro-di erential equations for the eld, namely the quasi-neutrality equation (12). This set of equations is
nonlinear, the dominant quadratic nonlinearity being due to the E B advection term. The quasi-neutrality
equation is generally solved in most of the gyrokinetic codes by using Fourier projection in all the periodic
directions and nite dierences or nite elements in the others. Concerning the global algorithm, the
challenge consists in nding numerical schemes which preserve the rst principles such as the conservation
of Casimir invariants, the phase space volume and the total energy. Various numerical schemes, classi able
as PIC, Eulerian or semi-Lagrangian, have been explored until now. In the following, we focus on the
semi-Lagrangian approach which is speci ¢ of theGysela code.

3.1. Speci city of the Gysela code: the semi-Lagrangian scheme

Semi-Lagrangian (SL) schemes have been rst used for the advection of vorticity in simpli ed models of
large scale ows. It has gained maturity when the discretization approach was introduced in the relevant
context of atmospheric ows. A comprehensive review of semi-Lagrangian methods in this meteorological
context until 1990 is due to Staniforth [112]. It is also applied to geophysical uid dynamics (cf. [46]). In
magnetized plasma turbulence area, the SL method has been rst applied to calculate a turbulence driven
by passing ions in 2D (1D in space, 1D in velocity) [111] and trapped ions in 3D (2D in space, 1D in
velocity) [35, 108]. This method was then extended to the 4D model (3D in space angl (with = 0))
of lon Temperature Gradient (ITG) driven turbulence in cylindrical geometry with the development of the
Gysela code (for GYrokinetic SEmi-LAgrangian code) [55] and the CYGNE code [19]. The 4D drift-kinetic
slab-ITG version of the Gysela code has shown good properties of energy conservation in non-linear regime
[55] as well as accurate description of ne spatial scales [107]. In the CYGNE code the standard Taylor
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expansion is replaced by a Barlisch-Stoer scheme (for the 2D advection) to increase the spatial accuracy and
the logarithmic interpolation technique is used to ensure the positivity of the distribution function. Brunetti

et al. [19] have shown that (i) the positivity can be preserved but at the cost of larger di usion and (ii)
that non-equidistant meshes in radial and parallel velocity directions are a key tool for obtaining accurate
results. Due to the good conservation property obtained in 4D, the gyrokinetic 5D version of theGysela
code [57] has been based on the same numerical scheme. The global algorithm for the new 5D gyrokinetic
multi-ion species version of the code will be described in the following both in terms of numerics (section
3.1.3) and parallelisation (section 3.2). Advantages and drawbacks of such a 5D semi-Lagrangian code will
be discussed. The purpose of the semi-Lagrangian method is to take advantage of both the Lagrangian
and Eulerian approaches, with an accurate description of the phase space, in particular regions where the
density is low, as well as an enhanced numerical stability. It is based on the fact that the most precise way
to solve convection (or advection) hyperbolic PDE is to use their characteristics along which the distribution
function remains constant. This method was primarily developed by Cheng and Knorr [27]. It has been
cast in more general framework of SL by Sonnendmicker in 1998 [111] and Nakamura in 1999 [94]. In this
approach, the phase-space mesh grid is kept xed in time (Eulerian method) and the Vlasov equation is
integrated along the trajectories (Lagrangian method) using the invariance of the distribution function along
the trajectories. The Gysela code is based on this standard semi-Lagrangian approach [111]. This approach
has been recently renamedackward semi-Lagrangian approach (BSL)by its author to make the distinction
with the emergence of new schemes: (ifforward semi-Lagrangian approach (FSL) rstly proposed in 2009
[33] and (ii) Conservative semi-Lagrangian approach (CSL)proposed in [31, 15] through Parabolic Spline
Method [129]. The main di erence between BSL and FSL approaches is that the advection equations are
solved backward in time in the rst case and forward in the second one. They are both based on solving
the advective form of Vlasov equation while the CSL methods deal with the conservative form of the Vlasov
equation. FSL and CSL schemes have both been tested iBysela [84, 14] but the actual version of the
code is the standard BSL approach as described in the following.

3.1.1. Backward Semi-Lagrangian (BSL) concept
Let us consider the 5D gyrokinetic Vlasov equation

@s dXG @ dVGk
+ + =
Bks @t r Bks t FS @ ) Bks t FS 0 (52)

which corresponds to equation (5) without collisions and source terms. By using the incompressibility
property of the gyrocenter ow in the 4D phase spacej.er B, dixg +@,, B, divek =0, the previous
conservative Vlasov equation (52) is equivalent to its advective form

@ s + dxg rOF.+ dvgk @Fs
@t dt dt  @¥x

=0 (53)

Let = (Xg;Vek; s) be a position vector in the phase space solution of the characteristic equations (6)
(7). Then equation (53) leads to dFs( (t);t) = 0. The semi-Lagrangian method uses this invariance
of the distribution function Fg along its characteristics. Let us consider the computational 5D domain
[Xé min 1Xél3 max] [X(23 min ’X(23 max] [X% min !X% max] [VGk min 1 VGk max] [ sminy s max] and the associated g”d
(xed in time) de ned by the nite set of mesh points ~ jum = X, ;xéi X VoK s, With xgq =q x§
forall g=0; ;Npwith p=1;23;vgy =1 vggforalll=0;N, and s, forall m=0;N . Ny,
N2, N3 are the number of cells in each spatial directions and\,, the number of cells invgy direction.
The (N + 1) values for ¢ are not necessary equidistributed. Actually, the standard choice inGysela
corresponds to an equidistributed grid in " —. This choice leads to a better accuracy when computing
integrals in . Let us also assume thatFs is known at each point jum of this grid at time t,. Therefore
the distribution function can be computed at the next time t, + t, with t the time step, on the same
grid by using the invariance property Fs ( ijim (tn + t);th+ )= Fs( (th; jjwm ;ta + t);ty) where
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(tn; jmm ;tn + t) corresponds to the solution of the characteristic at time stept, which is equal to
ijkim at time t, + t. The method consists in (i) nding the foot of the characteristic at the time
tn: (tn; gikm ;tn + t) by solving backward in time the advection equations (6)-(7) and (ii) computing
Fs( (ta; jwm ;tn+ t);ty) by interpolation, using the fact that at this time t, the distribution function
is known over the whole xed grid. Cubic spline interpolations are used in the code, because it o ers a good
compromise between accuracy (small di usivity) and simplicity (numerical cost) [49, 7].

3.1.2. Time-splitting

In low-dimensional systems, the semi-Lagrangian method is very e cient. When applied to higher
dimensional problems, one faces the problem of multidimensional interpolation, which is extremely expensive
for high dimensional problems. However, this problem has been partially cured by using the time-splitting
idea of Cheng and Knorr [27]. Using the incompressibility property, Strang's operator decomposition into
space and velocity can be applied, replacing equation (5) by a set of two conservative equations. Besides,
to avoid dealing with a 3D space operator, the latter is also divided into two parts. Let us denoteXg =
(x%;x%) =(r; )and remind that in our casexg = ' then the Boltzmann equation (5) is solved by applying
a splitting of Strang [114] as

@F dXg
Bksﬁ*' r- Bu—y

@ @ d'
'-D’ksT@StJr @ Bksa
@ @ dvgi

<@t @u et

Fs =0 at (v gx) xed (54)

Fs =0 at (Xg;vek) xed (55)

=0 at xg xed (56)

This splitting into three equations was introduced in the 4D version of the code. As explained in [55], in the
4D drift-kinetic slab case the conservative and advective forms of the equations are equivalent in ther;( )
direction and z direction separately due to the independent vanishing divergence property, see equations
(9)-(10) in [55] due tor vgc = 0 and @v = 0. In the 5D gyrokinetic caser » (B,,diXg) 6 0 and
@(B,.d:' ) 6 0 so that these terms should be taken into account as source terms of the advective form of
equations (54) and (55). However, they are presently set to zero. This simpli cation may alter the accuracy
of the conservation properties of the code (see section 5). Also, it likely has an impact on the maximal
value acceptable for the discretization time step. A solution to overcome this problem could be to use a
conservative scheme instead of the BSL one but the rst tests we have performed [14] are not conclusive.
This constraint on the numerical value of t is acceptable for ion turbulence simulations but could become
problematic when addressing kinetic electrons. The development of more e cient semi-Lagrangian schemes
is still an active axis of research. An idea currently under evaluation is to separate and to treat di erently
the linear and non-linear parts. Encouraging results have been presented in [85]. The splitting operation
stays a drawback of the semi-Lagrangian method. An alternative method without splitting (based on a 4D
advection and 4D cubic spline interpolation) is currently developed. The rst drawback is an increase of the
numerical di usion due to the 4D interpolation which will require to be quanti ed.

In the current version, the advections in' and vg directions are straightforward, but that in the Xg direction
requires more attention. If we consider the 2D advection in €; ) direction between timest andt+ t, the
value of the electric eld E attime t+ t=2 is required in second order time scheme. This value is calculated
by using a predictor-corrector method. Besides, computing these 2D trajectories is equivalent to solving
dXg=dt = V (Xg;";t ), V being the advection eld. This system is solved by using the parabolic assumption
developed in [111]. LetXg; be the position of Xg(tn + t) attime t, + t, then there exists a displacement
dj =( i j)tangent to the parabola such that Xg (tn) = Xg; dj and Xg(tn t)= Xg; 2dj. The
displacementd;; can be calculated by solving the implicit equationd;; = tV(Xg; dj;ty) (see p. 129
in [56]). This is done with a Taylor expansion which is equivalent at second order to a Newton algorithm.
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3.1.3. GYSELA global algorithm

Concerning now the complete Boltzmann equation (5) the right hand side is also split to treat separately
the collision operator, the Krook operator, the di usion and source terms. Let Xg denote the shift operator in
the poloidal cross-section f; ) associated to equation (54) over a time step t. Similarly, ~ and vz denote
the shift operators respectively in the' (equation (55)) and vgy directions (equation (56)). As described
in the previous paragraph, each of these three shift operators are based on a backward semi-Lagrangian
scheme which means two steps for each mesh point: (i) rst the computation of the characteristic feet and
(ii) second an interpolation by cubic splines. Let us denoteC the collision operator corresponding to solving
@Fs = C(Fs) and D the operator associated to the radial di usion @Fs = D, (Fs). They are both solved
by applying a Crank-Nicolson scheme (see Appendices AppendixB.2 and AppendixE). The Krook operator
K corresponding to the Krook di usion equation @Fs = K(Fs) is trivial while solving @Fs = S associated
to the source operatorS is described in Appendix AppendixD.5. Then, using these notations the following
sequence is used to solve the 5D Boltzmann equation (5)

" 1 14

Kr D, C S v - - I
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where the factor 1=2 means that the operator is applied on half a time step. The choice of the sequence
(57) is not unique but some constraints are imposed in the code: (i) the rst one is to impose a symmetry
to keep second order accuracy in the splitting (Strang splitting [114]), (ii) the second one is to x the 2D
operator Xg which is the most costly at the middle of the algorithm; (iii) nally the operators coupled to
the right hand side, respectively to the Vlasov equation, are contiguous. Let us also de ne the operato)
(corresponding to the Poisson solving) which denotes symbolically the four steps: (i) computation of right
hand side of the quasi-neutrality equation (12) using expression (13), (ii) solving the QN equation (12) to
deduce the electrostatic potential U, (iii) computation of the gyro-averaged electric potential U = J :U
with a Pade approximation (18) or with an integration on the gyro-circles as described in section 2.5 and
(iv) computation of the electric eld as E = rr U.

Finally, the global numerical algorithm of the Gysela code can be summarized (see schematic view in
Figure 3) as follows,

1. Initialization
Considering a prescribed magnetic eldB(r; ) (see section 2.2) and equilibrium pro les of density
no(r), ion temperatures T4(r) and safety factor q(r) (see section 2.6), then

(a) Computation of the equilibrium distribution function Fs.eq as a local or canonical Maxwellian by
using (19) and (20).
(b) Initialization of Fs(t =0) as Fs(t = 0) = Fg.eq(1 + perturbation) as described in section 2.6.
2. For each time iteration,
Considering the distribution function FJQ' = Fs(t = t,) at time t, known on the 5D mesh grid, then
the distribution function FI*! at the next time ty+; = t, + t on the same mesh grid is computed
by using a predictor-algorithm as
(a) Computation of the electric eld E(t,) by using the Q sequence.
(b) Predictionon t =2:
Computation of Fs(t = t, + t=2) by solving Boltz=2 sequence WithE (t,,).
Computation of E(t, + t=2) by solving Q.
(c) Correction on t
Starting from Fs(t = t,) {given that this 5D distribution function has been stored before

prediction{, computation of Fs(t = t, + t) by solving Boltz on a time step t with the
electric eld E(t, + t=2) attime t,1 .
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Figure 3: Schematic view of the coupling between the Poisson and Vlasov solvers in the GYSELA code.

3.2. An e cient hybrid OpenMP/MPI parallelization

The code is developed in Fortran 90 with some 1/O routines in C (47k lines of Fortran 90 and 23k
lines of C code) using GIT as version control system. Doxygen is used to generate documentation from the
source code. The only external library dependence is the HDF5 library. HDF5 is the chosen format for
all output saving, both 0D to 3D diagnostics and 5D restart les. Diagnostic analyses are performed with
Python. The parallelization is based on a hybrid MPI/OpenMP paradigm. This hybrid approach is suitable
for cluster of SMP (symmetric shared memory multiprocessor) nodes where MPI provides communication
capability across nodes and OpenMP exploits loop level parallelism within a node. Let us denote by species
the number of ion species and byN the number of values. As the magnetic momentum is an adiabatic
invariant it plays the role of a parameter. So for each species we havd independent Boltzmann equations
(5) to solve. Let Ny, N , N and N,,, be the number of points in each directionsr, ,' and vgy. Large
data structures are used inGysela : 5D data of sizeN, N N. Ny, N for distribution functions
and 3D data of sizeN, N N- for the electrostatic potential and its derivatives as for rst moments
of the distribution function (used for diagnostics). An MPI parallelization is mandatory to treat such
large amount of data. Let us take the example of a typical 5D mesh used for our simulatiorfs namely
(N; N N- Ny,, N )=(256 128 128 128 16). It corresponds to a mesh of almost &
billion points. The size of one 5D array for the distribution function is of the order of 68 Ghytes, which
is not tractable on a single node. For information, the biggest simulation run so far with Gysela was an
ITER simulation [3] with 272 billion points. Taking into account the fact that two distribution functions are
necessary for the numerical integration over time due to predictor-corrector scheme, more than 1 Tbytes of
data (just for 5D arrays) were manipulated. So, as described in the following, we use a domain decompaosition
so that a MPI process never contains the complete 5D distribution function.

Concerning the MPI parallelization, an MPI communicator is de ned per species. Inside each one of the
MPI _SPECIES communicators, an MPI communicator is de ned for each value of the magnetic moment .

SFor current Gysela simulations, N is chosen equal to 16 or 32 while the choice of Nvg, is much larger (typically,
Nvg, 4N ). Notice however that N should be compared to Ny, =2, since the grid in  goes from 0 to  max , While that
in Vg covers the range  Vgi:max 10 + Vgkmax - The choice of Ny, > 128 is necessary to take correctly into account the

trapping and de-trapping of particles and also to solve accurately the collision operator (at this time, only in parallel velocity).
The same number of points for direction will be required when collision operator e ects will be added in perpendicular
direction (mandatory step for kinetic electrons).
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Within each MPI MU communicator a 2D domain decomposition allows us to assign to each MPI process
a sub-domain in (; ) dimensions. Let us considem, (resp. p ) the number of sub-domains inr (resp. )
direction. The number of MPI processes used during one runis equal thyp; = pr P N Ngpecies. This
MPI decomposition of the default MPI_COMM WORLD communicator is summarized in Figure 4. Thus,
each MPI process is then responsible for the sub-domain of the distribution functiorFs(r = [istart iend]; =
lstart sjend;’ = ;Vek = ; = ig)Wwiththeinteger g 2 [O;N 1]. The local valuesistart , iend, j stat and
jend associated to the parallel decomposition are initially set by using a classical domain decomposition in
(pr  p ) blocks. The OpenMP paradigm is used in addition to MPI. Let us denote by N¢eag the number
of threads in each MPI process, then the number of cores for a simulation corresponds tureaq Nmpi -

Figure 4: MPI _.COMM _WORLD communicator decomposition for two species, 8 values of , pr = 4 radial sub-domains and
p =2 sub-domains in the poloidal direction. In this case, the number of MPI processes is equal to 128.

3.2.1. Parallel Vlasov solver: How to treat non-local interpolation aspects ?

A di culty when parallelizing the semi-Lagrangian Vlasov solver is due to the cubic spline interpolation.
Cubic splines are a good compromise between simplicity and accuracy but a drawback is that they are non-
local. Indeed, a lot of the values of the distribution function Fs are required to reconstruct the interpolated
value of the function at any position in the domain. Two strategies are available in the code to overcome
the problem: (i) local cubic spline interpolation or (ii) transposition. The Hermite spline interpolation on
patches [28, 29, 83] has been speci cally developed for dealing with 2D domains distributed on several MPI
processes. The idea is to compute local cubic spline coe cients on each 2D;( ) sub-domains by solving
reduced linear systems. Then one ensures@ global interpolator similar to the sequential one by imposing
Hermite boundary conditions at the interface of each patch [28]. The rst limitation of this technique is that
a minimum of 32 points per directions is needed per MPI process [83].6 N,=p 32 andN =p 32) to
provide good numerical stability and small communication overhead (in 2D, each processor has to exchange
derivatives with its 8 neighboring processors). The second constraint is that the shift at one point on the
border of a sub-domain, which results from the motion along the trajectories in the 4D phase space, must
not exceed the elementary cell width. This constraint is linked to the choice made to limit the size of the
interface transferred between processors. This CFL condition can be extremely restrictive specially in the
direction where large shifts can occur but also in the radial direction when a source is imposed in the case of
ux-driven simulations. For these reasons the choice of a 4D data transposition is how often preferred. This
transposition consists in modifying in each MPLCOMM _MU communicator the parallel decomposition ofF¢
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such that each processor then contains only part of the data in and vgy direction but all the information
in the poloidal cross-section. Standard cubic spline interpolation in ¢ ) plane are then possible. Let us
de ne the transposition operation Tg and its inverse T, las

Fs(rolock; block;' = Vek = ; = id) ( Fs(r= 1 = ;' block;VGblock; = id)

then the sequence (57) described above for solving the Boltzmann equation is replaced by the following one
" ! I#
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3.2.2. A scalable quasi-neutral solver

The parallel quasi-neutrality algorithm presently used in the code is summarized in algorithm 1. For
more details on the di erent improvements which have been performed to obtain this parallel solver see
[86, 82]. The presence of the non-local ternhU igs(r) couples the and' directions and penalizes the
parallelization but the most important cost is the communication induced by the computation of the r.h.s,
namely task 2 in algorithm 1. Indeed this calculation requires a collective communication step that involves
all MPI processes. Instead of broadcastingJ(r = ; = ;' = )toall MPI processes, a re ned strategy has
been setup to reduce the large communication cost. It consists in sending to each process only a sub-domain
in ' direction of U. With this decomposition the gyro-average computation of U as the partial derivatives
in r and directions are straightforward. Afterwards, a transposition is performed to calculate @U. For a
complete performance analysis of the di erent steps of the algorithm see [87].

Algorithm 1 : Quasi-neutrality algorithm in the GYSELA code

Input:  Fs(rblock; block ;" = Vek = : = id)
1. vgi integration of Fg to compute within each MPI_COMM ,M%J communicator
intdvpar _Fs(rpiock; block;' = ; = id)= Jvdvgk Fs Fseq
2. Remapping within each MPI_.COMM _MU communicator of intdvpar _Fs {because the gyroaverage
operation requires to have all the data for each ) plane{ as

intdvpar _Fs(rpiock ; block ;" = ; = id)) intdvpar _Fs(r= 1 = ;' ock; block):

3. For all ' , computation of the gyroaverage ofintdvpar _Fs and integration over to obtain
"= = "pok)= dsJ : (intdvpar Fs(r= ; = ;' piock))
4. MPIgeduction towards the Nspecies MPI_.COMM _SPECIES communicators to nally compute
= (Zs s, the right hand side of the quasi-neutrality equation (12).

