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Abstract

This paper addresses non-linear gyrokinetic simulations of ion temperature gradient (ITG) turbulence in
tokamak plasmas. The electrostaticGysela code is one of the few international 5D gyrokinetic codes able
to perform global, full- f and ux-driven simulations. Its has also the numerical originality of being based on
a semi-Lagrangian (SL) method. This reference paper for theGysela code presents a complete description
of its multi-ion species version including: (i) numerical scheme, (ii) high level of parallelism up to 500k cores
and (iii) conservation law properties.

Keywords: plasma turbulence, gyrokinetic global full-f ux-driven simulations, semi-Lagrangian method,
high-performance computing

1. Introduction

In magnetic fusion devices, the power gain increases non-linearly with the energy con�nement time. The
quality of the plasma energy con�nement then largely determines the size and therefore the cost of a fusion
reactor. This con�nement time is mainly governed by the plasma turbulence as deserved in such devices
{ leading to uctuations with relative magnitude of a few percents in the hot core { and the associated
transport. Understanding its origin and properties in view of a possible control is one of the critical issues
in fusion science [75]. The inhomogeneities in density, temperature, and magnetic �eld place the plasma
naturally out of thermodynamical equilibrium, and tend to excite several micro-instabilities over a wide
spectral range. These plasmas exhibit a low collisionality so that conventional uid models are questionable
and kinetic descriptions are more appropriate. A kinetic formalism is also needed to account for wave-
particle interaction. In such �rst-principle descriptions of plasmas, the six dimensional evolution equation
for the distribution function { Vlasov or Fokker-Planck equations { is solved for each species, coupled to the
self-consistent equations for the electromagnetic �elds, namely Maxwell's equations. Fortunately, as far as
turbulent uctuations are concerned, they develop at much lower typical frequencies than the high frequency
cyclotron motion. Therefore, this 6D problem can be reduced to a 5D one by removing, using phase space
reduction, the gyromotion and other high-frequency dynamics. The useful part of the distribution function
then evolves in a �ve dimensional phase space generated by four slow variables and an adiabatic invariant.
This model is known as thegyrokinetic model. For detailed gyrokinetic theory see review papers by Brizard
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& Hahm (2007) [16] and Krommes (2012) [79]. But even with this dimensional reduction, building such a
simulation tool remains quite challenging.

The �rst-principle gyrokinetic codes, developed for this purpose, make already an intensive use of mas-
sively parallel supercomputers and require state-of-the-art high performance computing (HPC). Neverthe-
less, solving 5D non-linear gyrokinetic equations for several ion species proves so challenging that to date
no code is able to treat all the physics involved. Several strategies based on di�erent simpli�cations have
been developed to decrease these extreme numerical costs. We encourage the reader to refer to the paper
by Garbet et al. (2010) [53] for an overview of these di�erent strategies for numerical simulations and
their comparisons with fusion experiments. A �rst strategy is to reduce the simulation domain to a small
plasma volume aligned with the magnetic �eld lines and su�ciently small to neglect the radial variations
of macroscopic quantities such as the density and temperature �elds and their gradients. Such so called
ux-tube codes (e.g. GS2 [44], GENE [76], GYRO [22], GKW [100]) have the advantages to drastically re-
duce CPU time and memory consumption compared to theglobalapproach where computing over the whole
plasma domain requires huge 3D meshes. Despite this constraint, a global approach must be considered
whenever the \global" scales are comparable to that of the turbulence. This allows one in particular to
address some aspects of the barrier physics. Gyrokinetic models can also be split in two distinct families
with respect to the representation of the distribution function: either full- f or �f models. In the �f model,
only perturbations with respect to some prescribed background equilibrium (usually Maxwellian in velocity)
are computed. Conversely, in full-f models, the whole distribution function is evolved. Especially, the back
reaction of turbulent transport is accounted for in the time evolution of the equilibrium. In global and full- f
simulations, the turbulent regime is evanescent if no free energy is injected in the system to prevent the
inevitable relaxation of equilibrium pro�les below the { linear or non-linear { threshold of the underlying
instability. A heat source is mandatory in view of exploring the long time, typically on energy con�nement
times, behavior of turbulence and transport, leading to the so-calledux-driven simulations.