5. Solving (14) and (15) to deduceU(r = ; = ;' pock ) @and broadcast to the Ngpecies N
communicators.

Output: U(r = ; = ;' piock ) ON each MPI process.
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3.2.3. Performing weak and strong scaling

The weak and strong scaling, presented in this section, have been performed on two dierent high
performance computers. The strong scaling has been tested on the thin nodes of the Curie machine at
TGCCS®, Bruyeres-le-Chatel, France which are based on bullx B510 architecture. Each node contains two 8
cores processors (INTEL Xeon E5-2680 Sandy-Bridge) running at:Z GHz with 64 GB of 1:6 GHz memory.
The weak scaling has been performed on the IBM Blue Gene/Q machine JUQUEEN at JSC/IAS, Juelich,
Germany which is composed of 24 racks grouping 1024 nodes. Each node contains a single 17-cores processor
running at 1:6 GHz with 16 GB of 1:33 GHz memory. These cores are twice slower compared to Sandy
Bridge cores. The improvements of the code to adapt it e ciently to the BlueGene architecture are detailed
in [11]. The scaling results are detailed in Figures 5 and 6 for the 4 main components of the code, namely
(i) Vlasov solvet solving the Boltzmann equation as described in section 3.2.1; (iifield solver, solving the
guasi-neutrality equation as summarized in algorithm 1; (iii) Derivatives computation, the computation of
the rst derivatives of the gyroaveraged electrostatic potential J :U in the three r, and' directions and
(iv) Diagnosticscorresponding to all physical quantities from OD to 3D computed and saved in HDF5 format
like densities, parallel and perpendicular temperatures, velocities, uxes, energies et caetera. The strong
scaling has been performed with the mesh size parametefd, = 512, N =512, N. =128, N,,, = 128
and N = 32. The number of threads was kept constantNyeaqg = 8 to assign two MPI process per node.
The couple (pr;p ) of processors inr and directions take the following values (2 4), (8;2), (8;4), (16;4),
(16;8) and (16;16) so that the scaling spans from 2048 to 65536 cores. For the weak scaling the testbed
case was composed from 64k to 458k cores. The considered meshes vary fronl87%o 481 billion points
de ned with N, =512, N =1024, N. =128, N,,, =128 and 7 di erent values of N =2; 4; 8; 16, 32, 48
and 56. The triplet (pr;p ;Nreaq ) IS kept constant equal to (16, 32;64). The number of threads is chosen
equal to 64 such that a single MPI process is mapped per node and 4 threads are dedicated per core as
determined for BlueGene/Q optimization. The results of both scalings are summarized in Figures 5 and
6. Let us rst remark that the weak scaling test (Fig. 6) exhibits an excellent scalability of the code with
90:9% of relative e ciency at 458752 cores {which corresponds to the totality of the JUQUEEN computer{
compared to 16k. Concerning the strong scalingsysela globally scales with a relative e ciency of 89% at
16k cores and 6(6% on 65k cores compared to 2048 cores (Fig. 5). This is already a very good result for
such a semi-Lagrangian code. Looking into more detail, we see that the deterioration from 89% at 16k to
60:6% at 65k is mainly due to the diagnostics and eld solver. Indeed, the Vlasov solver which represents
60% of the application at 2k cores and 48% at 65k cores exhibits a good e ciency of 78% at 65k processors.
Conversely, the diagnostics which correspond to 3%5% of the total time for the reference case, end taking as
much time as the Vlasov solver due to the decreased e ciency at 58%. A lot of work has already been done
to improve the eld solver [82, 86, 87] but this work must continue because an e ciency of 41% impacts
the global scalability. Let us nally notice that even if the computation time of the derivatives remains
negligible until 16k, a further e ort is needed to prepare the code to future exascale machines.
The execution times are not comparable in the two scalings presented here because the considered meshes
are not the same. Performance comparisons between BlueGene/Q and Bullx architectures are found in
[11]. Production runs are commonly running on both architectures. In general, depending on simulation
parameters, the code is a factor 5 to 3 times faster on bullx machines (as Curie or Helios at CSC, Rokkasho,
Japan) than on BlueGene machines (as JUQUEEN or Turing at IDRIS, Orsay, France or Fermi at CINECA,
Bologna, Italy). This behavior is consistent with that observed with many other codes.

3.2.4. Memory scalability

Due to the previous scalability results Gysela uses frequently from 8k to 32k cores for one ion species
with adiabatic electrons and the twice these values when an impurity is taken into account. Besides, a
simulation often runs during several weeks. The annual time consumption on HPC machines is currently of
51 millions of core hours. So the code already bene ts from petascale computational power of the current high

8 http://iwww-hpc.cea.fr/en/complexe/tgce.htm
7 http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
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(a) Execution time (b) Relative e ciency

Figure 5: Strong scaling performed on the Curie machine from 2048 to 65536 cores: Execution time (a) and relative e ciency
(b) for one Gysela run of 4 iterations for a mesh ( Ny N N Nyg, N )=(512 512 128 128 32)with 8 threads
and 32 values in  direction.

(a) Execution time (b) Relative e ciency

Figure 6: Weak scaling performed on the JUQUEEN machine from 64 k to 458k cores: Execution time (a) and relative e ciency
(b) for one Gysela run of 4 iterations for a mesh xedin4Das( Ny N N- Nvg, ) =(512 1024 128 128) but for 7
dierent values of =2; 4; 8; 16; 32; 48; 56. The number of parallel domains in r, directions and the number of threads are
xed such that ( pr;p ;Nthread ) = (16 ; 32; 64). The number of cores varies as pr p N Nihread =4 because 4 threads per
core are used for BlueGene optimization.
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performance computers. We also know that at short term when adding kinetic electrons, a simulation with
ITER parameters on several con nement times will require exascale HPC capabilities. Among the Exascale
challenges, the reduced memory per core has been identi ed as one of the most critical. This is particularly
true for the Gysela code due its global character which requires huge 5D meshes. The mesh discretization
is already constrained by the memory required per node. The C/Fortran MTM (Modelization & Tracing
Memory consumption) library has been developed [103] to investigate in detail the memory consumption of
the code. This library provides an Application Programming Interface (API) which replaces the standard
calls to allocation/de-allocation routines. This intrusive technique permits to retrieve precisely the peak of
memory consumption and all the arrays involved. External Python scripts have been designed to analyze
these results and provide memory prediction. Continued e orts are made to reduce the memory footprint
of the code and to improve its memory scalability (see [103] for details) but Table 1 shows that lots of work
remains to be done to be able to run ITER simulations on machines with only 16GB per node. Indeed, for a
minimum ITER mesh, namely (N, N N N,,, N )=(1024 1024 256 128 16), Table 1 shows
that such simulations can run on Curie Machine (64 GB/node) with 8192 cores but would require 524288
cores on the BlueGene current architecture (16 GB/node)- knowing that the optimal number of threads
is 64. This number of cores is still out of reach on European high performance computers. Currently, as

Ahrp h h nMP threads
MP! procs ehhhhhhh 16 32 64 128

128 || 126.1 GB | 126.9 GB | 128.7 GB | 132.2 GB

512 | 352GB | 36.1GB | 37.8GB | 41.3 GB

2048 | 16.4GB | 164GB | 165GB | 23.2GB

8192 || 125GB | 125GB | 125GB | 19.1 GB

Table 1: Memory peak (in GBytes) depending on the number of MPI procs and of OpenMP threads for a 5D mesh ( Nr N

N- Nyg, N )=(1024 1024 256 128 16).

shown in Table 2 and in Figure 7, the global memory scalability of the code is of 48%. This strong scaling
was performed with a constant 5D mesh of (1024 4096 1024 128 2) points using MTM prediction
mode and varying the number of MPI processes from 128 to 2048 by increasing the number of points in
and directions. The 4D structures are very scalable (relative e ciency of 899%) compared to the others
(see Fig.7). Indeed, 3D structures with 238% represent 32% of the global cost for 32k cores against 16%
for 2048 cores. The 3D structures are then no more negligible. The scalability of the 1D structures is with
19% of the order of the 3D arrays but the cost is still not signi cant. At the opposite, the incompressibility

of 2D structures between 256 and 2k MPI processes is extremely penalizing leading to an increase of the
cost percentage by a factor 10. The fact that the memory for 2D structures remains constant (equal to:1
GBytes) is probably due to incompressible temporary arrays allocated for OpenMP loops. Improvement of
memory footprint of 3D and 2D structures will be pursued in the future.

Another bottleneck for Exascale applications will be the possibly increased crash probability following that
of the number of cores of future machines [24]. The Weibull law [109] gives an estimate of the time between
two crashes which is of the order of the minute for a number on nodes larger than 20 Two approaches
have been explored until now to try to improve the fault tolerance of the code. The rst one consists
in employing an asynchronous method to increase the frequency of the restart le writing. AGysela
simulation runs typically several days or even weeks. So the complete simulation is split into a series of jobs
of approximately 10 hours with automatic re-submission. The restart les are not only saved at the end
of each job but several times during the job in parallel to calculations (see [119] for complete description).
Another checkpointing using the FTI library [6] (high performance Fault Tolerance Interface for hybrid
systems) is under investigation. The main idea is to benet from fast access local SSD disks available on
some HPC architectures.
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Number of cores 2k 4k 8k 16k 32k
Number of MPI processes 128 256 512 1024 2048
4D structures Memory size 207.2GB| 1044 GB | 53.7GB | 27.3GB | 144 GB
Memory percentage| 79.2% 71.5% 65.6% 52.2% 42.0%
3D structures Memory size 420GB | 31.1GB | 186 GB | 159GB | 11.0 GB
Memory percentage| 16.1% 21.3% 22.7% 30.4% 32.1%
2D structures Memory size 7.1 GB 7.1 GB 71GB | 71GB | 7.1 GB
Memory percentage 2.7% 4.9% 8.7% 13.6% 20.8%
1D structures Memory size 5.2 GB 3.3GB 24GB | 20GB | 1.7GB
Memory percentage 2.0% 2.3% 3.0% 3.8% 5.1%
| Total per MPI process in GBytes | 2615 | 1459 | 818 | 523 [ 342 |

Table 2: Strong scaling for each kind of data for a 5D mesh (1024 4096 1024 128 2): (rstlines) memory allocation size
in GBytes and (second lines) percentage with respect to the total memory at the peak of the memory consumption. (Table

from [103]).

Figure 7: Memory relative e ciency for a GYSELA simulation at the memory peak of time consumption for the four kind of

structures used in the code (1D arrays to 4D arrays). The results are extracted from Table 2. The reference point corresponds

to 128 MPI processes.

26



4. GYSELA veri cation

Since the rst steps 15 years ago, the code has evolved signi cantly, including more and more physics with
more and more numerical complexity and high level of parallelism. Portability of the code on several HPC
architectures has been achieved. In such a complex code it becomes very di cult to track or to propagate
changes by being sure to reproduce previous results and simulations. Over the past two years, a large
e ort has been made to improve the development process with due regard to modularity, reproducibility
and e ciency. This approach is based on the joint use of a version control system (GIF) together with
that of a continuous integration platform such as JENKINS®. At each commit on the GIT reference branch,
automatic compiling and executing are submitted. For more details on our strategy the reader can refer to
[10]. A database of non-regression tests is also under construction with the objective to be run less frequently
(every night or week) but to ensure that new changes have no impact on well-established results. All the
tests proposed in this section, which were used for GYSELA veri catiort®, are detailed with the objective
to become part of the non-regression database. They all correspond to 5D gyrokinetic simulations for one
species. Other veri cation tests can be founded on simpler 4D models in [55, 85].

4.1. Normalization

The Gysela code is written in normalized units based on the following normalization choices. We use Sl
units and a thermal energy scale in electron volts (&8V = 1:6022 10 *°J). The four fundamental dimensional
normalizing quantities are: a reference ionic massg = Aomp (Kilogram), a reference ionic chargeqy = Zpe
(Coulomb), a reference magnetic inductionBg (Tesla) and a reference thermal energyly (eV). Here, Ag and
Z, are the (dimensionless) mass number and charge state of the main ion species amthe modulus of the
electron charge. These quantities are used to de ne the reference ion cycIotE]on frequency,, the reference

P—
H — ZoeB — T _ VT _ Tomo
thermal speedvr, and the reference Larmor-radius o as ¢, = =97 =%, vr, = > and o= TZ = 7oeBo
Finally, we choose the equilibrium electron density at mid radiusng as reference density. Physical quantities
(mass, length, time, charge and density) can be recovered from the normalized quantities used in the code

(denoted with a hat symbol) by choosing values for Po; Zo; Bo; To; No] and applying ms = Asmp = MoAs

with As = Aghs, & = ZoeZs, | = of t = -£ and ns = ng hs. The velocities are normalized to the
co
corresponding thermal velocitiesvr,, = = To=mg, i.e v = vy ¥ = ﬂ% ¥s. The main normalizations are
. . 02 ’ .
thus U = J2." B = BoB, Ts = Tofs while = Jenswith A= Z¢ and o = 23 with =1 8.

By deduction, E = EoE with Eg = vr,Bo and the normalized distribution function Fs, which evolves in
the code, is de ned asFs = Fsv{O:nO. Finally, the energy is normalized to the reference thermal energy
To. The subsequent normalized equations used in the code are presented in Appendix AppendixF. In what
follows, all the quantities considered are normalized coordinates, but hat symbols are omitted for the sake
of readability.

4.2. Invariance test

In the present work the source terms are not taken into account. Let us calsimul a rst xed gradient
simulation (i.e no source term) for one unique species of chargé; and massA; and simu2 a second one
for a species of charg&, = 7Z; and massA, = aA;. Then itis possible to de ne the other parameters
of the second simulation, only depending on the multiplying factors z 2 N and A 2 N such that both
simulations simul and simu?2 are identical. The idea is to de ne an invariance test which permits to verify
that charge and mass are correctly taken into account in the code. Notice that such a transformation departs
from a simple  scaling, where only the parameter is modi ed (via e.g. a change of the minor radius
at constant aspect ratio) [23, 92]. Such a test can be de ned as a non-regression test of any gyrokinetic

8http://git-scm.com/
9http://jenkins-ci.org
10The numerical results presented in the following are based on the GIT release 17.0 of the code.
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code but it is not generic. It depends on the equations treated in each code. For any code, the solved
equations (gyrokinetic + quasi-neutrality) are invariant under certain groups of transformations. Within
these groups, the invariance is exact provided that the code actually solves the equations it is supposed
to. We have derived in Appendix AppendixG such a group of transformations which leaves the solution
unchanged for the Gysela code. Seven control parameters are requiredy, , T, , coll, d and
krook that respectively rescale space, time, electron temperature, electrostatic potential, collision operator,
di usion term and Krook operator. The only issue which cannot be accounted for (i.e. which cannot be
rescaled) in this operation is the impact of the boundary conditions. The invariance constraints i.e the
relationships between the various scaling factors which Isave the Boltzmann equation invariant under these

transformations), as summarized in Table 3, are x = A=z, t= A=z, T.=1=2, ca =1,
d =1= z and kwok = z= a. Then, the relation between the electrostatic potential ; solution of the
rst simulation and , the electrostatic potential of the second one is , = 1 with =1= 7.
Simulation 1 Simulation 2
Charge Z; Zy= zZ
Mass Al A= aAA;
Mesh discretization X1 Xy = ZT X1
Time step t ty =24 1
Temperature Te Te1 Tez = L-Ter
Collision coe cient K cot Keoiz = Keont
Krook coe cient K krook1 Krook2 = fK krookl
Di usion coe cient Kai1 Kgio = %Kdi 1
Table 3: Parameter dependence between two equivalent simulations. z and A are the multiplying factors between both

cases respectively for charge and mass.

Three di erent simulations were run to test the invariance property of the code, considering rst a reference
plasma with Hydrogen (massAs = 1 and charge Zs = 1), then Helium (As = 4 and Zg = 2) and nally
Tungsten (As = 150 and Zs = 50). For the following, let us respectively call simul_Al1Z1 simu2_A4Z2and
simu3_A150Z50these three simulations. These cases are not relevant in terms of physics but have been
designed for numerical tests. The idea was to de ne small cases tractable as non-regression tests. So the
reference simulation is based on a small plasma ( = 1=150) for a radial domain between 015 and 0:85
(with = r=a) and for half a torus. The parallel velocity space is dened as 7vr,, Vvgx 7vr,, and
the perpendicular direction is represented by 16 values of between 0 and 12Ty,=Bg. The radial pro les
of density ns, (r), temperature T, (r) and safety factor g(r) are analytically prescribed as dlogns, (r)=dr =
2:2cosh ?(( 0:5)=0:04), dlogTs,(r)=dr = 8cosh ?((  0:5)=0:04) with =1 rpin=("max Tmin)
andqg(r) =1:5+1:7exp(28log(r=a)). A Krook operator (see section 2.10) of amplitude 001 and a di usion
(eq.(51)) of 0:015 are applied in a bu er region de ned by eq.(50) with a location B_. = 0:06 and a sti ness
of 0:017635. The collision operator (eq.(30)) is applied every iterations whil€ls.con (€d.(32)) and Vs: ol
(eq.(31)) are refreshed every 10 iterations. All the numerical parameters of thisimul_AlZlsimulation are
summarized in Tables 4 and 5. For the complete description of the case see the associated input data le of
the code (Figure 1.19) in Appendix Appendixl.
So taking into account the equivalences de ned in Table 3, the second simulatiorsimu2_A4Z2is de ned
with the same parameters assimul_AlZ1except the fact that Helium is considered instead of Hydrogen
and (i) =2 (i) ¢ t =10 (iii) Dee = 0:0075, (iv) Krookee = 0:005 while (v) the diagnostic
time step ¢, fgiag = 100 instead of 50. The species concentratiorts has been divided by 2 to satisfy
the constrainst _csZs = 1. The third simulation simu3_A150Z50is performed for a Tungsten species
As = 150 apd Zs = 50 and diers from simul_Al1Z1by the following parameters: (i) 1= = 36:7423
(1= 2simu1 150-50), (i) cs = 0:02, (i) =50,(V) ¢ t=15(V) ¢ tdiag =150, (Vi) Dgoe =0:0003

28



N, N N Nve, N nbytn o max
256 256 128 7 12
Ro=a riix=a reg=a Torus Zs As o [
1=150 33 0:15 Q75 1=2 1 1: 5:
o 67) (0] nsg Tso Tso T=Te
1.5 1.7 2.8 2.2 0:04 8 0:04 1

Table 4: Main parameters for reference simulation
max T10=Bo.

Vo k nbyth VT, and O
tor radial prole is de ned as
dlog ngy (r)=dr =

q(r) =
nso cosh 2 ((r

simul_A1Z1 The velocity phase space is de ned by
Torus indicates the fraction of the torus simulated.

G + 02 exp(gs log(r=a)).

nbyth 0V
The safety fac-

The radial density prole is de ned by its gradient as
0:5)= rns,). The same analytical expression is used for the temperature with Tso

and  rrs,.
Bu er region Collision operator
BL Bs D coe Krook¢oe “bu -coe nbstep,,; nbrefreshy
0:06 (0017635 0015 Qo1 20 0:28 1 10

Table 5: Main parameters for simul_AlZlsimulation concerning bu er region and collisions. B and Bgs correspond respectively
to the location and the stiness of the bu er regions where both di usion and Krook operator are applied with respective
amplitude D¢oe and Krook coe . The collision operator is applied every nbstep ., iterations but refreshed every nbrefresh g
iterations.

and (vii) Krook e = 0:01=3. The di erences between the three considered simulations are highlighted in
Table 6. The time evolution of the zonal ow component (m = 0, n = 0), where m and n are respectively
poloidal and toroidal mode number in the middle of the radial domain is presented in Figure 8 for the three
simulations. It exhibits a relative error of 10 *®> when Hydrogen case is compared to Helium case and of
10 7 when compared with Tungsten simulation. The loss of accuracy for Tungsten is probably due to the
small size of the plasma considereda(= 36:7423= (). In this case boundary conditions can play a more
important role. For each test the results are su ciently accurate to consider that the charge and mass
factors have been correctly implemented in the code equations. The same order of magnitude is obtained
when the distribution function values are compared.

As Zs 1= o co tdag Decoe Krook coe
simul_Al1Z1 1 1 150 L 5: 50: 0:015 Q01
simu2_A4z2 4: 2 150 2 10: 100 0:0075 0005

simu3_A150Z50| 150 50: 36:7423 50 15 150 0:0003 000333333

Table 6: Modi ed parameters according to the scaling law for the three simulations used in invariance tests.

The same invariance exercise was performed for a smaller reference case:= 1=75, N, = 128, N =128
and a full torus (all the other simulation parameters being identical to the ones described in Tables 4
and 5). The two others simulations de ned for comparison follow the same rules as previously which
corresponds to a  of 1=18:37 for the Tungsten case. The relative error is also of the order of 10 when
comparing Hydrogen and Helium but of 10 & when considering the Tungsten. The two cases = 1=75 for
Hydrogen and Helium will be good candidates as non-regression tests. Regarding the Tungsten simulations
more work could be done. The rst idea would be to consider a = 1=75 plasma for Tungsten, but
this would imply a reference case with 1=306205 for the Hydrogen (.e a mesh of the order of 68
billion of points with ( N;;N ;N: ;Ny,, ;N ) = (512;512 128 128 16)). Such a simulation is feasible but
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extremely time consuming for a veri cation test (several hours on 8192 cores). It would not be possible on
the development cluster Poincare (92 nodes of 8 Sandy Bridge E5-2670 bi-processors (2.60GHz)) at IDRIS
french supercomputing center that has been used for all tests presented above (performed on 512 cores).

Figure 8: Invariance test between three simulations. Left Figure: Time evolution of Zonal Flows oo at a xed radial position
0:5 with  =(rmax rmin)=a oo for simul_A1Z1with Hydrogen must be compared to 2 oo of simu2_A4Zz2for Helium and
50 oo obtained with simu3_A150Z50for Tungsten. Right Figures: Relative errors in function of time: (top) between simul_Al1Z1
and simu2_A4Z2 (bottom) between simul_AlZland simu3_A150Z50

4.3. Usual linear and non-linear gyrokinetic benchmarks

Together with the veri cation invariance test described above, several other benchmarks have already
been performed in the past to validate the code. The so-called \Rosenbluth-Hinton test" (RH) [102] {which
became an essential test for gyrokinetic codes to check the validity of zonal ows and Geodesic-Accoustic-
Modes (GAMs) treatment{ was veri ed in 2008 [58]. Linear and non-linear benchmarks were successfully
achieved [58] with the classical Cyclone DIII-D base case (CBC) [43]. Non-linear benchmarks were also
performed [57] with the global PIC code ORB5 [77]. We also participated to the European turbulence code
benchmarking e ort [48]. Finally, ux-driven simulations have been compared [106] between GYSELA,
ORB5 and XGC1 [25, 26]. In the following we present only the tests which have been recently investigated
again with the new multi-species version of the code to be added as non-regression tests, namely the RH
test and the linear CBC test. These tests have been re-designed with the objective of being su ciently small
to be automatically launched on the continuous integration platform(JENKINS) at a reasonable frequency
with the aim of recovering the predicted results. Here are described the results of our investigation. This
work is still in progress and we plan to continue decreasing the CPU time consumption of such tests in the
future.