Finally, the existing codes di�er also by their numerical schemes which have evolved all along the last
twenty-�ve years, in direct link with the evolution of HPC resources. Historically, particle in cell methods
(PIC) {pioneered for gyrokinetics by Lee [88]{ have been most popular, and represent widely adopted
approaches to numerical simulations of kinetic plasmas. They used to be considered as the most e�cient tool
to describe plasma dynamics, essentially because they are capable of describing many physical phenomena
in the full dimensional case, at relatively small computational costs. Many gyrokinetic codes are PIC codes.
Let us mention, Parker's code [97], Sydora's code [117], PG3EQ [42], GTC [90], ELMFIRE [63], GT3D [73],
ORB5 [12, 77] , GTS [123] and XGC1 [26]. However, it is well known that the relative numerical noise
inherent to PIC methods constitutes a strong limiting factor to accurately describe the distribution function
in phase space on long time scales. Moreover, the numerical noise only slowly decreases, like 1=

p
N , when

the number N of particles is increased. The main problem for non-linear gyrokinetic simulations is that
the noise levela priori accumulates in time [96]. Even small errors in the evaluation of these moments can
cause a systematic corruption of the simulation results on relatively short periods of time. Consequently,
the reduction of numerical noise has been right from the start a matter of intense research, and many
improvements have taken place during the past ten years, making use of di�erent statistical methods: (i)
control variate method of variance reduction (with �f scheme [5, 97] or \adjustable control variate" method
[60]); (ii) importance sampling (with \optimized loading" [61]). These techniques have enabled to reduce the
numerical noise by orders of magnitude. Let us speci�cally mention the achievements made on the ORB5
gyrokinetic PIC-code [77] on the noise issue, which are summarized in [120]. Another approach to avoid the
issue of marker sampling noise is the Eulerian approach. It consists in discretizing the phase space on a �xed
grid, and in applying �nite di�erences, �nite volumes and/or Fourier transforms to model the di�erential and
integral operators (seee.g. [20] for a review). The main drawback stems from the fact that these numerical
schemes are based on explicit time integration, so they are limited by the Courant-Friedrichs-Lewy (CFL)
stability condition, which slaves the maximum time step to the grid space resolution. Several gyrokinetic
codes are based on this approach as proved by this non-exhaustive list of Eulerian codes: GS2 [78, 44],
GENE [76, 93], GYRO [22], GKV [124], GKW [101] and GT5D [70, 74].

As described in the following, one peculiarity of theGysela code is to be based on a semi-Lagrangian
method, which is a mix between PIC and Eulerian approaches. The objective is to try to take advantages

2



of both methods, namely limited numerical dissipation with limited numerical noise. We had shown good
properties of energy conservation of semi-Lagrangian scheme for a 4D drift-kinetic model [55]. TheGysela
code exhibits now not only accurate radial force balance [38] but also good properties of local conservation
laws for charge density, energy and toroidal momentum [2]. These conservation properties are detailed
in the following in section 5. Such conservation properties are comparable to those obtained with the
GT5D code [68], which is based on a fourth-order non-dissipative conservative �nite di�erence scheme
[71, 70] which conserves bothL 1 and L 2 norms. Anyway, each of these three numerical approaches {
PIC, Eulerian or semi-Lagrangian{ has advantages and drawbacks (see [56] for a review). But for sure,
the wide variety of gyrokinetic codes, coming from all these di�erent choices, is a strength for the fusion
community. Indeed, due to the extremely challenging computing requirements, each gyrokinetic code runs at
the limit of its applicability range. For instance signi�cant advances like taking into account kinetic electrons
and electromagnetic e�ects are extremely time consuming for global codes. This has been �rstly achieved
in the GYRO code [21], then in the GENE code [54] and in the ORB5/NEMORB code1 [13] and more
recently in the GKW code [67]; this list is not exhaustive. Conversely, the full-f and ux-driven regimes are
two necessary ingredients to investigate, among others, the mechanism underlying self-consistent transport
barrier creation. Benchmarks between the di�erent approaches are therefore primordial (e.g. [118, 48]).
Di�culties reside generally in �nding common domains of validity (set of parameters, initial and boundary
conditions,...). The choice of a global full-f approach has been done for the electrostatic non-linear 5D
gyrokinetic codeGysela described in this paper. Electrons are at present considered adiabatic. Within the
community of the 5D gyrokinetic codes,Gysela is close to GT5D code [72] in the sense that they are both
global full-f ux-driven codes. They mainly di�er by their numerical schemes and their ux driven choice
where the source term is compensated by a sink term in GT5D [69].