4.3.1. Rosenbluth-Hinton test as a non-regression test

This test consists in computing the linear evolution of the zonal ow component oo for an initial elec-
trostatic perturbation. In practice it corresponds to initializing the code with the distribution function
Fs = Fseq(1+ sin(2 (r  rmin)=2L,)) with a perturbation amplitude  equal to 10 3. This initial state
leads to the development of GAMs which correspond to the ifn;n) = (0;0) mode coupled to sidebands
(m;n) = ( 1;0) as a result of toroidal coupling. These GAMS are Landau-damped because of the nite
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poloidal wavenumber of the sideband while the zonal ows relax towards a residual value which has been
analytically predicteﬁi in the case of large aspect ratio and small  [65] as oo(t1 ) = oo(to) Ar with
A, = 1=(1+ 1:60°= r=R), r being the minor radius of the considered magnetic surfaceR and q corre-
sponding respectively to the major radius and the safety factor on this surface of interest. Eight simulations
(detailed in Table 8) were performed varying both time and phase space discretizations. For all simulations
(see Table 7 for common parameters), the safety factor pro le is constant(r) = 1:98r 2 [Fmin ;'max])- The
density and temperature pro les are quasi-constant with ts, = ps, =10 7. For a complete description of
the case see the associated input data le of the code (Figure 1.20) in Appendix AppendixIl. Time evolution
of the (0;0) mode is plotted in Figure 9 for the highest discretized simulation (simu 1 in Table 8). The
theoretically predicted residual value A, is found to be recovered up to 20% in this case. A much better
agreement can be found by decreasing the value of the simulation as noticed by Biancalani (see gure 4 in
[8]). One of the possible reasons is that the radial boundaries may have a stronger impact at large values.
A detailed analysis of both the transient GAM oscillation and damping on the one hand, and of the residual
value of zonal ows on the other hand, is presented in AppendixH. The numerical echo appearing at time
t = 15000 Col is due to nite discretization of the velocity phase space. The numerical damping rates cam
and frequencies! gav reported in Table 8 are all computed betweert 2 [0; 15000 Col]. We observe that all
the values are equal to gam =2:46459104 ¢, and ! gam =9:1106110°% ¢, with an error smaller than
3% except for simulations number 4, 6 and 8 in Table 8. The error larger than 7% for both simulations 4 and
6 is due to the fact that the numerical echo appears at timet = 9000 Col instead oft = 15000 Col, making
the numerical residual estimation impossible. Error in simulation 4 is due to the fact that four values of
are not su cient for  integral computation required for the r.h.s of the quasi-neutrality equation. Results
for simulation 6 shows that 64 in parallel velocity direction are not su cient. The CPU times reported
as results in Table 8 correspond to mono-core hours on the Poincae machine where all simulations were
performed with 4 threads and (2 N ) MPI processes for a nal time equal tot = 20000 Col. Simulation 7
corresponding to 30 minutes on 64 cores is a non-regression test for the code.

As Zs Ro=a ripg=a Trex=a Torus nbyno max

1=100 I 1. 2:78 02 0.8 1 7. 12
h G OB [Ipeak=a nso nso Tso Tsy, Ti=Te
1.9 o o 0:5 lLe ’ 0:2 Le ’ 0:2 L
Table 7: Common parameters for Rosenbluth-Hinton test. The velocity phase space is de ned by Nbyth 0VT4o Vg k
nbyth oVT4, and 0 max To=Bo. Torus indicates the fraction of the torus simulated. The safety factor radial pro-

le is dened as q(r) = a1 + g2 exp(gz log(r=a)). The radial density prole is de ned by its gradient as dlog Nso (r)=dr =
ns o COsh 2 (r lbeak =)= Ins, . The same analytical expression is used for the temperature with Tso and  rrs,.
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Figure 9: Comparison of the residual value of the (0 ;0) mode

00(rpeak ;)= 00(rpeak st = 0) =
1:6g°= r=R) =0:06825 is given by Rosenbluth-Hinton theory. This result corresponds to simulation 1 described in Table 8.

A:r where A, = 1=1+

CPU time
simu. N, N N Ny, N co U GAM Y (monoproc)
1 128 128 32 128 16 2 2146459104 9:1106110°8 7219 h.

2 128 128 32 128 16 5 2:4645910“4 9:1106110°% 2921 h.
3 64 64 16 128 8 5 2:46459104 9:1106110°3 159 h.
4 64 64 16 128 4 5 2:63456 104 9:73893103 79 h.
5 64 64 16 128 8 10 246459104 9:1106110°3 41 h.
6 64 64 16 64 8 10 2:5495710% 9:4247710°3 83 h.
7 64 64 16 128 8 25; 2:46459104 9:1106110°3 37. h.
8 64 64 16 128 8 50 2:54957 104 9:4247710°3 21 h.

Table 8: Rosenbluth-Hinton test: Values of numerical damping

cam and frequency ! cam for 8 Gysela simulations varying

according to 5D mesh size (Nr;N ;N' ;Ny,, ;N ) and time discretization.

4.3.2. Linear benchmark based on Cyclone DIII-D case for global codes

For the present benchmark, the considered physical parameters are the same as the ones de ned in
Lapillone's paper [81] corresponding to the standard linear Cyclone base case (CBC) [43]. The circular
concentric magnetic equilibrium is de ned with an aspect ratio of R=a = 2:78 and a safety factor pro le
q(r) = 0:86 0:16r=a + 2:52(r=a)?. This corresponds to a local safety factorq(rpeak) = 1:4 and a local
magnetic shears(r peak) = 0:8 With rpeak = min +0:5(fmax 'min) @and s(r) = (r=g)dg=dr. The initial density
and temperature pro les are de ned with the radial form function f(r) =exp( x , tanh((r rpeak)= r,).
The , and ,, parameters are chosen to obtain peaked pro les at the middle of the radial box yeax with
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nse = Tse = 0:3, ns, =2:23 and 15, = 6:96 (see Figure 1 in [81]). To be consistent with the DIII-D
shot is chosen equal to £180. For a complete description of the case see the associated input data le of
the code (Figure 1.21) in Appendix Appendixl.

Ro=a ring=a frex=a nNbyho max Zs As
1=180 278 (01 09 6 7. 1 1
o1} (07} ¢} nso nso Tso Ts, Ti=Te

0:86 0:16 252 223 a3 6:.96 03 L

Table 9: Main parameters of the = 1=180 linear CBC simulation. The velocity phase space is de ned by Nbyih 0VTo
VG k nbyt oVT4, and O max To=Bo. The safety factor radial prole is dened as q(r) = q + q(r=a) + ga(r=a)?.
The radial density pro le is de ned by its gradient as dlog Nsq (r)=dr = ns o COsh 2((r 0:5)= Inso). The same analytical

expression is used for the temperature with 15, and rrs,.

The rst diculty with a full- f code asGysela is that the separation between linear and non-linear
terms is not possible. So non-linear mode coupling cannot be avoided, which implies that the time window
for linear growth rate estimation is limited. To prevent this coupling all the toroidal mode numbers n
are Iteredexcept the one n initialized as perturbation in the initial distribution function Fs(t = 0) =
Fseq(1+ m:? cos(m +n' + ) with a perturbation amplitude =10 6. This ltering is performed
by applying, after the quasi-neutrality equation solving, the condition F( )y, =0 foralll m  mpa
where F denotes the 2D Fourier transform in (;' ). Besides, the global aspect of the code implies that
large toroidal mode numbersn are hardly accessible because a large mesh discretization is then necessary.
For the 6 cases which were run foijnj ranging from 5 to 30 (see Table 10) the discretization of the velocity
space was kept constant K., ;N ) = (64;16) but increased in real space forjnj > 15. The number
of radial points is kept constant (N, = 128) but doubled in both poloidal and toroidal directions for
jnj  25. This corresponds to a mesh of 8 billions of points for the smallest poloidal mode numbers but
of 32 billions of points for the largest. The time step t is equal to 40= ¢, for jnj 15 ang divided by
a factor 4. The linear growth rate is estimated by a linear t of the exponential growth of 2 d3x d®v
during the linear phase. An example of this exponential growth is plotted at the top of Figure 11 for the
smallestk s = jnjo(rpeak) =rpeak = 0:078. So the linear tis performed on a time interval ¢, [tinit ; tend]
depending on the duration of this linear phase. This interval is taken equal to [500050000] fork s =0:078
and [400Q 18000] for the others. The frequency is estimated on the same time intervals by spectra analysis.
Both have been compared with GENE results [81] and show a very good agreement (see Figure 10). This
work is in progress in the framework of the Eurofusion project [9]. The smallest runs were performed
on Poincare machine on 512 cores (withg;p ;p ;Nthread ) = (2 ;4;16;4)) with a CPU time cost of 9k
hours/monoprocessor (for 1300 iterations). The two largest cases ran on Turing (IDRIS-France) BlueGene
machine using 32768 processorsi(;p ;P ; Niread ) = (8;4; 16;64)) with an expensive CPU time cost of
1:7 millions of monoprocessor hours for 2000 iterations (equivalent to:B 1f h. on an INTEL machine as
Curie (CCRT-France)). Such simulations are de nitively more expensive for a global fullf code than for f
ux-tube codes. This explains why the two last points performed by GENE for k > 0:5 (Fig. 10) have
not been simulated with GYSELA. Nevertheless, the global aspect can give access to useful information like
the time evolution of the radial structure of poloidal modes (for toroidal mode jnj=5). This radial structure
is plotted at 4 di erent times on Figure 11, going from initialization to the end of the linear phase. It shows
that the linear phase, i.e the exponential growth, starts as soon as the global eigenmode {characterized by a
singlen and severalm mode numbers{ acquires its radial structure. The process of mode reorganization and
the main physical parameters involved (asq pro le, 1 =Ly shape or ...) would be interesting to investigate
in more detail.
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N Mma N Nk s ¢t coltinit ;tend] err !

5 7 256 128 @78 40 [500050000] 0045 Q00258 0106
10 14 256 128 (156 40 [4000 18000] 0158 Q0069 0238
15 21 256 128 (@233 40 [400Q 18000] 0217 Q00123 0476
20 25 256 128 (B11 10 [400Q 18000] 0257 Q00127 0636
25 35 512 256 (B89 10 [400Q 18000] 0271 Q00468 0827
30 42 512 256 @67 10 [400Q 18000] 0253 Q002 Q978

Table 10: CBC results: Linear growth rate and frequencies ! estimated in the time interval Co [tinit s tend] for 6 dierent
toroidal mode numbers n. The poloidal wave number Kk is computed as kK s = jnjg(rpeak) =rpeak = jnj 1:4=(2 180),
Ioeak being the middle of the radial box. These results are compared to GENE results in Figure 10

Figure 10: Benchmark between GYSELA and GENE codes for the Cyclone base Case for 6 dierent  k s values: (Left) Linear
growth rate (plotted with the error bar de ned in Table 10), (Right) Linear frequency. Private communication [9].

Figure 11: Radial structure of the electrostatic potential for ( m;n) = (7 ;5) and a bandwidth of m 3 modes, at di erent
times: (i) initial time, (ii) beginning of the linear phase t = 7200 C;, (iii) t = 36000 C; and (iv) end of the linear phase
t=50400 1.
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5. Local conservation laws

Verifying adequate conservation laws is an essential step in providing a correct description of mean ows.
Since the controversy on the suitability of gyrokinetic codes for describing toroidal momentum transport
[98, 99] a speci ¢ e ort has been devoted to address conservation equations both in the context of a reduced
gyro uid model [17] or gyrokinetic eld theory [110, 18]. As shown in this section, it is also possible [2]
to derive local conservation equations for density, energy and toroidal momentum from the gyrokinetic
electrostatic model (5)-(12) implemented in the Gysela code (more detailed calculations can be found in
Abiteboul's PhD [1]). The radial force balance is presented in section 5.1 while the conservation laws are
detailed for: (i) charge density in section 5.2, (ii) energy in section 5.3 and toroidal momentum in section 5.4.
As explained in [2], the force balance equation added to the energy and toroidal momentum conservation
equations ensures a self-consistent treatment of the radial electric eld and ows. We present for each
property an example of numerical results, (see Figures 12 to 15) for a simulation close to the non-linear

CBC simulation proposed in [81] for = 1=180. It corresponds to a collisionless simulation, with Dirichlet
boundary conditions and without di usion or Krook operators. Contrary to the Ii,gear case, there is no
Itering on the toroidal modes. The initial perturbation is de ned as p(r; ;V gk) = Q:ff 2:3* cos(m +

N+ mn)feq(r; ;V 6k)=(Mmax Nmax) for Mmax =28 and nmax = 20 and random values for n, phases. The
perturbation amplitude is equal to 10 8. The equilibrium distribution function feq is a local Maxwellian

function given by eq.(19). The other numerical parameters of this simulation are summarized in Table 11.
The conservation equations are derived at second order in . Accurate results (error of 2%) were already

N, N N: Nvg, N nbyth o max
256 256 128 64 16 7 12
Ro=a rix=a rex=a Torus Zs Ag o ©
1=180 278 01 09 1=2 1 1 10:
h 7] B nso nso Tso Tso Ti=Te

0:86 0:16 252 223 03 6:96 03 1

Table 11: Main parameters of the =1 =180 simulation used to check conservation law properties. The velocity phase space
isdened by nbyhoVr,, Vek Nbvih oVTs, @nd O max To=Bo. Torus indicates the fraction of the torus simulated.

The safety factor radial prole is dened as  q(r) = q + gp(r=a)+ ga(r=a)2. The radial density pro le is de ned by its gradient
as dlog ns, (r) =dr = ns o cosh 2((r 05)= fnso). The same analytical expression is used for the temperature with Tso
and  rrs,.

shown with the code for force balance and toroidal momentum for a simulation with = 1=512 (see Figure
2in [2]). For alarger =1=180 the results are still accurate with a relative error of 5 to 10%. As expected,
boundary conditions play a more important role leading to a degradation of the accuracy outside an internal
region @4 r=a 0:7. Comparing to relative errors for all conservation properties (Figures 12 to 15), the
local energy conservation (Fig. 14) is the least accurate. It was not possible to analyze the energy behaviour
for smaller (as 1=300 and +512) because such simulations are extremely expensive (several millions of
mono-processor hours) and the diagnostic was not fully implemented in large simulations until present. This
will be investigated in more details on the upcoming big simulations. Complete ux driven simulations with
source terms and collisions have also been analyzed (but not presented here). Even for large= 1=150,
the force balance equation, local charge density and toroidal momentum are conserved with less than 10%
error even at times when turbulence is fully developed. The fact that this requirement is not met for energy
is still under investigation.

5.1. Radial force balance equation

In the uid description, the radial electric eld and the ows are related via the force balance equation.
It was veri ed that this relation holds also in gyrokinetics [38, 51]. Indeed the radial force balance can
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be recovered analytically from the conventional rst order gyrokinetic equations (see Appendix E in [2]),
yielding the standard uid expression

2p2
@Peq + ;Evkeq = quigz v r) (58)

@ eq t

Negq

where the equilibrium density neq, pressurePeq, velocity Vieq and potential ¢4 are functions of P. =e
(which is approximately equal to  at rst order in ). The label of ux surfacesg is chosen as the
opposite of the poloidal ux of the magnetic eld, i.e pol With o = (2 ) 1! g dSB r =jr j.

Considering the form of the magnetic eld used presggtly in the codeB = (BoRo=R(r; ))[ (r)e + e ]with
(r) = r=(qRo), the label is determined by = Bo , r’%qr9dr®which implies d= dr = Bor=q.

In order to check that the force balance equation is veri ed numerically, we comparev®S the poloidal
velocity directly computed within Gysela {from the distribution function as the sum of the poloidal ExB,
curvature, grad-B and magnetization ows{ with the expected velocity from the force balance equation,
namely vF® corresponding to the left-hand side of eq.(58) (see Figure 12 (left)). This agreement was robustly
veried in Gysela simulations for a wide range of parameters for temperature gradient, collisionality and
normalized gyroradius s [39, 36]. A precision of 2% was obtained for a ITER parameter case with =1=512
[2]. In Figure 12 (right), we recover this good agreement for the case = 1=180 described in Table 11.
Indeed, even for a larger = 1=180, the relative error {de ned here as the di erence normalized to the
guadratic mean{ is smaller than 0.08 at time t = 20040 Col which corresponds to the beginning of the
non-linear phase.

Figure 12: Left: Numerical test of the radial force balance equation (58) at time t = 20040 c;’ comparing the poloidal velocity

véYS directly computed in the code and vFB the sum of the three contributions ~ Er, r p=ne and v B . Right: Relative error
between both. The parameters used for this simulation are summarized in Table 11.

5.2. Local charge density conservation

To obtain local conservation equations, we perform integrations of the conservative form of the gyrokinetic
equation (5) over the velocity space and over the magnetic ux surfacesi.e over d Jyd d' d3v with
d®v = J, dvgx d s. We recall that J, =1=(B r ) is the Jacobian in real space and), =2 B ks=Ms is the
Jacobian in gyro-center velocity-space.
We considera radial region outside the bu er region and without source termsi.e we consider the following
simpli ed version of the conservative Boltzmann equation (5)

dfs _ @s, 1
d @t B,

r, zBFs = C(Fs) (59)

36



wherez = (; ;v gk, s)and z=d;z. We integrate eq.(59) in a small phase-space volume between two
rfaces and + and apply a divergence theorem. Using the collision operator conservation property
C(Fs)d =0 and summing over all species, this leads directly to the usual expression for local transport
of charge density

@ +@J =0 (60)
where is the charge density andJ is the radial current of gyrocenters:
x Z x £
= g d Fs and J = & d (zr )Fs (61)
species species

Figure 13 shows that equation (61) is numerically satis ed with an error of less than 1%. Part of this error
is due to the fact that the time derivative @ is computed from post-processed data (is not saved at each
time step  but at each diagnostic time step ( tgiag = 12  for this simulation)). Another error source is
the fact that the terms r » (B, .di ) and @ (B, d;' ) are neglected in the splitting algorithm (see section

3.1).

Figure 13: Numerical test of the charge density conservation for simulation de ned in Table 11. All the quantities are ux-
surface averaged. Left: Comparison of the two terms ~ @J and d = dt which must be equivalent according to equation eq.(60).
Middle: Relative error (de ned as the di erence normalized to the quadratic mean). Right: Contribution of the neoclassical
and turbulent parts.

5.3. Local energy conservation

Similarly, a conservation equation for the total energy can be derived by multiplying the gyrokinetic
equation (59) by the gyrocenter Hamiltonian, which reads

1 .
Hs= omovd, + B+ U with U=Jo U (62)

Using the fact that our collision operator is constructed to conserve the total Hamiltonianand integrating
over d vyields
Z 1 z z 1
@ d Emsvék+ B Fs+ d U@+ d Hsg—r, ByFs =0 (63)
ks
Then for each species, equation (63) can be rewritten as an equation for the radial energy transport as

@Ex, + @Qs = Ws (64)
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where Ex . corresponds to the kinetic energy of the gyrocenters for the species; the ter®s is equivalent to
a radial ux of energy and the right-hand side Wy appears as a kinetic energy source

z 1 z z
Ex. d émsVék"' sB Fs ; Qs= d Hs(zr )Fs ; Ws= G d U@Fs
The term Ws corresponds to an exchange of energy between a given species and the turbulence, and is
generally referred to as turbulent heating[91, 122, 66, 121, 52]. It corresponds to a transfer of energy
between particles and the electromagnetic eld. The numerical computation of this term is expensive
because it requires saving the 5D distribution function of each species at two successive time steps which
corresponds to a large amount of memory. So to obtain a local conservation equation with no source term,
we consider the total energy by summing (64) over all species. Then,

X X X
@Ex + @Q=W with Eg = Ex. ; Q= Qs and W = Ws (65)
S S S
The term W is decomposed into two parts as
x £ x £ x £
G d U@Fs = G d U Jo, @Fs + G d (JOS U)@Fs U Jo, @Fs (66)
S S S

As detailed in Appendix AppendixJ.2 the rst term in eq.(J.5) can be expressed in function of the potential
energyE, as

X z X Z
& d UJ, @ @, with E, 6 d U Jo, Fs

species species

NI =

P R
Besides, the second term g = <& d (Jo. UY@Fs U Jo, @Fs in eq.(J.5) corresponds to a
polarization term, due to the di erence between particles and gyro-center densities. As a remark, considering
that the gyroaverage operatorJo, is a self-adjoint operator, this term vanishes when integrating over the
whole phase-space volume. It is indeed the divergence of a ux in the local conservation equation. To
express this term explicitly as a ux contribution, let us consider the low wavenumber approximation of the
gyroaverage operator used in the codei,e the Pace approximation Jo, ' 1+ %r ";;BS r . (see section
2.5.1 for more details). Using this approximation, | g can be expressed for each species as

Z z

lg = — d @FSEI' r,u d Ugr r'?(@FS)

R
It can also be expressed in a more compact form using the gyrocenter perpendicular streBs, = d°vFs ¢B.
This leads to the following conservation equation summed over all species

@(Ex + Ep)"' @(Q+ Qpot + onl) =0 (67)
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P P P P P _
whereEx = s EKS, Ep = s Eps, Q= sQS’ ont = SQs; pot and onl = SQS; pol with

Z
Ex,= d EFs with E= %msvék+ <B (68)
Z
Ep. = ;25 d UQJo, Fs) (69)
Q= d E(zr )Fs (70)
Z
Qs; pot — d (‘]Os U)(_ZI’ )Fs (71)
m. £ 1N 0

We recall that, although the polarization term is necessarily the divergence of a ux term, the expression for
Qpol given here is not exact as it relies on an approximation of the gyroaverage operatorQs corresponds
to the energy ux of speciess while Qs pot COrresponds to the ux due to the electric potential. For the
numerical results presented in Figure 14 the termQs; po iS Not taken into account. Indeed, it requires 3D
values ofU and Ps. » which were not saved for this simulation because this possibility has been more recently
implemented in the code. Analyzing recent non-linear ux-driven simulations where this computation is
available shows that the assumption Qs; pot 0 is justied. Even in regimes where turbulence is well
developed the termQs; ,or Stays su ciently small to have no impact on the local energy conservation law.

Figure 14: Numerical test for local energy conservation for simulation de ned in Table 11. Left: Comparison between h @Qifs
and dhE irs=dt with Q = Qs+ Qs; pot + Qs; poi @and E = Ex , + Ep, de ned by egs.(67)-(72). Middle: Relative error (de ned
here as the di erence normalized to the quadratic mean). Right: Detailed contribution of each terms.

The numerical validation of equation (67) is performed on ux surface average quantities. The comparison
betweenh@ (Q + Qpot + Qpol) irs and h(Ex + Ep) irs seen in Figure 14 (left) shows an agreement better
than 15% at time t = 20040 Col. The separate contribution of each terms given by equations (68)-(72) are
plotted at Figure 14 (right) showing that this energy conservation derives from the compensation of di erent
complex radial pro les.

5.4. Local toroidal momentum conservation

Formally, the derivation of a conservation law for toroidal angular momentum is very similar to that for
energy in the previous section. The general idea is to multiply the conservative gyrokinetic equation (59) by
an invariant of motion. For the energy, this invariant was the gyro-center Hamiltonian Hg given by eq.(62).
For this conservation law, let us consider the gyrocenter toroidal canonical momentunP. de ned as

P =msu ¢ (73)
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with the de nition u = (1=B)vgx = R?b r 'v gx. P- is an exact invariant of the unperturbed gyrocenter
motion described by the HamiltonianHg;eq = %msvék+ sB + Ugq, Which corresponds to collisionless motion
in a fully axisymmetric system. Ugq is the gyroaverage of the equilibrium electric potential Ugq independent
on the toroidal angle. When axisymmetry is broken, which can occur for instance due to turbulence or
magnetic eld ripple, P is no longer a motion invariant. In particular, when the electric potential becomes
non-axisymmetric, the evolution of P. is governed by the equation gP- = ¢g@'U. This result can be
obtained by using the expression of the gyrokinetic Poisson brackets in the gyro-center coordinates [g¢
(see [16], equation (150))
B

S rX@.,Y @,XrY
SBks ks

X;Ylge = o rx rry) (74)

Details of the calculation are presented in Appendix AppendixJ.3. From the de nition of P. given by
eq.(73), we de ne the local toroidal angular momentum as
X Z
L. = ms d u Fs (75)

species

Note that L. is the momentum for gyrocenters which di ers from the particle momentum by terms of order
O( 2). As said before, in order to derive a local conservation equation fot.: , we multiply the conservative
gyrokinetic equation (59) by P- and integrate over all variables other than , leading to

z z z

@ 1 -
d P' @t+ d P‘ Biksr z Z—BKSFS - d P' qu)

R
Using the conservation properties of the collision operator d P. C(Fs) = 0 and integrating by parts the
second term, then

Z VA @P A 1 Z
@ d P Fs d Fs—— d Fs—r, zB,,P +@ d (zr )FsP =0
@t B
Finally, using the fact thatd (P- = @@ U, we obtain for each species,
Z Z Z Z
mi@ d uFs ¢ d @Fs+g d Fs@QU+@ d (zr )FsP =0 (76)

Summing over all species, this leads to
|

X z ' x Z x £
@ ms d uFg g6 d @Fs+ G d Fs@U+
S S | S |
X z ' x Z '
@ Mg d (zr )Fsu @ o d (zr )Fs =0
S S

Using the local particle conservation eq.(60), the second term can be written as@ J . We also iden-
p’g‘y thedast term as  @(J ). Then the conservation equation of the local toroidal momentumL. =

<Ms d u Fsreads

@ +@  +T,=1J (77)
where
X z x £ x £
.= ms d Fsuvg ; Tpol = 6 d Fs@U ; J = 6 d vgFs
species species species
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Equation (77) is an exact equation for the transport of gyrocenter toroidal momentum, in the sense that it
was obtained directly from the gyrokinetic model, with no speci ¢ assumptions regarding the ordering. The
term T, corresponds to a polarization ux of momentum term.

Figure 15: Numerical test for local toroidal momentum conservation for simulation detailed in Table 11. All the quantities

are ux-surface averaged. Left: Comparison between @L: and J @ - Tool which must be equal according to eq.(77).
Middle: Relative error (de ned here as the dierence normalized to the quadratic mean). Right: Detailed contributions of
neoclassical and turbulent parts.

The numerical results obtained with the code are presented in Figure (15) with the contribution of the
di erent terms of equation (77) (at the right) averaged on the ux surface. The relative error plotted at the
middle shows an accuracy better than 10%.

6. Conclusion

A complete description of the multi-ion species version of the 5D non-linear gyrokinetic cod&ysela
has been presented. Adding to its global fullf character its original semi-Lagrangian scheme, the&Gysela
code is unique. It can tackle the complex problem of ion turbulence self-organization (in adiabatic electrons
and electrostatic limits), a special care having been taken to fully consistently model the interplay between
turbulence and collisions as well as the interplay between all possible scales in the problem, with no assump-
tion of scale separation. Code veri cation has been successfully performed with a permanent concern for
improving its reliability, namely (i) comparison with analytical theory; (i) benchmarks with other gyroki-
netic codes; (iii) invariance tests to check the correct implementation of mass and charge parameters; and
(iv) conservation law properties of the semi-Lagrangian method. Particular attention was recently paid to
ensure the traceability of the code for the two main developments under progress; the implementation of
kinetic electrons and taking into account of a more realistic magnetic con guration. The code is scalable up
to actual parallel machine sizes.
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AppendixA. Quasi-neutrality solver

AppendixA.1. How to overcome the di culty due to h”igs term ?

In this appendix, the numerical solving of the quasi-neutrality equation is described. This description is
based on the normalized quasi-neutrality equation implemented in the code

1 X
e,

h [ X
1 . 1
" hlies = = Zslfe,  Ne.eql (A.1)

N VANVAN
Asr ? ns r ? + —F
° Zg-fe neo

S S

It explains the particular treatment performed to overcome the problem of the ux surface average term
h igs in Fourier space. The previous equation (F.11) can be written as
A SN * ) (A.2)
nge(f") FS [ .

where the di erential operator of second orderL is de ned as

X
L= Ashs, (P) g;+ 1, 1 ds(®) @, iQ;
e, () @ roNg (f) dr @ MrP@

and the right hand side reads

. 1 X .

5" )= m . Zs [nGs(f\’ ) ﬁGs;eq(f‘y )
The constant can be chosen equal to 1 (by default) or equal to 0. Let for all functiong, hgi .- being the
radial function equal to Z Z
o1 - .
hg(®) i = - offs ;' )d d

RR
By applying the integration 1L d d' to the previous equation (A.2) and by using the fact that
hh“i . igg=h"i.. then:
R 1 h i

Lh™i.. + —— h"i. higs = h i. A.3
) Zg.fxe N FS ; ( )

Let "being "= " h "i.. then, by subtracting (A.3) to (A.2), and by using Dirichlet boundary conditions
we obtain8 2 R,8 2[0;L Jand 8" 2 [O;L: ]:

8

L+t Mt )= %) with %= h i 8 2 [Pmin ; Pmax ]

(A.4)
T Wit )= Prma ) =0

Besides, (A.3) can be written as

42



Then using the fact that h” igs = h™igs hh "i.. igs and using Dirichlet boundary conditions, the
previous equation leads to the following system:

8
2 L+(1 )si higs=h i. + L+ =1 h"igs
Zote 28Te (A.5)
AN N .
h”igs(fmin) = h iFs(fmax) =0
Using the de nition of ) then
h"ies = h™igs hh i igs
=h"igs h "i (becauseh h™i.. ips=h"i. )
soh™i.. =h"igs h “igs
and using the factthat “= "™+ h”™i.. , we obtain the expression of the electric potential” as:
Mt )=t ) h Ties(®)+ h ks () (A.6)

To summarize, the solving of the equation (F.11) can be replaced by the solving of two simpler equations
(A.4) and (A.5). Indeed, the equation (A.5) is a di erential equation only depending on the radial direction.
Besides, in (A.4) the variable' plays the role of a parameter, then the discretization of the equation can be
performed by projecting in Fourier space in direction and by using nite di erences in the radial direction

as described in the following paragraph. However, it is important to realize that the boundary conditions
are not directly applied on " buton "= " h “i.. . So the fact to impose {*rmin) = 0 does not imply
“(Pmin) = 0 but “(Pmin) = h™i .. (Pmin) (Same remark can be done atr = 42 ). Another treatment is
available whenr},, is su ciently close to 0 (*min < 10 2 in the code). Indeed, let us assume that in this
caseJy(fmin; ) is equal to a constant. Then, for all function g,

R
Rng (f\min ; )d d
Jx(f\min ; )d d

. 1 . . .

hgirs(fmin) = = Ihg| ;! 8ifmin] 1

In this case employing a Neumann boundary condition on the (§0) mode at the axis (.e @h"i - (Pmin) =0)
is equivalent to applying @h’i £s(fmin ) = 0 in the matrix system (A.5).

AppendixA.2. Finite di erences in radial direction and Fourier projections in and

AppendixA.2.1. Solving of the equation systen{A.4) P

Let “and %be represented in terms of the Fourier expansion adrr )= M )exp(im )

and %f; ;' )=, 9B (' )exp(im ) then the equation (A.4) can be rewritten in the wave number rep-

resentation, for each poloidal modem and for each independent value of , as the following di erential

equation: !
1

zgte()

M)y = A (A7)

L™+

with the operator L™ de ned as

1
h'30 (f\)

X @) 1 1 dAs,(A) @ m?
. Ashs, (F) @"‘ F"'nso(f\) ar @ (A.8)

LM =

and where "™ (resp. 9') is the Fourier transform in  of “(resp. %. Let N, be the number of radial points
and let assumes that the radial domain is de ned inside 1; Py, ] (i.€ fmin = %1 and finax = *n, ), then up to
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second order in %, the system of equations (A.4) leads to the tridiagonal N; 2) (N, 2) system:

0 10 1 o0
d% ur, O "7 %
|f\3 drr\n3 Up, 0 g' 0/6;
. . . : = : (A.9)
0 ey, drﬂnN, » Urv, Amr 2 /H:l, 2
0 oy, o OR, "o A 1
with for each 1y 2 [f; f\, ]
8
ln = (i) (i)
% i Ar2 2T 38 =
2 N — Nso(fi) 1 1 dhso(fi)
= M) =t ey win = () = PSA\Sﬁeg(ﬁ) AT RL()  dr
. — Nsy (i)
- P O
W = W)
(A.10)

and where "' = " =0.
Solving the previous matrix system (A.9) is equivalent to solve a matrix system of the formAx = b where

A is tridiagonal, with [dy;  ;dn] = [de,;dn,;  5dny, ] the diagonal, [lz;  SIn] = [051e;  Sley, 4]
the lower diagonal and p1;  ;un] = [Us,; Uy, ,;0] the upper one while the right side vectorb
corresponds to br; byl =[%W(f2); ;% (P, 1)]. The result vector "™ is given by ['T; ;"R 1=
[0;x1;X2; ;X 0]

AppendixA.2.2. Solving of the equation systen{A.5)
The system (A.5) can be rewritten as:
8
2 L+(@1 )251‘71(1‘.) h™ies(f) = (*r;)  foreachr 2 [Py PRy, ]

h”™ies(fmin) = h ™ iEs(Fmax) = 0

: : AL : RR .
with (*r;) = h i, (f)+ L+ Wl(” h” igs whereh i.. (f) = - (f;:")d d whichis
o lelli
equivalent (by using the same notation than for the previous matrix system (A.9)) to:
0 10 : 1 o0
d, U, O h"ies(f2) ('r2)
I, dn,  Up, 0 h™irs(f3) (Y3)
. : = 5 (A.12)
0 If‘N, 2 df‘Nr 2 uf\Nr 2 AiFS(f\Nr 2) (ArNr 2)
0 lf‘Nr 1 df‘Nr 1 h/\ips(f\Nr 1) (ArNr l)

with for each 1y 2 [fy; P, gl
| — (i) (i)
% f Ar2 27r

_ 2 1
dr, = == (R)+(2 )m
g Uﬂ. - ,E':lz) + 2(/\Ir)
(ri) = hi; (f)+ L+ of



where (fy) and (fy) are de ned by (A.10). Let us notice that the super-diagonal (us );-,. ., » andthe
lower-diagonal (¢ );-;. ., 1 are the same than the ones in the previous matrix system (A.9), while the

diagonal can be deduced from the previous diagonal of the poloidal mode = 0 (i.e dy i N1 for
m = 0) by the relation dp, = d} = (Z§Te(f)).

AppendixA.2.3. Global algorithm for the quasi-neutrality solver
Then the di erent steps for solving (A.2) and obtaining " are the following:

(i) Compute and save |,
N

(i) Solve (A.4) to obtain “and save the 3D array ’,
(iii) Compute h” igs and save this 1D array,

(iv) Compute the RHS of (A5), ieh i. + L+ -t~ h”igs and save this 1D array,
, z2T,
ole

(v) Solve (A.5) to obtain h”iks and store it, and nally
(vi) Compute “(f; ;' ) by using (A.6).

AppendixB. Numerical implementation of the collision operator in GYSELA

In this appendix, the simpli ed expression of the Lorentz-type operator which is used inGysela is
detailed. The expression of this collision operator (including the perpendicular direction, which is not yet
implemented in Gysela ) is

1 F 1 1 F
qu):?m@Gk BysDksFwm, @y, ﬁ +Bfks@ BkSD?sFMS?@ FMS

s

(B.1)

s

where B, (1; ;Vgk) = B(r; )+ vgkb r b is the Jacobian of the guiding-center coordinates, andry, is
the following shifted Maxwellian distribution

|

) !

Ns, Ms Vg Vks;coll sB

= — eX
(2 T s;coll :ms)s_2 P 2TS;CO" Ts;coll

Fm. (B.2)

with the mean temperature Ts.con = Ts.can (15 ;' ) and the mean velocity Vis.con = Vks:can (I; ;' ). Fm, IS
such that C(Fs) = 0. The collision term Dy is de ned by equation (25). The expression ofTs:con and Vis: coll
are constrained such that the collision operator is momentum and energy preserving. These calculations
and expressions are detailed in a rst paragraph AppendixB.1 while the numerical implementation based
on a semi-implicit second order Crank-Nicolson scheme is described in the second one AppendixB.2.

AppendixB.1. Expressions of the mean temperatur@s,.o; and mean velocityVi.con for the collision operator

While this simpli ed collision operator obviously conserves the number of particles, the pro lesTs.can (15 ;' )
and Vis.con (1; ;' ) must be chosen so that the operator is also compatible with the conservations of momen-
tum and energy

Z
d3v mgvgCQ(Fs) = 0 (B.3)
Z
3 1 2 —
d°v B+ émsvGk C(Fs)=0 (B.4)

whereJ, =2 B, ,=m; is the jacobian in velocity space and dv = J, d sdvgy is the space velocity element.
Let us rst consider only the contribution of collisions in the parallel direction. We use the expression of
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the collision operator (B.1) and integrate eq.(B.3) by parts twice in the variable vgy
z F
(B.3), =2 d sdvgk FisBksDks@GkFMs + Fs@;, (BysDxks)

s

R
Let us de ne the averagehiashi= d3 Fs and use the factthat @, Fu. = Fuw. W then
( * +)

Mg 1
(B-g)k = 0 Vks;coll msDks msDksVGk + Ts;coll 7@Gk(BksDks) (B-S)

Ts;coll Bks

We perform similar operations on the contribution to eq.(B.4) of collisions in the parallel direction:
*
. ( D £ L +)
(B.4), = —— Visicol MsDysVai MsDysVak + Tsicol 5 @s, (BysDksVak) (B.6)
Ts;coll Bks

For collisions in the perpendicular direction, eq.(B.3) is trivially veri ed. We perform two integrations by
parts in the variable ¢ for eq.(B.4),

y4
2 Fs 1
(84)9 = mis dVde Sﬁg@(BksD?sFMs)
Then using the fact that @Fum, = Fu, -

* + )

1 1 :

(B-4)? T | BB @(BkSD?s) Ts.con hD 2l (B.7)
s; ol ks

Using equations (B.5), (B.6) and (B.7), the conservation equations (B.3) and (B.4) form a linear system
in Ts.con(r; ;' ) and Vis: coll (r; ;') as follows

* +
1
Vks;coll MsDks + Ts;coll Bi@Gk(BksDks) = msDysVek
. ks
e 1 " D E
Vks;coll ngksVGk + Ts;coll Bi@ek(BksDksVGk)"’ ﬁ@(BksD? s) = ngksV(z_;k + D?s
ks ks

Solving this system, we nd that the conservation constraints are veri ed if the proles Vys.con(r; ;' ) and
Ts.con (r; ;' ) for the collision operator are de ned as follows

* +
mg 1
MsP Vis: coll Bi@Gk(BksDksVGk)"' W@(BKSD? s)  MsDysVek
. ks " ks
1 D R , E
Bi@Gk(BksDks) MgDysVgk + Do s
5 E ,
PTs.con = Dis ngksVék + Do MsDysVek
where
* + * +
mg 1 1
P = Dys ?@Gk(BksDksVGk)+ r@(BksD? s) MsDysVak Bi@Gk(BksDks)
ks ks ks
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R
and as areminderhi= Jy,d sdvgy Fswith J, =2 B , .=ms.
Let us remind that only collisions in the parallel direction are taken into account at the moment in the
code,i.e D, s =0 in above expressions. Then, let us de ne the 5 following integrals:

— H . — H . — 2 2
lo= hDsi ; 11= MMgDysVoki 5 12 = MMSDygVE(i

1 . m i
ls= he— @, BysDis i and Iy= hB—S@Gk Bys Vek Dis |
Ks ks

Therefore the mean velocity and mean temperature can be simply expressed as:

b 1 . _ b 1 2 _
MsVisicol = P “(la 11 12 13); Tscot =P “ 1o 12 If andP =19 14 11 I3

AppendixB.2. Crank-Nicolson scheme for collision operator solving

In the following, the semi-implicit second-order Crank-Nicolson scheme which is implemented iysela
to take into account the collisional e ects as
1 n )
@Fs = Gs(Fs) = W@Gk BsD@, Fs By VFs (B.8)
S

3 3=2
VTSO

p_
is detailed. The di usion term D is de ned asD = Dys(r;v) = A(r) 2520 with A(r) =3 — 13

(Ve Vs col )
BT

while the expression of the drag termV is given by V = Vi4(r;v) = Dys(r; v). Classically, let

s; coll
us write: f"  Fs(r; ;v ck;:tn), Where subscriptj 2 f0;:::; N grefers to the discretised index in parallel
velocity space and superscriptn refers to the time. For each value of ¢, each term in eq.(B.8) reads:

f_n+1 fn
Bks@f ! Bks;j % (B.9)
1 n 1 1
+ +
@Gk BkSD@ka ! ﬁ BkS;j +%DJ+% fjn+l fJn + fjn+l fln
Gk
(0}
Bigy 3Dj 3 f/ fT A 7 (B.10)
Broiv Visr fL+ 10 Broo [V 1 M +fn
@Gk Bksz ! ks;j+1 VI+ j+1 j+1 ksj 1Y) i1 i1 (B.ll)

4 Vgk

where we use the fact thatB, is linear in vgy, i.e the expressionB, .. , = 3 Bysj * Bysj 1 IS exact.
i3 ; ;
Then, using expressions (B.9), (B.10) and (B.11) in the equation (B.8) gives, for alf = 0; o\

2B

AT+ BT G = AR+ % B f' Cifiy (B.12)
where the coe cients A;, B; and C; are de ned as:
— ) B,.. T T il )
A = I 3 i1 © B = ksij + 17z | 2 i G o= I*2 + j+1 B.13
: 2 V3, 4 Ve . t 2 V3, : 2 Vg, 4 vek (813
with
i = Bks;j Di and i = Bks;j VJ (B'14)
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To compute the terms 15, 1, n+1=2 and py+1 required for Ag, Bo, By and Cy calculations, the

boundary conditions @D=@g, =0 and @V=@§, = 0 are imposed, i.e :

D%:ZD()D% and V 1=2Vy V 1
DN+%:2DN DN %andVN+1:2VN VN 1

and the fact that B, is linear in vgy is used,i.e :

Bks; % = 1:28ks;0 Bks;l

S;

‘?’Bks;O Bks;% ; Bk

NI NI

B =

ks;N + 1 ‘?’Bks;N Bks;N : : Bks;N a1 =2 Bks;N Bks;N 1

(B.15)
(B.16)

(B.17)

(B.18)

Finally, let us consider that the second derivative off is vanishing at domain boundaries,i.e f ; =2f, f;

and fy+ =2fnN fn 1 then

n+1 n+l  _ ZBKS;O n n
(Bo+2A0)fg™ +(Co  Ao)f; = ; Bo 2A0 fg (Co Ao)f]
1 L 2B,
(An  CNFR™ + (BN +2AN)NT = (AN CN)EQ 1+ t’ Bn  2Cn
The system can be rewritten in the compact tridiagonal form:
10 1 0 1
Bo+2Ag Co Ag fort RB
Ay Cn By +2Ay far RR
and (Rg; ;R\ Y= R@E; ;fﬁ)t with the matrix R de ned as
0 1
2B,
2Ap Bg+ kts'o (Co  Ao)
Bl + 728kt5;1
: Cn 1
(AN Cn) 2Cy By + e

t

The tridiagonal system (B.19)-(B.20) is solved by using a modi ed Thomas algorithm.

AppendixC. Expressions for simpli ed collisional transfer between two species

AppendixC.1. Conservation properties of collisional energy transfer

fx

(B.19)

(B.20)

Let us consider the energy exchange between two species de ned by equations (34)-(3Bg. dFs=dt =

C&o(Esso) and dFso=dt = C&g(Eses) with

E T 0 ES 0 3 ES 0

CcE Exco ss0 _ SS S - ex S
s (Bs) (2T mean :ms)3_2 Tmean  Tmean 2 P Trmean

E T 0. ESO 3 ESO
CE.(Ex ss® _ S s - ex -
s (B) (2T mean :m50)3_2 Tmean  Tmean 2 P Tmean
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with Esso, Esos de ned by equation (38) and Tmean, Tsso de ned by equation (36). Let us consider the
bracketsh i, dened as

Z Z
hi. = 1 op 0B 25 4 g C.1)
YT (2 T=m o> ProoT T myoks®s '
D E
Let us dene v = Vgk Vmean- Then, using the fact that hlivk.T =1 and msv,f =
1 mean Vi ;Tmean
h sB i\,k;Tmean = Thean, it is straightforward to show that such a collision operator conserves both par-
ticles and parallel momentum, i.e that
z
CEo(Es) = CE(Ew) =0 and  vgCEo(E) + VekCh(Ew) =0 where hi=  d’v
The parameters £, and & are designed such that the collisional energy exchange between species satisfy
E CLu(E) = Eso C5(Es0) . So let us compute the following integral in velocity space,
Z
T 3
ECE = ECE.dv= E— g Eso 3
Tmean Tmean 2 Vi ;T mean
which is equivalentto B C5o =  Eo( Tsso=Tmean) !, Where
» 0 2 2 1 t+
V2 Vks Vifiean Vss0 1 5 B 3
= @mg=+mg———— ms W+ V, 4 BA Zmeg——— 2 =
S 2 S 2 s Vk mean 2 S 2 STmean Tmean 2
% , I , I+ Vi ;T mean
Vi Vss0 VSZSO 1 Vi sB 3
= Ms— m Vg + m + B —Mg—— =
2 o = 2 Tmean  Tmean 2
Vi, T mean
¥ 2,4 2 ! 2 B +
mzv, \Y \V&: msV, 2p2
= "k My + B mos 3 I, s ms VssOi
4Tmean 2 8Tmean 2 Tmean Tmean 16 v T
k » I mean
D E D E
Then, using the properties, m2vy =3T2.,, and 2B? e Toem = 2T2can and mgv2 B =
Vi :Tmean ) mean Vk ;Tmean
T2..,, the collisional energy exchange between species occurs at the following rate
3T Vsso?
ES CESO = SESO ss? l ss? (CZ)

2 8Tmean

Let us use the property that the energy exchange term between two species is of the form (cf. [62], p.184)

z 2

4 oNgNso(Ts  Tso 1 . MsVT, V;

Weo = p— ﬁ%i) d®vImev2Ces0 With g0 —— 15 (o0
Mo (v2 + y2 )32 2 Nso

(VTS VTSO)

where vy, = max(vr,;vre) and the collision frequency sso is deduced from the ion-ion collision frequency
as
SS

2 n3= 1=2
o = Zso Nso VT, and _ 3=2 Ts;coll (C 3)
SsY — = 7 SS SS T T~ S .
Zs Ns VT, qRO Mms
Therefore I
4 V2, %2
VT, m TO
Wsso = P s0—2Ng—> Tego 1+ —= (C.4)
Vi,  Mgo Vi,



Finally, by analogy between (C.2) and eq.(C.4) (considering V.2:=8Tmean 1), this provides for the
e ective collision frequency E, the following expression,
Dig2p_
V'ZFSO Ts;coll =Ms
> = 1+ > I bt
mg Zg VE, gRo

n3= 2
E _8 3=2 mS ZSO

SSQ _— ?j nSO

which is equivalent to the one given by equation (39).

AppendixC.2. Conservation properties of collisional parallel momentum transfer

Let us consider the parallel momentum transfer de ned by equations (40)-(42),.e dFs=dt = C;'S%k (Es)
and dFgo=dt = C.*(Eso) with

s0s

Vg Eso

k
s0s

E
Ceot' (Es) oo VesoVgK XP S and C.5*(Ego)

ss0 s0s VsosVgk €XP
Tmean

Tmean

Considering this approximation, the momentum exchanges between two species reafs
Z 3=2
dF 2 _
== & Ve — TS (C.5)

dt ss0 Ms mean
Z d 2 3=2
\Y —
MsVekCeoi (Es0) = d3v MsVoKk— g Vsog = T2 (C.6)

mean
s0

A\
MsVekCeso (Es)

]
o
<
3
[%2]
<
o)
=~

Vek _

Therefore, the action-reaction principle mSvaCZSGOk = mSvacgc?S“ , leads to the rst constraint o =

— \Y . . . . .
(mso=ms)3=2 5. The second constraint comes from the neoclassical friction relation,
zZ
3 dFso _ -
d°v msovaT = MsNs ss0 Vss0 = MgoNgo o5 Vsog

then using equation (C.5) leads to

3=2
VG k

— 5=2
ss¢ — MsNs — Trean ss°
s

Ve k

Finally, using the relation (C.3) for ¢s0 expression, ., can be expressed as

P— 2
Vek =2 1 Tsicoll  Zsgo VT,

— 2
= NsoM — —_—— =
o T 2 R TR,z v

which is equivalent to equation (42).

AppendixD. Source terms
Focussing on the source term, the gyrokinetic equation reads:

dFS
dt

= Se(r; ;Vek: s)Se(r) (D.1)

=2 D E =2

1 mgy, CVGkE= VGkVUZTw3 msV2 = vaVoﬂws_T
SVGk “gg0 ss0 ss ms sVGk Ve T mean ss0 ss ms mean
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The prescribed radial source pro le S, (r) is de ned as the sum of two hyperbolic tangents

[E=Y

tanh SLs + tanh s 3ks

— S

where s andLg areinputdataand =(r rmn)=L; whereL, is the length of the radial box. The energy

dependent part of the source is decomposed on the basis of orthogonal Hermite and Laguerre poynomials
(cf. next section AppendixD.1 as a reminder):

XL X1 .
Se(r; ;Veks s)= o Hn(ve,s)L-( s)e °° (D.3)
=0 h=0

where the ¢, coe cients depend on the space coordinates only. The following de nitions have been intro-
duced:

sB VG
® Ts;srce Gs 2TS;Srce:mS ( )

with Ts.srce the normalized source temperature.

AppendixD.1. Hermite and Laguerre polynomials
The Hermite and Laguerre poynomials form the set of orthogonal basis with respect to the following
scalar products:
Z .,
Laguerre L+ (x) : L-Loe *dx = ~ojL-j? (D.5)
0
zZ,, ]
Hermite Hp(x) : HnHpoe X dx = ppojHpj? (D.6)
1

The Laguerre polynomials are normalized:jL-j? = 1. The norm of the Hermite polynomials is:

Z,,
iHnj? HZe ¥ dx ="~ 2" (D.7)
1
The ve rst Laguerre and Hermite polynomials are:
Lo(x) =1 Ho(x) = 1 L Hoi2= P
Li(x)=1 x Hi(x)=2x Lo H1j2:2p*
Lo(x) = %(2 4x + x2) Ha(x) = 2+4x? I j Hyj?=8 pﬁ (D.8)
La(x)= ¢(6 18 +9x% x3) Ha(x)= 12x+8x3 | ] Hgj?=48" "
La(X) = (24 96x+72x%  16x3+ x%) | Ha(x) =12 482 +16x* | | Hu2=384" —

AppendixD.2. Corresponding sources for uid moments

Let us derive the corresponding source of mattelS,, of parallel momentum S,
vorticity S . With the adopted de nitions,

of energy S¢ and of

Gk

Bks = B(l+ JkBVGkS) and Jyp

0Jk (D.9)
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The parallel current ¢Jx = (b:J is prescribed inGysela . Then, the integral over the velocity space reads
as follows:

z z +1 z +1 2B
d3v dvgi SN
1 0 rQS .
1 27T . 3=2 +1 +1
= p= — = (1+ JkgVe,s) dvg,s d s
Mg 1 0

Notice that (§+ Jke Ve, s) = Hol(vg,s) + J%Hl(vgks) and Lo( s) = 1. The uid source of matter S, is
simply S, d®v Sg S;. Using the decomposition ofSg on the basis of orthogonal polynomials (D.3), the

source of matter becomes ams

2T s
— == Coo + Jk Ci0 St (D.10)

Ms

3,1:

R
The uid source of parallel momentum S,,, reads as follows:S,,, d®v vgkSe S;. Following the same
procedure than for the density source, one nally obtains:

2
5 Te
Sie, =2 32 2T 2610+ Iy (Coo +4C0) S (D.11)

S

R 2
The uid source of energy Sg is de ned as follows: Sg d3v mSVGTk + B SgS;. Notice that

(Msv3, =2+ sB) = Tssre(VE, s + s)- Again, the energy source can also be recast in terms of they:
coe cients:

2T ssrce 2 3 5
S = % Ts;srce 2C0 + 500 Co1 + EJkB Cio+6Jkg Czo Jkg C11 S (D.12)
S

AppendixD.2.1. Source of vorticity R
The uid source of vorticity S is simply: S d3v Jo,:(Se S;), where Jo, is the gyro-average operator.
We use the Pack approximation:
mS S mS Ts;srce

2 _ 2 ; -
Jos 1+¥Er?—1+ sr 5 with = @ 282

Again, the vorticity source can be recast in terms of thec, coe cients as

3=2

2T,
LSSt 2 ((coo Con)S)*+ ket 2 (G0 1) Sr) (D.13)

Mg

S =8+

AppendixD.3. Pure sources of momentum, energy and vorticity

The expressions ofS, (eq.(D.10)), S,., (eq.(D.11)), S¢ (eq.(D.12)) and S (eq.(D.13)) provide the
constraints on the ¢cy: coe cients in order to impose independently zero source of density, of momentum, of
energy or of vorticity. Let us consider three cases:

Non vanishing source of energy, with no injection of particles nor of momentum.
Non vanishing source of momentum, with no injection of particles nor of energy.

Non vanishing source of vorticity, with no injection of particles, of momentum nor of energy.
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These three cases are considered hereafter. Imposing zero source of matter, the uid sources of parallel
momentum, of energy and of vorticity are proportional to:

S = 0 ) co+ ke Co=0 (D.14)
Siee ! 2 3% co+4de o (D.15)
S / 200 Coo+6Jkg C3o Co1 Jks Cu1 (D.16)
S /I r 3 JgcS + el s (coS) r % (crS) Jksr 3 (cuS) (D.17)

AppendixD.3.1. Pure source of energy

Killing the uid sources of particles, momentum and vorticity, while keeping nite the uid source of
energy, imposes eq.(D.15) and eq (D.17) to vanish. Several solutions can be envisaged. Let's cho@ge= 0
and (cop + Jkg C11) = 0, with (2 ¢  €coo) 6 0. Then, the uid source of vorticitiy trivially vanishes for
Ci0 = C11. To summarize, we propose the following set of coe cients for a pure source of energy,

4JkB C : Coo = Cpo1 = LKZBC .
2 szB 20 0 1 2 szB 20

Ci1 = Ci0 = Cxp=0and c0 60 (D.18)

In order to inject solely energy into the system, the source term that should appear in the right hand side
of the gyrokinetic equation would then take the following form:

2

v S
Se = Sr (Coo + Corl 1+ CroH1 + CisHil1 + coH2)e Gk#

1 Jks
=4 CS; Véks §+ 5 32
kB

s

2
2 (ke es) e o ° dueto (D.18)

while the uid source of energy Sg would have the following magnitude:

2T ssrce 2 .
S = % Tssce(2C20  C0)S:  according to (D.12) and (D.18)
S
!
2TS'srce 32 2‘szB
=2 — Tssce 1 —— C0S
ms 2 4
3=
Let us introduce the normalized intensity S§  2¢y ZTT Ts:srce then the previous equality becomes
|
2%
S= 1 ﬁ sEs (D.19)
kB

Then, up to small terms proportional to Jyg, S; {which is normalized such that its volume integral is equal
to unity{ provides the radial shape of the energy source, whileS§ gives its magnitude. Finally, Sg can be
expressed as:

" 4
s§S 1 Ji 2
Se = D _ ° r3:2 Véks 2 32 332 (2 5) 2vgs Jg © ‘e (D.20)
2 T = TS'srce kB
ms ;

with Jg de ned by (D.9).
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AppendixD.3.2. Pure parallel momentum

Killing the uid sources of particles, energy and vorticity, while keeping nite the uid source of parallel
momentum, imposes equations (D.16)-(D.17) to vanish. Again, several options could be considered. Fol-
lowing the same strategy as for the energy, namelg;; = cjo and Coo = Cp1 = Jkg Cio, then the source
of energy vanishes ifczg = 0 and 2c¢yp = Cgp. Consistently, in order to inject only parallel momentum, the
following source is proposed

SVGk Sr h | Vz
Sig, = — 22— - 5 AG,s(2  s) e 1+2v3 ¢ s e o« (D.21)
4 3=2 s; srce
ms

2
where the the normalized intensity SE,’G“ is de ned as SXG“ 4 32 Tssee =00 The corresponding uid

ms
source of momentum is (according to (D.11))
!
3Jys
2

S, = 1 St S (D.22)

Then, at leading order in Jyg, S; corresponds to the radial shape of the momentum source, anﬂé,'Gk to its
magnitude.

AppendixD.3.3. Pure source of vorticity

So as to inject vorticity only, the simplest choice appears to be:cyy = €10 = €11 =0 and ¢ = 0. Then
the source of vorticitiy is governed by the cy; coe cientonly: S /r ?, (co1Sr), while that of momentum
eq.(D.15) is set to zero. The source of energy eq.(D.16) vanishes provided thedy = (1 =6J\g ) Co1. Obviously,
such a constraint is invalid for those simulations performed at vanishing parallel current. Alternatively, one
decides to allow for some parallel momentum injection by takingc,o = ¢p1=2 6 0 and c3p = 0. Then, the
source term to be considered is the following

h i
— SO S,— 2 V(Z; s s . _ Mg Ts;srce
ms
. . . . 27T 3=2 . .
where the normalized intensity S, is de ned by S, Co1 % and the resulting uid source of

vorticity is

S =Sur3(S) (D.24)
We recall that sugfw a source does inject some momentum as well. However, its magnitude remains small,
and equal to ( + #M=J,5 Sy Sr).

AppendixD.3.4. Another possibility for the heating source
There exists a simpli ed version of the heating source possible in the code which is not exactly a pure
source of heating. In this case the energy dependent part of the source is de ned as:

sE E 3
Se(r; VK s)= ¢ > e
E( Vek s) p_ 3= Terorce > Xp

T S, srce
32 Tm. Ts:srce

(D.25)

TS;STCG

where E the energy is equal toE = Imsvgy + sB. Therefore,

dVGk
1 0 Mg
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AppendixD.4. A source of impurities

According to equation (D.13), itis clear that in this source formalism it is complicate to generate a source
of matter without injecting a source of vorticity. So as rst choice, we take copo = Cp1 and ¢p = ¢11 =0,
such that S = S,. The injection of momentum and energy can be avoided by imposing in equations (D.11)
and (D.12), coo + 40 = 0 and 2¢cy + (3=2)cop  Cp1 + 6 Jkp C30 = 0. Due to the previous assumptions, this
leads toczg = 0. Therefore, using the fact that co; = Cgp and ¢, =  (1=4)cqo, the matter source term take
the form

V(23 s S
e k

Sh = Sico > s V(Z_;ks

Then, according to equation (D.10) and considering the normalized matter sourc&) = (2 T s.srce=Ms) > 2Coo,

. ss s . .
Sn = 2T s srce 3=2 é S VGk s © ok (D26)
ms

Let us denote by S, (resp. S,_,) the source of matter associated to the majority species (resp. to the
impurity speciess?). The injection of impurity must be compensated by the injection of the majority species
such that Z Z

ZS SnSJVS dVGk d s + ZSO SnSOJVSO dVGk d s0 = 0

AppendixD.5. Numerical treatment of the source terms

The source terms are taken into account by solving ¢Fs = Sg+ Sy, + S + S, with Sg de ned by
eq.(D.20), Sy,, by eq.(D.21), S by eq.(D.23) and S, by eq.(D.26). For the following, let us use the fact
that each source is of the formSg (r(t); (t);vek(t); s)Si(r(t)). For more readability let us consider one
unigue source knowing that the numerical method described below can be generalized to a sum of sources.
Let us integrate in time betweent andt + t the equation

dFs
dt
then Zo

Fs(t+ t) Fs(t)= S(to) dt®
t

35V eks )= S(t) with  S(t) = Se(r(t); (t);vek(t); $)Sr(r(t))

S(r(tY) = S(rt+ t)+[rh r(t+ t)]%‘gr'(r(t+ 1)+ O( t?)

= see 9+ ¢ 9ghe L v o )

Besides, let us de neSg (t% = S (r(t9; (t9;ver(t9; s), then

SE(t) = Se(r(t+ t); (t%vek(t); )+

© ¢ 95 S2eer 0 e 9+ o( 1)

Se(r(t+ 1) (t+ t)vek(t+ 1) o)+

© ¢ 9 Sie Z2eae 0 Oivetr v; g
S R 0 e Oivedts ;o
dvgk. @

$ . . .
—gt t@gk(r(t+ ); (t+ t)vek(t+ t); ) +0O( t?)
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Therefore, the distribution function Fs attime t+ t is given at second order in time by

Fs(t+ t) = Fg(t)+ tSg(t+ S (t+ t)
t2 dr. ) dr. .
- Se(t+ t) qolt t%srju t+ S(t+ t) i tC@@Sr]H t+
d . @8 . dvgy . @8

a]t+ t@]ﬁ tt at Ji+ t@jﬁ t

In the code, the radial derivatives of the sources of: (i) energy@Se, (i) momentum @S, , (iii) vorticity
@S and (iv) density @S, are computed numerically as well as the poloidal derivatives. On the other hand,
the derivatives in vgy direction are expressed analytically as

(i) for the pure source of energy:

@8 sk s 1 )
= p ex \%
@Mk p é T s; srce =2 T v 2Ts;srce p Gks :
“me s;srce
3
2Kp(2 s) VG, s Véks > Kn(2 s) Vg, s Jks
(ii) for the pure source of momentum:
@3, S S 1 )
= p exp Vv
@gk 4 3=2 Ts; srce 2 v 2Ts;srce Gks ®
Mg .
h [

22 5) 1 2§, *+2XeVo,s 1+2V3 ¢

S

(i) for the pure source of vorticity (according to eq.(D.23)):

h i

@S Sy, S 1

@¥« - 2T0. r 3=2 P 2Ts:srce &P Véks s Wows o ZVéks )
ms

(iv) for the source of impurity (according to eq.(D.26)):

@s _ S6S: o 1 exp V2 2V, ! V2
- R = Ggs s Gks 5 S Gis
@gk 2T s; srce =2 2TS;STC€ K 2 k
ms

AppendixE. A Crank-Nicolson scheme for di usion terms
In this appendix the semi-implicit Crank-Nicolson scheme, which is implemented inGysela to take into
account a di usion term of the form 1
@Fs = F@ r (r)@Fs (E.1)
is detailed. Classically, let us write: " Fs(ri; ;";V ck:tn), Where subscriptj 2 f0;:::;Ng refers to the
discretised index in radial direction and superscriptn refers to the time. Let us also deneD r (r) with

(r) = oHpy (r). The diusion amplitude ( is modulated by a radial prole Hy, which is equal to
1 in the bu er region and equal to O elsewhere. For each value of s, each term in eq.(E.1) reads for all
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n
t
= A0 gy Dy TR
o]
D¢ ™ M7 + 0 £, (E.2)
Let us introduce | = ﬁ then
h i
iD; %fin+il'+ 1+ ; D %+Di+% fin+l iDi+%fin+;l:Rin
with h i
R'= D +f" 1+ 1 i Dy 1+ Dz '+ iDafiy
Therefore, for alli =0; ‘N,
A+ Bif M+ CifMt = AN (2 B! Giffy (E.3)
where the coe cients A;, B;j and C; are de ned as:
A = iDi% ;o Bi=1+ Di %+Di+% v G = iDi+%

Using the fact that r; 1, =0:5(r; + r; 1), then D, L= 4(r, i+ri ¢ i+ri i 1+r;i 1 i 1). Concerning
the boundary conditions, let us consider that the second derivative of the radial prole is equal to O at

the boundaries (.e gﬂjrm.n = g@jrmax =0), then

:}ro %(30 1) and DN+%:%rN+7r(3N N 1)

Besides, a non-homogeneous Dirichlet boundary condition is applied to the outer radial boundary such that
Fs(r = rmax; iV cki s) = Fseq(r = 'max: ;Vgk: s). Concerning the inner radial boundary, there are
two possibility: (i) non-homogeneous Dirichlet boundary condition Fs(r = rmin; ;;V ck; s) = Fseq(r =
rmin; ;Vck; s)inthe case of thermal bath or (ii)) Neumann boundary conditions (i.e f ; = f;) in the case
of ux-driven simulation. Let us consider the boolean which is equal to 1 if Neumann boundary conditions
are applied (.e in the case of ux driven boundary conditions) and is equal to O otherwise. The system can
be rewritten in the compact tridiagonal form:

0 1lp

(I )+ Bo (Ao+Co) for b0 ot
Aq B;
. . E4
. . Cn > (E.4)
AN 1 BN 1 CN 1 oo
0
with 0 1
O rel @ )+ 2 B)  (Ag+Co) 0 fnt
Ay (2 Bi)
- Cn 2
An 1 2 Bn 1) Cno1
RY 0 0 1 fx

The tridiagonal system (E.4) is solved by using a modi ed Thomas algorithm.
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AppendixF. GYSELA normalized equations

This appendix contains the expression of all the normalized quantities and normalized equations imple-
mented in the codeGysela

AppendixF.1. GYSELA normalization

Let consider mg = Aom, (kilograms) a reference ionic massg = Zoe (coulombs) a reference ionic
charge, B (tesla) a reference magnetic induction andT, (electron volts) a reference temperature.A, and
Z, are the (dimensionless) mass number and charge state of the principal ionic species aadhe modulus
of the electron charge. These quantities are used to de ne the reference ion cyclotron frequency,, the
reference thermal speed/r, and the reference Larmor-radius o as:

r

- p
_ ZpeBg . v To . _ V1, _  Tomo
= ; To = ; 0=
co Mo 0 Mo Co ZO e B()

(F.1)

Actually, the seven normalizing quantities (Ag;Zo;No; To; Bo;a; Rp) are not completely free. Three di-
mensionless parameters are further specied in the input data, which provilge relationships between these
seven parameters. These are the aspect ratid = Rp=a, rhostar o = = AgmyTp=ZpeBy and nustar

0=" 32(qRo=Vr0) col:o ZiNoRo=T¢ (Where" and q are taken atrpeak = rmin +0:5(max  Fmin))- It
follows that, given A, o and o, it remains only four free normalizing quantities. Hereafter, X refers to
the dimensionless expression of th&X quantity. The normalizations used in the code are summarized in the
table F.12.

ms = mOAs Vek - VTSDO ks = % Co n

& = Zo ezs = (VT0: '&S)OGKS = o

L= VE B, = V1% 8. Dis = V2 o Dis

t = f= ) Vo, = Vo YDS A and | Vks = V1o ¢ Vks

Ns = nNgAfs s = (To=Bo)% A SE = no c,ToSE

T, = Tofs U = [To=(Zo €)] S(\)/Gk = o CoVTsoéz)le
B = BoB E = (vnBoE S = Noced

Fs = ( nO:V'?'So)'fs 0 5 TP

Table F.12: Links between physical and normalized quantities.

Notice that the parallel velocity is normalized to vr_, while all drift velocities are normalized to vr,.
The normalized system of equations is made of the 5D gyrokinetic equation (including source terms and
collisions) self-consistently coupled to the 3D quasi-neutrality. The gyrokinetic equation involves Poisson
brackets [; ]. Introducing the unit vector b = B=kBk along the magnetic eld, its covariant components
b, and the jacobien J, of the con guration space, these brackets read as follows:

[F;Gl=b (rF rr G) = J, ' " @F @Gk (F.2)

AppendixF.2. Normalized Boltzmann equation

The evolution of the guiding-center distribution function lf\S is governed by the following normalized
Boltzmann equation:

% l @i’A §ks%§£s P 20 g Mowp 5 e REY GRS (F3)
ks

1
ﬁks @Gks df\ °
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whereD, and R are respectively a di usion term and a Krook operator applied on a radial bu er region (see
section AppendixF.4), while € refers to a collision operator (see section AppendixF.5) and corresponds to
source terms (see Appendix A in [106] for detailed expressions). The evolution of the gyro-center coordinates
(XG;Vgk; s) of speciess is given by:

i A A .
d;éf(\; = P%Veksﬁs Fx +90g g, FX +90p, Fx (F.4)
S
dOGks 1 A 6 A 25 AN I‘A§
= — rg p=b6; I +K,p 0gks? — F.5
T szs pzs rBGksEBsB\ (F.5)
The i-th covariant coordinates of the normalized drift velocities are given by:
h i
Oe B, FX = 0L 5 = @i HES (F.6)
ks @ | A .
. 02 N |
0o, FX=0h =K,g o B (F.7)
7.8, 8
while B, and B, are de ned as:
p__ ! p__
1 A Vek A Vcks
b= — B+ ——-28F and B, =B+ —— b 3 F.8
=B 7, B s 7, B (F8)
The normalized magnetic eld B is de ned as
Ro f
= fle +e with f)= —— F.9
r-Q(r;)[() ] () =y (F.9)
while the normalized current reads
3= KR with Sy = '?;r\ 1+ f% %cos (F.10)

The constant K, g has been added for tests in the codeK, g is equal to 1 if the curvature of the magnetic
eld is taken into account and O otherwise. In equations (F.4) and (F.5) the parallel projection r'\kF is

computed asBS_ FE=B'@F. In equations (F.6) and (F.7), the explicit expressions of the Poisson brackets
[;x']and [B;x'] are given by:

8 8
3 x!= %5 B2@ B3@: 3 Bix' = 5 Bz @:B

5 x?2 =35 B1@ +B3@: and 5 Bix? = 55 Bs@B

" x3 =35 Bi@ B.@: " Bix® = 7% (B1@B B»@:B)

AppendixF.3. Normalized quasi-neutrality equation
The normalized quasi-neutrality equation is *2:

1 X
fey

h i X
1 A 1
h™i = — 2 [N fg.: F.11
nge FS neo s[ Gs Gs,eq] ( )

]
/er'\? %I’A?A +

0 s

12|n the code, to avoid the expensive gyroaverage operation for each value of vgy {which occur for the computation of the
RHS of the quasi-neutrality equation (F.11){ we use the de nition (F.8) of B, and therefore the fact that the term * ng,  Ngg.eq
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where the normalized electron densityng, is de ned as e, = P SZOZSnSO. Notice ttﬁ\t, in the pollgrization
term (rstterm of eq. (F.11)), B has been replaced by8, = 1. The integral h"igs = “fxd d'=  Jd o
represents the ux surface average of (with J; = 1=(B " ) being the normalized jacobian space). The
parameter has been added for tests. It can be chosen equal to 1 or 0. The normalized guiding-center
density fig, of speciess is given by:
VA Z
g, =  d% I dogks Jo, Fs (F.12)

s

with the normalized jacobian in velocity equal to J, = 2 B\ks. The correction term fig,.eq in the right
hand side is de ned as follows:

Z Z
N
th;eq = d”s ‘j\v d¥sks J,\OS Fs;eq (F.13)
where
02,22+ "B

A g Gks s
Fseq = Cs—av— exp4 F.14
RN NEE 1, (F49

P

represents the equilibrium part of the distribution function. The concentration cs is such that CsZoZs =
1. The normalized gyroaverage operatorfos approximated by Pack corresponds to J"OS 1+ % e %r’\?,

where, as in the quasi-neutrality equation, B is replaced byB, = 1 in the code.

AppendixF.4. Normalized di usion terms and Krook operator in bu er regions

A radial di usion and an arti cial damping are applied in bu er regions. These bu er regions are de ned
at each boundaries of the radial domainr’2 [fin ; Pmax ] @S a sum of hyperbolic tangents:
" ! 1%

1 P P + B L f Pyn BL L
Boe (N =1+ = tanh max ~ PL=' tanh mn__ZL -r
2 BS Cr BS Cr

(F.15)

where [, is the normalized length of the radial domain. B, and Bs are respectively the location and the
sti ness of the bu er regions. The function Hy, plays the role of a mask which is equal to 1 in the bu er
regions and equal to O elsewhere.

A radial diusion *2 is applied on this bu er region by solving the following equation

VAN

@
@

_ A . AL 1 @ N @ A
= B, (Fs) with D, (Fs)= @ks@ r (f‘)@ BisFs (F.16)

where Af) = ~ oHpy (F), where the normalized magnitude % of the di usion coe cient in the bu er region
is Ao = o= % Co-

can be expressed as:
z P~ !
A ¥
AGgieq = 2 dhs B Jog lo(fs 5 M)+ 5 2 Céksb KN PY (S|
S

Ne

s

where the integrals 1o and |1 are de ned by:
' Z N N ' Z N A
lo(fs ;% "s)= Fs Fseq dO0gks and 11(f ;% "s)=  Vgks Fs Fseq d¥Gks

13|n the code, there exists the possibility to apply the di usion term to ( If\s If\s; eq) instead of If\s.
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A Krook operator is applied by solving @Fs = R:(Fs) with Ri(Fs) = A(®)(Fs  Feq) where f) =
"B () such that A(F) = (r)= ¢,-

AppendixF.5. Normalized collision operator
A collision operator G is present on the RHS of the normalized Vlasov equation (F.3), such that the
normalized Boltzmann equation reads:
" I#

! @ B Dis @s VesFs (F.17)
k

3\75 @cis @cis

dFs

qf = és(Fs) with és(Fs)z

S

where the di usion term D, and the drag term Oy in the parallel direction are de ned as:

Ay G Veks Oks;coll
Bt 0= Asr) SO g = Bt ®)  (F19)
Ts; coll
"
where = %Oéks + 7N Bais = s:coll. While the Chandrasekhar function G is de ned as follows:
z ¢

G(0) = W C () = pzj e ¥ dx ; OE pzje 2 (F.19)
0

The radial prole A is given the form

1 P—y3 3:2!

A )= p=— 3— s A F.20
O=P L %2 anR (F:20)

The normalized collisionality ” s is an input data. The normalized collisional frequency is then obtained as
follows: I

1 OT ] 3=2
/\SS - Ig i s; coll A S F21
As  dfRo (21

Considering that the speciess is the major ion species, the collisionality *so of each minority ion speciess®

is determined by | 1

‘4 4 )

N — s;coll A

o= — s (F.22)
As 23 -fso;coll

In practice, Ts.con=Tso.con is approximated by Ts=Tco. The ratio fiso=As and Ts.co1 =Tso.con are computed at

the radial point 1, which usually corresponds to the middle of the simulation radial domain. The normalized

mean velocity \7ks;c0” and the normalized mean temperature‘fs;co” can be calculated as follows:

Vscon =P 200 11 0 (3 Tosen=P 0 I (% (F.23)

Ao Zeo

with the normalized mean pressure dened byP = ([, 4 % [} and where the ve integrals (o, I3, (%,
(s and Iy are

r\0 = HSks,i ) r\1 = HSksonsi ; l,\2 = Hﬁksoéksi (F.24)
(s = hl§i @,.,. B Dis i and (4= h§i @... BysVoksDks i (F.25)

ks ks
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. . R A
with the brackets hi=  FoJ), d0gys d”s.

AppendixF.6. Normalized collisional transfers between two species

Normalized collisional energy transfer. Energy exchange between two species can be expressed by the fol-
lowing reduced collision operator:
|

! !
dfs "Sso foo EBo 3 Euso F.26
at " 2 Foean Toean 2 0T 20
2 fmean mean mean mean
! !
dlé\so _ "Sso Tos  Bios 3 Exos
e =7 : > oz (F.27)
2 fmean mean mean mean
with
-ﬁ + -ﬁ O + ‘O 0
fmean = s 2 s : fsso = fs fso = fsos ; Omean = %
2 2
on Omean OGK 0 Omean
ésso - s 5 +/\SB‘ and ésos = ° 5 +/\SB\
and q
p__ L, . Pos=
8 n3=2 A\ 2 o ﬁso h‘ﬁs;coll IFs A 20
AE (p) = - s L0 1+ -5 s N F.28
Ss ( ) 3' Aso 25 qIQO ASO fsz S ( )

Let us notice that in practice, the ux surface average of‘fs;cou is used (compare to the general expression
given by (42)), to consider only the radial dependency of &,. The normalized uid moments Vs and Ts are

ss0*

computed as Fs(1)=2=h B Fs d®0 irs=Ns(r) and Vis(r) = h Vgis Fs 03¢ irs=Ns(r) where B, is de ned
2 R
asBi= 1 Ooks Ve  +7sB while Ng(r)= h B d3¢ irs.

Normalized collisional momentum transfer. Momentum exchange between two species can be expressed by
the following reduced collision operator

A
dFS /\VGkA 1=2 O és
= Uoks €X F.29
df\ s ssOVGks p fmean | ( )
d'é\SO /\VGkA 1=2 O éSO '
= ¢ ex F.30
df\ 50 s0s VG kso EXP T\mean ( )
i Voo = VA, 12 Vool 12
ss0 — ksMg ks0M g0 (F-31)

The averagesTmean and Vimean have already been introduced. The energfs is equal to 202, .+~ sB. The
radial pro le " Vex reads:

p 7q -~ . ! 2
"3=2 1 fg fs hfs;coll IFs 230 A (F.32)

I\VGk(r) — - = _ . s
2 aRo 9. mean Zs

_ _ p
}Svhere the velocity ¢ is calculated asvy, = max(As 20 ;Ao 7 0r,) wherevr, = T andwr, =

Ts0 and the collision frequencies 7, " s are linked by the relation (F.22).
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AppendixF.7. Normalized source terms
Focusing on the source term, the gyrokinetic equation is:

df
Tf\s = éhealt (5 Voks: s) + émoment (7 5 Yoks: s) + évorticity (s 5 Yoks: "s) (F.33)
where the heat source can be de ned as
! !
&5 E 3 E
Seat = 0 S 2 exp s & (F.34)
* P35 3=2 fs;srce 2 fs;srce '

3 2 fs;srce -ﬁs; srce

with Es = ¥gys + ~sB or as a pure source of heating

8.
2 #

1 Jie
Sea =, % 5 5o @ ") Wes Jie
. kB

IV ©

28§ 2.
0 & e’ (r3p)
= >
2 fs;srce fs;srce !

p—p
with ~g = 2B Oc,s = PZGL and Jig Z\’fs 2&“‘* oJk. The source Snoment is @ pure source of

s; srce -fs; srce

momentum expressed as

( h i éVGk v ) 02 n
émoment = ZOGKS(Z As) \j\kB 1+ ZOGks As ﬁ_ﬁzsrce érGk € ke ° (F-36)
and the S,omcity is a pure source of vorticity is de ned as
8 9
02 o A T
Sworticiy = N 203, N ——0 8 e Gys with A = 27; ;g\r;:e (F.37)
’ 2 -fs;srce ! s
The radial components of the sourcesi(e SF, 5/°* and §, ) are de ned as:
" ! I#
N NX + X N NX X
éx (f’\) = } tanh (S—3CS) + tanh (S—gcs) (F38)
' 2 £x %
S S

where A= (¥ Apin )=l ~§ and Cg are input data corresponding to the radial position and the normalized
width of the di erent sources. These radial parts are normalized such that
Z e
AArSX(P) = 1
Pmin

AppendixF.8. Normalized source of impurity

Let us consider the species as the major species and the species’ as an impurity species. Then, it
is possible to add a source of impurities, by adding to the right hand side of equation (F.33) a source of
matter. The source énso({*; . Osks; "s) Of impurity s®is de ned by

0
S S
— 0 ~r
énso - 3=2

5
" 5 08,0 exp 03 o " (F.39)
2 sO:srce
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q o
where 0, s0 = Vgrso= 2Tsosrce and "so = » oB=Tso.qce. S5 corresponds to the normalized intensity of the

source. To avoid any injection of charges, the injection of impurities must be compensated by the injection
of source of matter for the majority species such that
Y4 z
Zs  Sp Jy, Odvgyd s+ Zgo Sh.odv,o dvgrd =0

with Jy, (resp. Jy ) the jacobian in velocity space for species (resp. speciess?). The normalized radial
pro les of the sources are assumed equal t&; . Therefore,

?o T =
2 N .
e "ous "o with &= £ Jshsrce S (F.40)

25 fS; srce

Ns
gnszﬁ g AR

3=2
2 fs; srce

kS

In the code, the temperature pro le of the density sources are taken equali.e T‘Sme = Tsosrce-

AppendixG. Invariance

Let us consider a reference simulation without source terms. Let us also de ne a second simulation
similar to the reference one but where the mass and charge have been respectively multiplied by a factor
a and ;. Then, it is shown in this appendix that 7 control parameters ( x, t, T., .+ col, di and
krook that respectively rescale the space, the time, the electron temperature, the electrostatic potential, the

collision operator, the di usion term and the Krook operator) are su cient to ensure that both simulations
{reference and scaled{ are equivalent. The constraints on the di erent control parameters are summarized
in table G.13 and the proof follows.

Charge Mass Length Time Te | Elec. potential

. p—_ _ 1 1
’ Scaling z A A= Z A= Z 7 7

Collision | Krook | Diusion

’ Scaling 1 2= A -

Table G.13: Scaling which must be applied to the dierent characteristic quantities to obtain an equivalence between any
reference simulation and a scaled simulation

For the proof let us rst consider the following normalized reference Vlasov equation (deduced from
egs.(F.3) to (F.8)) for a species of charge’s and massAs

P ! )

@s 1 0(23K+As§ A 1 AN AN
+ p=—Vb+ —r— b B +_— b ¥ rFs
@\ AS 25§k5§ ﬁks |
1 ya @
+ ploab, PB B, P rvgde s, B s
As A\S @Gk
2 0 0 13 " I#
N N
1 @ @ Veks ks;coll A 1 1@ @5
= _— = 48, D @ + FAS+ _— == png =2
B, @k @cx 02 ® B, @ k@

AB)(Fs  Fseq)

where

_ 1 OIGk/\
Gs-é\—ks B+ ASZS—@r B
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and |

N P—p3  m3=2
Bis(fs 0) = As() M with  As(f) = plj 3 _Tscon A

20 ° A, 2 qPRo

The Chrandrasekhar function G and the function are de ned by equation (F.19). Let us apply a scaling
with the control parameters de ned below, this leads to the following new Vlasov equation

( ! )
A 2 A B\ A A
1 @ ok T s 1a 1 1 a F P
—=3 4 1970 b, + b —FfB +-— b —f
L@ YR - 3 ; 8 UL
!
1 FB Zs N
+ ASSS P z 6 ( )+’\\/ka0‘5 B —I‘ InB @S
A X AA X X @Gk
) 0 13
1 @ B\ coll Iﬁ @ @FS Voks ks;coll A
- = p— + F A5
B, @c« P @k 0%, °
n I#
1 1 @ 1@, Ao
+ o — rg "B OGN
B\ks Xr\ @ di ks « @ Krook ( )( S s,eq)
with q r g !
1 ok
Bo= o B+  AA
*T B, 2B .
Concerning the left hand side, this equation is equivalent to the reference one, if and only if:
1 1 1
—_ = P== > = > (Gl)
t A X Z X X
1 z
A X A X X
Therefore, according to the last equality of equation (G.2), x = P “a= z. Besides, due to the last equality
of equation (G.1), = 21_ And nally, due to the rst equallty of eopuatlon (G.1), t = A= x, SO
t = a= z. Taking into account the collision operator 1= = = A x) Which gives o = 1. In
addition, the equivalence condition for the Krook operator Ieads t0 E t = kook thUS «krook = z= A
while for the di usion term the conditionreads 1= { = 4 = 2,1.e 4 = Zl
Concerning the equivalence for the quasi-neutrality let us conS|der normalized equation
i z
X A 1 X h X
ASr/\? Sé\eq'{\'7 n + 7_? 2sﬁ5;eq n h AiFS = 23 J\OS 'é\s 'é\s;eq d30
s ZoTe s s
Therefore, the rescaled equation reads:
i VA
X A 1 X h X
A2 ASI!\? S eqer N + _z Zsﬁs;eq N h AiFS = ZZS \j\os Ié\s lé\s;eq d30
X s § Te Zofe s s

The equivalence between reference and rescaled QN equations is ensured if and only if:

2
A _ z _ x Z _ z -
5 ) Te = and z = ) = T
X Te A Te

Therefore 1, =1= z which conrms the previous equality = Zl.

Finally, regarding the gyroaverage operator in the case of a Padce approximationj.e : j\os 1+ %%?r’\
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its invariance is ensured provided the equality o = 2 2 is fullled. This equality is already satis ed by
the previous constraints.

AppendixH. Rosenbluth-Hinton test

In this appendix, we report on simulations of the so-called Rosenbluth-Hinton (R-H) test [102]. This
consists in studying the collisionless relaxation of an initialE B poloidal ow, including the transient GAM
oscillation (Geodesic Acoustic Mode), towards a non vanishing residual value. Such simulations are interest-
ing validation tests for gyrokinetic codes because the damping, the frequency and the residual value of the
GAM can be compared to theoretical predictions [59, 130]. In practice, a zonal perturbation in ion density is
initialized, with a radial pro le of the form sin( r=a ). This perturbation generates a zonal radial electric eld
which evolves in time as predicted by the R-H theory. The parameters used for the following simulations are
the same as those used by Biancalani [8], namely: (i) an analytical circular equilibrium with large aspect ratio
( = a=R=0:1); (ii) atdensity and temperature pro les with = T;=Te =1 and (iii) at g-pro les varying
from g = 1:5 to 3:5. All simulations are performed for a mesh N;N ;N: ;Ny, ;N ) =(256; 256 16; 128 32).
The results obtained with GYSELA are displayed on gs.H.16,H.17, where the GAM frequency, the damping
rate and the residual value are plotted as a function of the safety factorq. They are comparable to those
published by the ORB5 team (see gures 2 and 3 in [8]). Consistently with the theory, the FOW (Finite
Orbit Width) e ects are already signi cant at moderate values of q (typically for q 2, cf. g.H.16a).
Regarding the residual values, two ratio are considered: either the ratio of the nite over the initial zonal
electric potential, or the ratio of the radial electric elds. Both ratios would be equal if the radial pro les
of the electric potential would not evolve in time, as assumed by the theory. As evident on g.H.17, this is
actually not the case in these global simulations.

As Zs 0 ling =@ fext=a TOrus nbypo
1=160 I 1 01 0:01 T 1 7
max I'peak =a nso nso Tso Tso Ti=Te
12 0:5 e’ 02 e’ 0:1 1
Table H.14: Common parameters for GAM test. The velocity phase space is de ned by Nbuth oVTso  Vok  Nbuth oVT4, and
0 max To=Bp. Torus indicates the fraction of the torus simulated. The radial density pro le is de ned by its gradient
as dlogns, (r)=dr = ns o Cosh 2 (r lpeak =)= I'ns, . The same analytical expression is used for the temperature with

Tsp and  rys,.
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Figure H.16: Damping rate (left) and frequency (right) of the electric eld for simulation parameters given in table H.14.
Comparison with explicit analytical values given by Sugama and Watanabe [59] and Zonca [130] where FOW e ects are taken

into account or not.

Figure H.17: Residual values divided by the initial value Figure H.18: Radial prole of the (0 ;0) mode of at the
of the electric potential (green stars) or electric eld (ma- initial time (blue line) and at the time  t = 30000= ¢,
genta triangles) for the 5 dierent values of constant q (red dotted line).

prole :1.5, 2., 2.5, 3. and 3.5. Comparison with analyti-

cal theory given by Rosenbluth-Hinton [102] (red line) and

Xiao and Catto [125] (blue line).
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Appendixl. Input data les

This appendix contains the input data les of all simulations used in this paper.

Figure 1.19: Input data le used in the code for the rst simulation for invariance tests (see section 4.2).
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Figure 1.20: Example of input data le used for Rosenbluth-Hinton test (see section 4.3.1).
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Figure 1.21: Example of input data le used for the Cyclone Base Case benchmark with GENE code (see section 4.3.2).
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AppendixJ. Detailed computations for local conservation laws

In this appendix, we present several detailed calculations useful for the derivation of the gyrokinetic
conservation laws in section 5

AppendixJ.1. Useful integrals
Let us consider two arbitrary elds X, Y and Z. The aim of this paragraph is to compute the general
integral 7
I Jxd d dX r (Yr,2) J.1)

where Jy is the jacobian is spacej.e Jy = P g with g representing the determinant of the metric tensor. in

order to perform this integration it is useful to write the operator r (Yr » Z) by using Einstein notations.
Given that r r =r' r =0, we can write this operator as

ro(Yr.2)= p%@ Pavd @z +p%@(pgvg' @2)

wherei and j correspond to or . With these covariant notations, the perpendicular Laplacian-type
operator we consider is equivalent to**

1 L
(Yro2)=r. (Yr22)= 5@ Povd @2
Then, the previous integral (J.1) can be written as
z 1
= Jhdddx @ Yid @z
X

Then, using an integration by parts on the coordinatei

Z Z Z 2
| = d d d (@X)YXkd (@z2)+ d dXYJ «g' (@2) + d dXYJ g’ (@2)

@L 0
wherei andj are still or . Because of the periodicity in , the surface term resulting from the integration
by parts oni = (i.e last term of previous equation) is equal to 0. Therefore,

z z
| = d d d (@X)YXkd (@2)+ d dXYJ xg' (@2) (J.2)

@L

Using the fact that gl = r x' r xl andr X =(@X)r x' forall eld X, then
A A
| = Jxd d d Y(@X)rx rx(@z) Jxd dXY r rxX(@2)

therefore, 7 7
I = Jyd d d [YroX roZ]+ Jd dXY r r-,Z 3.3)

14The direction ? corresponds to an approximation of the poloidal plane because it is actually perpendicular to r ' rather
than B.
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Then, I:ising again an integration by parts on the coordinatej for equation (J.2) and the fact that the surface
term d d (@X)YXd Z 5 =0 due to periodicity in
z Z Y4
l= ddd@ Yk @X Z d d (@X)YJd Z + d dXYJ «g' (@2)
aL aL

Finally, previous equation gives
Z Z z

Jyd ddX ro, (Yr,2Z)= Jddd r, (Yr,X)Z Jed dYg! f(@X)Z X(@Z)g

@aL
J.4)
: . P R .
AppendixJ.2. Expression of (¢ d U@F; for IID()caI eFQergy conservation
The opposite of the total energy source W = g d U@Fs can be divided into two parts
z X z X z
6 d U@Fs= 6 d U Jy,, @QFs + 6 d (Jo, U@Fs U Jo, @Fs (J.5)
S S S

Then, using the quasi-neutrality equation (12), the rst term in eq.(J.5) can be expressed as
x Z x  Z Ns;e
6 d U Jy, @Fs = g6 JxddU > ?qr?@u

species species S

Besides, using the general following equality (J.3) the previous equation is equivalent to

yA Z
X X Ns:e
6 d U Jy, @Fs = @ Jed dUr> B'qr?u

species species S

NI =

P R
Let us de ne the potential energy asE, 3 species & 0 U Jo, Fs this term can be identi ed to the
time derivative of potential energy,

2 3
X z X Z

1
6 d U Jo, @Fs:@p4é 6 d UJy FsO @E,

species species

Let us consider the low wavenumber approximation of the gyroaverage operator used in the codée the

Pade approximation Jo, " 1+ %r ";;BS r » (see section 2.5.1 for more details) then for each species
z m z n 0
le=¢g d (Jo. U@Fs U Jo, @Fs :ﬁ d @Fsr Esr?u Ur gsr?@Fs
and using the result (J.3) of Appendix AppendixJ
m Z n 0
lge=-—@ d @Fsr —r,U Ur Zr,@Fs with d =d d
205 B B
m Z Z
=@ Jyd d d & —r ,(@Fs) r U+ Jd d d®v@Fs—r r-,U
205 B B
0 z z
+ ﬁ@ Jyd d d div 5" 2U 1 5 (@Fs) Jyd d ddv Ugr r » (@Fs)
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The rst and third terms cancel each other out. The remaining terms
m Y4 z
'E:ﬁ@ d @Fsgr rouU d Ugr r » (@Fs)

R
So nally, using the gyrocenter perpendicular stressPs.» = d3vFs B,
z m z z
S 6 d U@Fs= @Ep+ ﬁ@ d @Fsgr r,u d Ugr r » (@Fs)
AppendixJ.3. E ect of the electric potential on the toroidal canonical momentum
The objective of this section is to prove that

. I
dtP- = g@U with P = ¢ + mBS VoK

Due to the fact that P- is an invariant of the equilibrium motion, this result is equivalent to proving that
GU;P .. =g@U (J.6)

where [; ];5c indicate the Poisson brackets in the gyro-center coordinates. In the gyrokinetic framework, we
recall the expression of the Poisson brackets for two given elds X and Y

B b
BkS[X;Y]GC:m—z r X@,, Y @XrY " (rX rry)

whereb = B=B is the unit vector parallel to the magnetic eld. The quantities B¢ and B, . are respectively

dened by eq.(3) and B, = B; B=B,ieB; B+ %vekr bandB,, B+ %Vekb (r b

MgV,
BBy UiP o= af U %B b rr + S%Gk é(r b) rr % b A.7)

In the chosen coordinate system, we recall that the magnetic eld can be writtenasB = I ( )r " +r ' r
with | a ux function, then

Br =IB 1%"'=IB B?R?" (J.8)
r B= (@1)B R?’@Pr’ (J.9)
Besides,
Pl b = l—(rB b) + i(r| b) = I—(rB b) + 1(@lr ) b
B B2 B B2 B
o 1
= g(b re B) g(@l)b r (J3.10)

Then according to (J.8) and (J.10), equation (J.7) becomes

. _ 2n, 1 o, MsVek | b I 1 b
GBys U;P o= GrU RBr' + g(r ) @(b rr B)+ §(@I) r
Using the factthatr b =1b % + Bir B, the previous equation reads
MmsV, | 1
&B UiP o= &ruU R?Br' + ;:" g2 B+g(@hbr (3.11)
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Therefore,
[

B2
So, using the fact that the volume element in guiding-center velocity spacd, . can be expressed as

r B+é(@l)br = R’r' é@P+@I

m |
Bys = B iVGk @+ 5;@P 3.12)

equation (J.11) becomes

®Bys UiP o= &rU RByr' = qg@Ur' r'R?Bg= oB,,@U

which is equivalent to equation (J.6).

[1] Abiteboul, J., Oct 2012. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas. Thesis, Aix-
Marseille Universie.
URL https://tel.archives-ouvertes.fr/tel-00777996
[2] Abiteboul, J., Garbet, X., Grandgirard, V., Allfrey, S. J., Ghendrih, P., Latu, G., Sarazin, Y., Strugarek, A., 2011.
Conservation equations and calculation of mean ows in gyrokinetics. Phys. Plasmas 18 (8).
URL http://scitation.aip.org/content/aip/journal/pop/18/8/10.1063/1.3620407
[3] Abiteboul, J., Ghendrih, P., Grandgirard, V., Cartier-Michaud, T., Dif-Pradalier, G., Garbet, X., Latu, G., Passeron,
C., Sarazin, Y., Strugarek, A., Thomine, O., Zarzoso, D., 2013. Turbulent momentum transport in core tokamak plasmas
and penetration of scrape-o layer ows. Plasma Physics and Controlled Fusion 55 (7), 074001.
URL http://stacks.iop.org/0741-3335/55/i=7/a=074001
[4] Angelino, P., Bottino, A., et al, R. H., 2006. On the de nition of a kinetic equilibrium in global gyrokinetic simulations.
Phys. Plasmas 13, 052304.
[5] Aydemir, A. Y., 1994. A unied monte carlo interpretation of particle simulations and applications to non-neutral
plasmas. Phys. Plasmas 1 (4), 822{831.
URL http://link.aip.org/link/?PHP/1/822/1
[6] Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., Matsuoka, S., 2011. FTI: high performance
fault tolerance interface for hybrid systems. Proceedings Int. Conf. High Performance Computing, Networking, Storage
and Analysis (SC11) 17 (5), 1{32.
[7] Besse, N., Mehrenberger, M., 2008. Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson
system. Mathematics of Computation 77 (61), 93{123.
[8] Biancalani, A., Bottino, A., Lauber, P., Zarzoso, D., 2014. Numerical validation of the electromagnetic gyrokinetic code
NEMORB on global axisymmetric modes. Nuclear Fusion 54 (10), 104004.
URL http://stacks.iop.org/0029-5515/54/i=10/a=104004
[9] Biancalani, A., Zarzoso, D., Grandgirard, V., Goerler, T., 2015. Private communication in the framework of the EURO-
Fusion Enabling Research project on Veri cation and development of new algorithms for gyrokinetic codes.
[10] Bigot, J., Cartier-Michaud, T., Grandgirard, V., Latu, G., Passeron, C., Rozar, F., 2015. GYSELAS5D, an experience
report on a move towards reliability. In: CEMRACS 2014. Vol. submitted of ESAIM: Proc. Luminy, France.
[11] Bigot, J., Grandgirard, V., Latu, G., Passeron, C., Rozar, F., Thomine, O., 2013. Scaling gysela code beyond 32K-cores
on bluegene/Q. In: CEMRACS 2012. Vol. 43 of ESAIM: Proc. Luminy, France, pp. 117{135.
[12] Bottino, A., Peeters, A. G., Hatzky, R., Jolliet, S., McMillan, B. F., Tran, T. M., Villard, L., 2007. Nonlinear low noise
particle-in-cell simulations of electron temperature gradient driven turbulence. Phys. Plasmas 14 (1), 010701.
URL http://link.aip.org/link/?PHP/14/010701/1
[13] Bottino, A., Scott, B., Brunner, S., McMillan, B., Tran, T., Vernay, T., Villard, L., Jolliet, S., Hatzky, R., Peeters,
A., 2010. Global nonlinear electromagnetic simulations of Tokamak turbulence. Plasma Science, IEEE Transactions on
38 (9), 2129 {2135.
[14] Braeunig, J.-P., Crouseilles, N., Grandgirard, V., Latu, G., Mehrenberger, M., Sonnendmcker, E., Dec 2011. Some
numerical aspects of the conservative PSM scheme in a 4D drift-kinetic code. Inria research report.
URL https://hal.archives-ouvertes.fr/hal-00650343
[15] Braeunig, J. P., Crouseilles, N., Mehrenberger, M., Sonnendnscker, E., 2012. Guiding-center simulations on curvilinear
meshes. Discrete and Continuous Dynamical Systems Series S 5 (3).
[16] Brizard, A., Hahm, T., Apr 2007. Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79 (2), 421{468.
[17] Brizard, A. J., 2010. Noether derivation of exact conservation laws for dissipationless reduced- uid models. Phys. Plasmas
17 (11), 112503.
[18] Brizard, A. J., Tronko, N., 2011. Exact momentum conservation laws for the gyrokinetic Vlasov-Poisson equations. Phys.
Plasmas 18 (8), 082307.
[19] Brunetti, M., Grandgirard, V., Sauter, O., Vaclavik, J., Villard, L., 2004. A semi-lagrangian code for nonlinear global
simulations of electrostatic drift-kinetic ITG modes. Computer Physics Communications 163 (1), 1 { 21.
URL http://www.sciencedirect.com/science/article/pii/S0010465504004126

74



[20]
[21]

[22]
(23]

(24]

(25]
(26]
(27]
(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]

Bachner, J., 2007. Vlasov code simulation. Advanced Methods for Space Simulations, 23{46.

Candy, J., Waltz, R., 2003. Anomalous transport scaling in the DIII-D Tokamak matched by supercomputer simulation.
Phys. Rev. Lett. 91, 045001.

URL http://link.aps.org/doi/10.1103/PhysRevLett.91.045001

Candy, J., Waltz, R., 2003. An Eulerian gyrokinetic-Maxwell solver. J. Comput. Phys. 186 (2), 545{581.

Candy, J., Waltz, R. E., Dorland, W., 2004. The local limit of global gyrokinetic simulations. Physics of Plasmas 11 (5),
L25{L28.

URL http://scitation.aip.org/content/aip/journal/pop/11/5/10.1063/1.1695358

Cappello, F., Aug. 2009. Fault tolerance in petascale/exascale systems: Current knowledge, challenges and research
opportunities. Int. J. High Perform. Comput. Appl. 23 (3), 212{226.

URL http://dx.doi.org/10.1177/1094342009106189

Chang, C. S., Ku, S., 2008. Spontaneous rotation sources in a quiescent tokamak edge plasma. Phys. Plasmas 15 (6),
062510.

Chang, C. S., Ku, S., Diamond, P. H., Lin, Z., Parker, S., Hahm, T. S., Samatova, N., 2009. Compressed ion temperature
gradient turbulence in diverted tokamak edge. Phys. Plasmas 056108 (5), 16.

Cheng, C., Knorr, G., 1976. The integration of the Vlasov equation in con guration spaces. J. Comput. Phys. (22),
330{351.

Crouseilles, N., Latu, G., Sonnendmscker, E., 2007. Hermite splines interpolation on patches for a parallel solving of the
Vlasov-Poisson equation. Internal Journal of Applied Mathematics and Computer Science 17 (3), 335{349.

Crouseilles, N., Latu, G., Sonnendmcker, E., 2009. A parallel vlasov solver based on local cubic spline interpolation on
patches. J. Comput. Phys. 228 (5), 1429 { 1446.

URL http://www.sciencedirect.com/science/article/B6WHY-4TY49KC-1/2/82184ee239bae986cedec625fba35dc3
Crouseilles, N., Mehrenberger, M., Sellama, H., 2010. Numerical solution of the gyroaverage operator for the nite
gyroradius guiding-center model. CICP, 1.

Crouseilles, N., Mehrenberger, M., Sonnendnscker, E., 2010. Conservative semi-Lagrangian schemes for Vlasov equations.
J. Comput. Phys. 229 (6), 1927 { 1953.

URL http://www.sciencedirect.com/science/article/B6WHY-4XSTDBW-1/2/ed303f797cb08e5769bc541b055ce 745
Crouseilles, N., Ratnani, A., Sonnendmscker, E., Jan. 2012. An isogeometric analysis approach for the study of the
gyrokinetic quasi-neutrality equation. J. Comput. Phys. 231 (2), 373{393.

URL http://dx.doi.org/10.1016/}.jcp.2011.09.004

Crouseilles, N., Respaud, T., Sonnendnsker, E., 2009. A forward semi-Lagrangian method for the numerical solution of
the Vlasov equation. Comp. Phys. Comm 180 (10), 1730 { 1745.

URL http://www.sciencedirect.com/science/article/B6TJ5-4W6YDWD-1/2/167e84bc1301fbd8173a59997068fd5f
Darmet, G., Ghendrih, P., Sarazin, Y., Garbet, X., Grandgirard, V., 2008. Intermittency in ux driven kinetic simulations

of trapped ion turbulence. Communications in Nonlinear Science and Numerical Simulation 13 (1), 53 { 58, vlasovia 2006:
The Second International Workshop on the Theory and Applications of the Vlasov Equation.

URL http://www.sciencedirect.com/science/article/pii/S1007570407001104

Depret, G., Garbet, X., Bertrand, P., Ghizzo, A., 2000. Trapped-ion driven turbulence in tokamak plasmas. Plasma Phys.
Control. Fusion 23 (42), 949{971.

Dif-Pradalier, G., Diamond, P. H., Grandgirard, V., Sarazin, Y., Abiteboul, J., Garbet, X., Ghendrih, P., Latu, G.,
Strugarek, A., Ku, S., Chang, C. S., 2011. Neoclassical physics in full distribution function gyrokinetics. Phys. Plasmas
18 (6).

URL http://scitation.aip.org/content/aip/journal/pop/18/6/10.1063/1.3592652

Dif-Pradalier, G., Diamond, P. H., Grandgirard, V., Sarazin, Y., Abiteboul, J., Garbet, X., Ghendrih, P., Strugarek, A.,
Ku, S., Chang, C. S., Aug 2010. On the validity of the local di usive paradigm in turbulent plasma transport. Phys.
Rev. E 82, 025401.

URL http://link.aps.org/doi/10.1103/PhysRevE.82.025401

Dif-Pradalier, G., Grandgirard, V., Sarazin, Y., Garbet, X., Ghendrih, P., 2008. De ning an equilibrium state in global
full-f gyrokinetic models. Communications in Nonlinear Science and Numerical Simulation 13 (1), 65 { 71, vlasovia 2006:
The Second International Workshop on the Theory and Applications of the Vlasov Equation.

URL http://www.sciencedirect.com/science/article/pii/S1007570407001086

Dif-Pradalier, G., Grandgirard, V., Sarazin, Y., Garbet, X., Ghendrih, P., Aug 2009. Interplay between gyrokinetic
turbulence, ows, and collisions: Perspectives on transport and poloidal rotation. Phys. Rev. Lett. 103, 065002.

URL http://link.aps.org/doi/10.1103/PhysRevLett.103.065002

Dif-Pradalier, G., Grandgirard, V., Sarazin, Y., Garbet, X., Ghendrih, P., Angelino, P., 2008. On the in uence of initial
state on gyrokinetic simulations. Phys. Plasmas 15 (4).

URL http://scitation.aip.org/content/aip/journal/pop/15/4/10.1063/1.2904901

Dif-Pradalier, G., Hornung, G., Ghendrih, P., Sarazin, Y., Clairet, F., Vermare, L., Diamond, P. H., Abiteboul, J.,
Cartier-Michaud, T., Ehrlacher, C., Esteve, D., Garbet, X., Grandgirard, V., G4rcan, O., Hennecquin, P., Kosuga, Y.,
Latu, G., Maget, P., Morel, P., Norscini, C., Sabot, R., Storelli, A., 2015. Finding the elusive ExB staircase in magnetised
plasmas. Phys. Rev. Lett. 114, 085004.

URL http://link.aps.org/doi/10.1103/PhysRevLett.114.085004

Dimits, A., Williams, T., Byers, J., Cohen, B., Jul 1996. Scalings of lon-Temperature-Gradient-Driven anomalous trans-
port in tokamaks. Phys. Rev. Lett. 77 (1), 71{74.

Dimits, A. M., Bateman, G., Beer, M. A., Cohen, B. |., Dorland, W., Hammett, G. W., Kim, C., Kinsey, J. E.,

75



[44]

[45]

[46]
[47]

(48]

[49]
(50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

(60]

(61]

(62]
(63]

(64]

(65]

Kotschenreuther, M., Kritz, A. H., et al., 2000. Comparisons and physics basis of tokamak transport models and turbu-
lence simulations. Phys. Plasmas 7 (3), 969{983.

URL http://link.aip.org/link/?PHP/7/969/1

Dorland, W., Jenko, F., Kotschenreuther, M., Rogers, B., 2000. Electron temperature gradient turbulence. Phys. Rev.
Lett. (85), 5579{5582.

Dumont, R. J., Zarzoso, D., Sarazin, Y., Garbet, X., Strugarek, A., Abiteboul, J., Cartier-Michaud, T., Dif-Pradalier,
G., Ghendrih, P., Girardo, J.-B., Grandgirard, V., Latu, G., Passeron, C., Thomine, O., 2013. Interplay between fast
ions and turbulence in magnetic fusion plasmas. Plasma Physics and Controlled Fusion 55 (12), 124012.

URL http://stacks.iop.org/0741-3335/55/i=12/a=124012

Durran, D. R., 1998. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag, New
York.

Eseve, D., Garbet, X., Sarazin, Y., Grandgirard, V., Cartier-Michaud, T., Dif-Pradalier, G., Ghendrih, P., G.Latu,
Norscini, C., 2015. A multi-species collisional operator for full-f gyrokinetics. Phys. Plasmas (22), 122506.

Falchetto, G. L., Scott, B. D., Angelino, P., Bottino, A., Dannert, T., Grandgirard, V., Janhunen, S., Jenko, F., Jolliet,
S., Kendl, A., McMillan, B. F., Naulin, V., Nielsen, A. H., Ottaviani, M., Peeters, A. G., Pueschel, M. J., Reiser, D.,
Ribeiro, T. T., Romanelli, M., 2008. The European turbulence code benchmarking e ort: turbulence driven by thermal
gradients in magnetically con ned plasmas. Plasma Physics and Controlled Fusion 50 (12), 124015.

URL http://stacks.iop.org/0741-3335/50/i=12/a=124015

Filbet, F., Sonnendmscker, E., Bertrand, P., 2001. Conservative numerical schemes for the Vlasov equation. J. Comput.
Phys. (172), 166{187.

Fu, G. Y., Oct 2008. Energetic-Particle-Induced Geodesic Acoustic Mode. Phys. Rev. Lett. 101, 185002.

URL http://link.aps.org/doi/10.1103/PhysRevLett.101.185002

Garbet, X., Dif-Pradalier, G., Nguyen, C., Sarazin, Y., Grandgirard, V., Ghendrih, P., 2009. Neoclassical equilibrium in
gyrokinetic simulations. Phys. Plasmas 16 (6).

URL http://scitation.aip.org/content/aip/journal/pop/16/6/10.1063/1.3153328

Garbet, X., Esteve, D., Sarazin, Y., Abiteboul, J., Bourdelle, C., Dif-Pradalier, G., Ghendrih, P., Grandgirard, V., Latu,
G., Smolyakov, A., 2013. Turbulent acceleration and heating in toroidal magnetized plasmas. Phys. Plasmas 20 (7).
URL http://scitation.aip.org/content/aip/journal/pop/20/7/10.1063/1.4816021

Garbet, X., Idomura, Y., Villard, L., Watanabe, T., 2010. Gyrokinetic simulations of turbulent transport. Nuclear Fusion
50 (4), 043002.

URL http://stacks.iop.org/0029-5515/50/i=4/a=043002

Goerler, T., Lapillonne, X., Brunner, S., Dannert, T., Jenko, F., Aghdam, S. K., Marcus, P., McMillan, B. F., Merz, F.,
Sauter, O., Told, D., Villard, L., 2011. Flux- and gradient-driven global gyrokinetic simulation of tokamak turbulence.
Physics of Plasmas 18 (5), 056103.

URL http://link.aip.org/link/?PHP/18/056103/1

Grandgirard, V., Brunetti, M., Bertrand, P., Besse, N., Garbet, X., Ghendrih, P., Manfredi, G., Sarazin, Y., Sauter, O.,
Sonnendmscker, E., Vaclavik, J., Villard, L., 2006. A drift-kinetic semi-lagrangian 4D code for ion turbulence simulation.
Journal of Computational Physics 217 (2), 395 { 423.

URL http://www.sciencedirect.com/science/article/pii/S0021999106000155

Grandgirard, V., Sarazin, Y., 2013. Gyrokinetic simulations of magnetic fusion plasmas. Panoramas et syntleses (39-40),
91{176.

Grandgirard, V., Sarazin, Y., Angelino, P., Bottino, A., Crouseilles, N., Darmet, G., Dif-Pradalier, G., Garbet, X,
Ghendrih, P., Jolliet, S., Latu, G., Sonnendnscker, E., Villard, L., 2007. Global full-f gyrokinetic simulations of plasma
turbulence. Plasma Physics and Controlled Fusion 49 (12B), B173.

URL http://stacks.iop.org/0741-3335/49/i=12B/a=S16

Grandgirard, V., Sarazin, Y., Garbet, X., Dif-Pradalier, G., Ghendrih, P., Crouseilles, N., Latu, G., Sonnendmscker,
E., Besse, N., Bertrand, P., 2008. Computing ITG turbulence with a full-f semi-lagrangian code. Communications in
Nonlinear Science and Numerical Simulation 13 (1), 81 { 87, vlasovia 2006: The Second International Workshop on the
Theory and Applications of the Vlasov Equation.

URL http://www.sciencedirect.com/science/article/pii/S1007570407001220

H., S., T.H., W., 2006. Collisionless damping of Zonal Flows in helical systems. Phys. Plasmas 13 (012501).

Hatzky, R., Kanies, A., Mishchenko, A., 2007. Electromagnetic gyrokinetic PIC simulation with an adjustable control
variates method. J. Comput. Phys. 225 (1), 568{590.

URL http://www.sciencedirect.com/science/article/B6WHY-4MSPV7N-3/2/6314cfh7f80d279673263f7f6889b67e
Hatzky, R., Tran, T., Konies, A., Kleiber, R., Allfrey, S. J., 2002. Energy conservation in a nonlinear gyrokinetic particle-
in-cell code for ion-temperature-gradient-driven modes in theta-pinch geometry. Phys. Plasmas 9 (3), 898{912.

URL http://link.aip.org/link/?PHP/9/898/1

Hazeltine, R., Meiss, J., 2003. Plasma con nement. Dover publication.

Heikkinen, J. A., Kiviniemi, T. P., Kurki-Suonio, T., Peeters, A. G., Sipie, S. K., 2001. Particle simulation of the
neoclassical plasmas. J. Comput. Phys. 173 (2), 527{548.

URL http://www.sciencedirect.com/science/article/B6WHY-45BC24W-1R/2/8606267df6f0ff567b925c75c20a332a
Helander, P., Sigmar, D., 2005. Collisional Transport in Magnetized Plasmas. Cambridge Monographs on Plasma Physics.
Cambridge University Press.

URL http://books.google.fr/books?id=nm-VO1EOH2MC

Hinton, F., Rosenbluth, M., 1999. Dynamics of axisymmetric ExB and poloidal ows in tokamaks. Plasma Phys. Control

76



(66]
[67]

(68]

(69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]
(78]
[79]
(80]
(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

Fusion 41.

Hinton, F. L., Waltz, R. E., 2006. Gyrokinetic turbulent heating. Phys. Plasmas 13 (10), 102301.

Hornsby, W. A., Migliano, P., Buchholz, R., Zarzoso, D., Casson, F. J., Poli, E., Peeters, A. G., 2015. On seed island
generation and the non-linear self-consistent interaction of the tearing mode with electromagnetic gyro-kinetic turbulence.
Plasma Phys. Control. Fusion 57 (5), 054018.

URL http://stacks.iop.org/0741-3335/57/i=5/a=054018

Idomura, Y., 2012. Accuracy of momentum transport calculations in full- f gyrokinetic simulations. Computational
Science and Discovery 5 (1), 014018.

URL http://stacks.iop.org/1749-4699/5/i=1/a=014018

Idomura, Y., 2014. Full-f gyrokinetic simulation over a con nement time. Phys. Plasmas 21 (2).

URL http://scitation.aip.org/content/aip/journal/pop/21/2/10.1063/1.4867180

Idomura, Y., Ida, M., Kano, T., Aiba, N., Tokuda, S., 2008. Conservative global gyrokinetic toroidal full-f ve-dimensional
Vlasov simulation. Comp. Phys. Comm 179 (6), 391{403.

URL http://www.sciencedirect.com/science/article/B6TJ5-4S85DNW-1/2/9d0bb7d210236534205003¢c368e38d7f
Idomura, Y., Ida, M., Tokuda, S., Villard, L., 2007. New conservative gyrokinetic full-f Vlasov code and its comparison
to gyrokinetic [delta]f particle-in-cell code. J. Comput. Phys. 226 (1), 244 { 262.

URL http://www.sciencedirect.com/science/article/B6WHY-4NJWPOT-4/2/d311757a63c410232cc04ad156a01leab
Idomura, Y., Nakata, M., Jolliet, S., 2014. Progress of full- f gyrokinetic simulation toward reactor relevant numerical
experiments. Plasma and Fusion Research 9, 3503028.

Idomura, Y., Tokuda, S., Kishimoto, Y., Wakatani, M., 2001. Gyrokinetic theory of drift waves in negative shear tokamaks.
Nuclear Fusion 41 (4), 437.

URL http://stacks.iop.org/0029-5515/41/i=4/a=308

Idomura, Y., Urano, H., Aiba, N., Tokuda, S., 2009. Study of ion turbulent transport and pro le formations using global
gyrokinetic full-f Vlasov simulation. Nuclear Fusion 49 (6), 065029.

URL http://stacks.iop.org/0029-5515/49/i=6/a=065029

ITER Physics Expert Group on Con nement, 1999. Chapter 2: Plasma con nement and transport. Nuclear Fusion
39 (12), 2175.

URL http://stacks.iop.org/0029-5515/39/i=12/a=302

Jenko, F., Dorland, W., Kotschenreuther, M., Rogers, B., 2000. Massively parallel Vlasov simulation of electromagnetic
drift-wave turbulence. Comp. Phys. Comm (125), 196{209.

Jolliet, S., Bottino, A., Angelino, P., Hatzky, R., Tran, T. M., Mcmillan, B., Sauter, O., Appert, K., Idomura, Y., Villard,

L., 2007. A global collisionless PIC code in magnetic coordinates. Comp. Phys. Comm 177 (5), 409 { 425.

URL http://www.sciencedirect.com/science/article/B6TJ5-4NVH804-1/2/bebb41e50006b7d2c03f86254d937951
Kotschenreuther, M., Rewoldt, G., Tang, W. M., 1995. Comparison of initial value and eigenvalue codes for kinetic
toroidal plasma instabilities. Comp. Phys. Comm 88 (2-3), 128{140.

URL http://www.sciencedirect.com/science/article/B6TJ5-40324V5-3/2/f5dfd72ad0f6e747cf2cb934e3d9fc26

Krommes, J. A., 2012. The gyrokinetic description of microturbulence in magnetized plasmas. Annual Review of Fluid
Mechanics 44, 175{201.

Landau, L., 1936. The transport equation in the case of Coulomb interactions. Phys. Z. Sowj. Union 10.

Lapillonne, X., McMillan, B. F., Gorler, T., Brunner, S., Dannert, T., Jenko, F., Merz, F., Villard, L., 2010. Nonlinear
quasisteady state benchmark of global gyrokinetic codes. Physics of Plasmas 17 (11).

URL http://scitation.aip.org/content/aip/journal/pop/17/11/10.1063/1.3518118

Latu, G., Crouseilles, N., Grandgirard, V., Apr. 2011. Parallel bottleneck in the Quasineutrality solver embedded in
GYSELA. INRIA Research Report RR-7595.

URL https://hal.inria.fr/inria-00583689

Latu, G., Crouseilles, N., Grandgirard, V., Sonnendmscker, E., 2007. Gyrokinetic semi-lagrangian parallel simulation
using a hybrid OpenMP/MPI programming. In: Recent Advances in Parallel Virtual Machine and Message Passing
Interface. Vol. 4757 of Lecture Notes in Computer Science. Springer, Paris, France, pp. 356{364.

URL http://hal.archives-ouvertes.fr/hal-00605748

Latu, G., Grandgirard, V., Abiteboul, J., Bergot, M., Crouseilles, N., Garbet, X., Ghendrih, P., Mehrenberger, M.,
Sarazin, Y., Sellama, H., Sonnendmuscker, E., Zarzoso, D., Sep 2012. Accuracy of unperturbed motion of particles in a
gyrokinetic semi-lagrangian code. INRIA Research Report RR-8054.

URL https://hal.inria.fr/hal-00727118

Latu, G., Grandgirard, V., Abiteboul, J., Crouseilles, N., Dif-Pradalier, G., Garbet, X., Ghendrih, P., Mehrenberger, M.,
Sonnendmscker, E., Sarazin, Y., 2014. Improving conservation properties of a 5D gyrokinetic semi-lagrangian code. The
European Physical Journal D 68 (11).

URL http://dx.doi.org/10.1140/epjd/e2014-50209-1

Latu, G., Grandgirard, V., Crouseilles, N., Belaouar, R., Sonnendmscker, E., Apr. 2011. Some parallel algorithms for the
Quasineutrality solver of GYSELA. INRIA Research Report RR-7591.

URL https://hal.inria.fr/inria-00583521

Latu, G., Grandgirard, V., Crouseilles, N., Dif-Pradalier, G., May 2012. Scalable Quasineutral solver for gyrokinetic
simulation. Research Report RR-7611, INRIA.

URL http://hal.inria.fr/inria-00590561

Lee, W. W., 1983. Gyrokinetic approach in particle simulation. Physics of Fluids 26 (2), 556{562.

URL http://link.aip.org/link/?PFL/26/556/1

77



(89]
[90]

[91]

[92]
[93]
[94]
[95]
[96]
[97]

(98]

[99]
[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

[112]

[113]

[114]
[115]

Lenard, A., Bernstein, I., 1958. Plasma oscillations with di usion in velocity space. Physical Review 112 (5).

Lin, Z., Hahm, T. S., Lee, W. W., Tang, W. M., White, R. B., 1998. Turbulent transport reduction by Zonal Flows:
Massively parallel simulations. Science 281 (5384), 1835{1837.

URL http://www.sciencemag.org/cgi/content/abstract/281/5384/1835

Manheimer, W. M., Ott, E., Tang, W. M., 1977. Anomalous electron-ion energy exchange from the trapped electron
mode. Phys. Fluids 20 (5), 806.

McMillan, B. F., Lapillonne, X., Brunner, S., Villard, L., Jolliet, S., Bottino, A., Garler, T., Jenko, F., Oct 2010. System
size e ects on gyrokinetic turbulence. Phys. Rev. Lett. 105, 155001.

URL http://link.aps.org/doi/10.1103/PhysRevLett.105.155001

Merz, F., 2009. Gyrokinetic Simulation of Multimode Plasma Turbulence. Thesis, Universiat Msnster.

Nakamura, T., Yabe, T., 1999. Cubic Interpolated Propagation scheme for solving the hyper-dimensional Vlasov-Poisson
equation in phase space. Comp. Phys. Comm (120), 122{154.

Nazikian, R., Fu, G. Y., Austin, M. E., Berk, H. L., Budny, R. V., Gorelenkov, N. N., Heidbrink, W. W., Holcomb, C. T,
Kramer, G. J., McKee, G. R., Makowski, M. A., Solomon, W. M., Shafer, M., Strait, E. J., Zeeland, M. A. V., Oct 2008.
Intense Geodesic Acousticlike Modes driven by suprathermal ions in a Tokamak plasma. Phys. Rev. Lett. 101, 185001.
URL http://link.aps.org/doi/10.1103/PhysRevLett.101.185001

Nevins, W. M., Hammett, G. W., Dimits, A. M., Dorland, W., Shumaker, D. E., 2005. Discrete particle noise in particle-
in-cell simulations of plasma microturbulence. Phys. Plasmas 12 (12), 122305.

URL http://link.aip.org/link/?PHP/12/122305/1

Parker, S., Lee, W., 1993. A fully nonlinear characteristic method for gyrokinetic simulation. Phys. Fluids B 5 (1), 77{86.
Parra, F. |., Catto, P. J., 2008. Limitations of gyrokinetics on transport time scales. Plasma Phys. Control. Fusion 50 (6),
065014,

Parra, F. I., Catto, P. J., 2010. Transport of momentum in full f gyrokinetics. Phys. Plasmas 17 (5), 056106.
Peeters, A., Camenen, Y., Casson, F., Hornsby, W., Snodin, A., Strintzi, D., Szepesi, G., 2009. The nonlinear gyro-kinetic
ux tube code GKW. Comp. Phys. Comm 180 (12), 2650 { 2672.

Peeters, A. G., Strintzi, D., 2004. The e ect of a uniform radial electric eld on the toroidal ion temperature gradient
mode. Phys. Plasmas 11 (8), 3748{3751.

URL http://link.aip.org/link/?PHP/11/3748/1

Rosenbluth, M., Hinton, F., 1998. Poloidal ow driven by lon-Temperature-Gradient turbulence in tokamaks. Phys. Rev.
Lett. 80 (4).

Rozar, F., Latu, G., Roman, J., Grandgirard, V., 2015. Toward memory scalability of GYSELA code for extreme scale
computers. Concurrency and computation: Practice and Experience 27 (4), 994{1009.

URL http://dx.doi.org/10.1002/cpe.3429

Rozar, F., Steiner, Ch. Latu, G., Mehrenberger, M., Grandgirard, V., Bigot, J., Cartier-Michaud, T., Roman, J., 2015.
Optimization of the gyroaverage operator based on Hermite interpolation. In: CEMRACS 2014. Vol. submitted of ESAIM:
Proc. Luminy, France.

Sarazin, Y., Grandgirard, V., Abiteboul, J., Allfrey, S., Garbet, X., Ghendrih, P., Latu, G., Strugarek, A., Dif-Pradalier,
G., 2010. Large scale dynamics in ux driven gyrokinetic turbulence. Nuclear Fusion 50 (5), 054004.

URL http://stacks.iop.org/0029-5515/50/i=5/a=054004

Sarazin, Y., Grandgirard, V., Abiteboul, J., Allfrey, S., Garbet, X., Ghendrih, P., Latu, G., Strugarek, A., Dif-Pradalier,
G., Diamond, P., Ku, S., Chang, C., McMillan, B., Tran, T., Villard, L., Jolliet, S., Bottino, A., Angelino, P., 2011.
Predictions on heat transport and plasma rotation from global gyrokinetic simulations. Nuclear Fusion 51 (10), 103023.
URL http://stacks.iop.org/0029-5515/51/i=10/a=103023

Sarazin, Y., Grandgirard, V., Dif-Pradalier, G., Garbet, X., Ghendrih, P., 2006. Interplay between transport barriers
and density gradient. Phys. Plasmas 13 (9).

URL http://scitation.aip.org/content/aip/journal/pop/13/9/10.1063/1.2345177

Sarazin, Y., Grandgirard, V., Fleurence, E., Garbet, X., Ghendrih, P., Bertrand, P., Depret, G., 2005. Kinetic features
of interchange turbulence. Plasma Phys. Control. Fusion 47 (10), 1817{1840.

URL http://stacks.iop.org/0741-3335/47/i=10/a=013

Schroeder, B., Gibson, G., 2010. A large-scale study of failures in High-Performance Computing systems. IEEE Trans-
actions on Dependable and Secure Computing 7 (4).

Scott, B. D., Smirnov, J., 2010. Energetic consistency and momentum conservation in the gyrokinetic description of
tokamak plasmas. Phys. Plasmas 17 (11), 112302.

Sonnendnscker, E., Roche, J., Bertrand, P., Ghizzo, A., 1999. The semi-Lagrangian method for the numerical resolution
of Vlasov equation. J. Comput. Phys. 149 (2), 201{220.

URL http://www.sciencedirect.com/science/article/B6WHY-45N4M1T-P/2/33ccd197dc83781b3eeca522915cf31a
Staniforth, A., Cog, J., 1991. Semi-Lagrangian integration schemes for atmospheric models - A review. Monthly Weather
Review (119), 2206{2223.

Steiner, C., Mehrenberger, M., Crouseilles, N., Grandgirard, V., Latu, G., Rozar, F., 2015. Gyroaverage operator for a
polar mesh. The European Physical Journal D 69 (1), 18.

URL http://dx.doi.org/10.1140/epjd/e2014-50211-7

Strang, G., 1968. On the construction and comparison of di erence schemes. SIAM J. Numer. Anal. 5, 506{517.
Strugarek, A., Sarazin, Y., Zarzoso, D., Abiteboul, J., Brun, A. S., Cartier-Michaud, T., Dif-Pradalier, G., Garbet, X.,
Ghendrih, P., Grandgirard, V., Latu, G., Passeron, C., Thomine, O., 2013. lon transport barriers triggered by plasma
polarization in gyrokinetic simulations. Plasma Physics and Controlled Fusion 55 (7), 074013.

78



[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

URL http://stacks.iop.org/0741-3335/55/i=7/a=074013

Strugarek, A., Sarazin, Y., Zarzoso, D., Abiteboul, J., Brun, A. S., Cartier-Michaud, T., Dif-Pradalier, G., Garbet, X.,
Ghendrih, P., Grandgirard, V., Latu, G., Passeron, C., Thomine, O., Oct 2013. Unraveling quasiperiodic relaxations of
transport barriers with gyrokinetic simulations of tokamak plasmas. Phys. Rev. Lett. 111, 145001.

URL http://link.aps.org/doi/10.1103/PhysRevLett.111.145001

Sydora, R., Decyk, V., Dawson, J., 1996. Fluctuation-induced heat transport results from a large global 3D toroidal
particle simulation model. Plasma Phys. Control. Fusion 38 (12A), A281.

URL http://stacks.iop.org/0741-3335/38/i=12A/a=021

Terry, P. W., Greenwald, M., Leboeuf, J.-N., McKee, G. R., Mikkelsen, D. R., Nevins, W. M., Newman, D. E., Stotler,
D. P, on Veri cation Validation, T. G., Organization, U. B. P., , Force, U. T. T., 2008. Validation in fusion research:
Towards guidelines and best practices. Phys. Plasmas 15 (6), 062503.

URL http://link.aip.org/link/?PHP/15/062503/1

Thomine, O., Bigot, J., Grandgirard, V., Latu, G., Passeron, C., Rozar, F., 2013. An asynchronous writing method for
restart les in the GYSELA code in prevision of exascale systems. In: CEMRACS 2012. Vol. 43 of ESAIM: Proc. Luminy,
France, pp. 108{116.

Villard, L., Bottino, A., Brunner, S., Casati, A., Chowdhury, J., Dannert, T., Ganesh, R., Garbet, X., Gerler, T.,
Grandgirard, V., Hatzky, R., ldomura, Y., Jenko, F., Jolliet, S., Aghdam, S. K., Lapillonne, X., Latu, G., McMillan,
B. F., Merz, F., Sarazin, Y., Tran, T. M., Vernay, T., 2010. Gyrokinetic simulations of turbulent transport: size scaling
and chaotic behaviour. Plasma Physics and Controlled Fusion 52 (12), 124038.

URL http://stacks.iop.org/0741-3335/52/i=12/a=124038

Waltz, R. E., Staebler, G. M., 2008. Gyrokinetic theory and simulation of turbulent energy exchange. Phys. Plasmas
15 (1), 014505.

Waltz, R. E., Staebler, G. M., Dorland, W., Hammett, G. W., Kotschenreuther, M., Konings, J. A., 1997. A gyro-
Landau- uid transport model. Phys. Plasmas 4 (7), 2482{2496.

URL http://link.aip.org/link/?PHP/4/2482/1

Wang, W. X., Hahm, T. S., Lee, W. W., Rewoldt, G., Manickam, J., Tang, W. M., 2007. Nonlocal properties of gyrokinetic
turbulence and the role of ExB ow shear. Phys. Plasmas 14 (7), 072306.

URL http://link.aip.org/link/?PHP/14/072306/1

Watanabe, T. H., Sugama, H., 2006. Velocity-space structures of distribution function in toroidal ion temperature gradient
turbulence. Nuclear Fusion 46, 24{32.

Xiao, Y., Catto, P. J., 2006. Short wavelength e ects on the collisionless neoclassical polarization and residual zonal ow
leve. Phys. Plasmas 13 (10).

URL http://scitation.aip.org/content/aip/journal/pop/13/10/10.1063/1.2358497

Xu, X., Rosenbluth, M., 1991. Numerical simulation of lon-Temperature-Gradient-driven modes. Physics of Fluids B:
Plasma Physics 3.

Zarzoso, D., Garbet, X., Sarazin, Y., Dumont, R., Grandgirard, V., 2012. Fully kinetic description of the linear excitation
and nonlinear saturation of fast-ion-driven geodesic acoustic mode instability. Phys. Plasmas 19 (2).

URL http://scitation.aip.org/content/aip/journal/pop/19/2/10.1063/1.3680633

Zarzoso, D., Sarazin, Y., Garbet, X., Dumont, R., Strugarek, A., Abiteboul, J., Cartier-Michaud, T., Dif-Pradalier, G.,
Ghendrih, P., Grandgirard, V., Latu, G., Passeron, C., Thomine, O., Mar 2013. Impact of Energetic-Particle-Driven
Geodesic Acoustic Modes on turbulence. Phys. Rev. Lett. 110, 125002.

URL http://link.aps.org/doi/10.1103/PhysRevLett.110.125002

Zerroukat, M., Wood, N., Staniforth, A., 2007. Application of the parabolic spline method (PSM) to a multi-dimensional
conservative semi-lagrangian transport scheme (SLICE). J. Comput. Phys. 225 (1), 935{948.

Zonca, F., Chen, L., Santoro, R., 1996. Kinetic theory of low-frequency alf\en modes in tokamaks. Plasma Physics and
Controlled Fusion 38 (11), 2011.

URL http://stacks.iop.org/0741-3335/38/i=11/a=011

79



	Introduction
	GYSELA gyrokinetic global full-f model