In the following, all the components of the semi-LagrangianGysela code will be detailed both in terms
of physical equations and numerical methods as well as the veri�cation and benchmarks that have been
performed. Such ux-driven ITG simulations are extremely challenging and would not be possible without
a high level of parallelism which will also be addressed. The code is currently using Petaops HPC resources
and is actively preparing its evolution for the future exascale era. The paper is a comprehensive description
of the multi-ion species version of the code with a detailed description of all the numerical schemes employed
and with a precise presentation of the parallelisation of the code. The last same exercise has been performed
in 2006 [55] on the initial 4D drift-kinetic version of the code. The upgrade to a 5D gyrokinetic version
in 2007 [57] and the recent development of a multi-ion version [47] have completely changed the needs in
parallelization. Several important physical results have been obtained with the 5D version of the GYSELA
code in the ux-driven regime, although there was so far no reference paper for it. These results will be
highlighted in the various section of the paper. They deal with: (i) ux driven regime and non-local transport
[105, 37], (ii) neoclassical theory with the implementation of a collision operator [51, 36], (iii) poloidal and
toroidal rotation issues and [39, 106] (iv) the possible control of turbulence by means of sheared ows,
including transport barrier generation and stability [115, 116]. Each of these physical studies have been
made possible thanks to the constant upgrade of the code and critical numerical developments, which are
exhaustively detailed (and benchmarked whenever it is relevant) in the present paper. It is organized as
follows. The physical model is presented in section 2. The numerical methods and the hybrid OpenMP/MPI
parallelism are described in section 3. The code veri�cation via invariance tests and benchmarks are detailed
in section 4. The conservation law properties are analyzed in section 5. Discussion and conclusion close the
paper in section 6.

2. GYSELA gyrokinetic global full- f model

Gysela is a global code presently used with a simpli�ed concentric circular magnetic con�guration
(section 2.2) similar to the Tore Supra equilibria. The new version of the code still considers adiabatic

1NEMORB seems to have been the �rst electromagnetic branch of ORB5. Apparently, the ORB groups have meanwhile
decided to avoid distinction between the di�erent branches. So for the rest of the paper, we will refer to the code with the
unique ORB5 name.
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electrons but the possibility to address transport of impurities has been added. The time evolution of
the full distribution function of each ion species (major species as e.g Deuterium + one minor impurity)
is governed by a 5D non-linear gyrokinetic Vlasov equation (section 2.3) self-consistently coupled to a 3D
Poisson equation (section 2.4). The required gyroaverage operator (section 2.5) that used to be approximated
by a Pad�e expansion in the past versions ofGysela can now be computed with a direct average on gyro-
circles. Collisions are taken into account. With a linearized intra-species collision operator (section 2.7)
neoclassical e�ects are recovered. Inter-species collisional transfers are now also considered (section 2.8).
The problem of initialization and radial boundary conditions inherent to global full- f codes likeGysela are
addressed in section 2.6. Concerning boundary conditions, three modes are available in the code: (i) the�xed-
gradient mode where the temperature pro�le is �xed at both radial boundaries, corresponding to decaying
turbulence regimes (relaxation of equilibrium pro�les below instability thresholds cannot be avoided); (ii)
the gradient-driven mode, equivalent to the previous one but where gradient pro�les are maintained by an
arti�cial Krook-type operator and �nally (iii) the ux-driven mode (the most often used) where temperature
is still �xed at the outer boundary but can evolve freely at the inner one. In the gradient-driven mode the
strength of the drag force of the Krook operator governs the dynamics of the mean (ux surface averaged)
gradient pro�les: they remain all the more sticked to their initial value if the Krook coe�cient � k is large.
More precisely, signi�cant departures of the mean pro�les w.r.t. their initial value are only possible on
short time scales (t � � � 1

k ), while the long time behaviour ensures that they remain unchanged when time
averaged. Concerning the ux-driven mode, the turbulence is forced with a constant-in-time incoming ux
generated by a heat source independent of the distribution function (section 2.9) leading to possible long-
time simulation. A simulation over several con�nement times has been recently performed for comparison
to Tore-Supra experiments [41].

2.1. Toroidal coordinate system
Let us introduce the notations used in the paper. We consider a set of coordinates labelledf x i g, the

metric tensor f gij g is the product of the transposed Jacobian matrix J T and the Jacobian matrix J , i.e
f gij g = J T J . For a set of cartesian coordinatesX i , the elementsJ ij of the Jacobian matrix are de�ned as
J ij = @x j X i . Let g represents the determinant of the metric tensor (i.e g = det f gij g), then the Jacobian in
spaceJx is de�ned asJx =

p
g and is equal toJx =

��
rrr x1 � r rr x2

�
� rrr x3

� � 1
, i.e the volume element isJx d3x.

The tensor f gij g is the inverse of the tensorf gij g. The element of the contravariant metric tensor veri�es
the relation gij = rrr x i � rrr x j . With these notations, each vector A can be de�ned in terms of its covariant
componentsA i asA = A i rrr x i and the equivalent norm is given bykA k =

p
(A1)2g11 + ( A2)2g22 + ( A3)2g33.

At present, in the code, the coordinate system used is the toroidal one,i.e the set of coordinates (x1; x2; x3)
is equal to (r; �; ' ) where r is the radial position, � is the poloidal angle and' the toroidal angle. Therefore,
g11 = grr = 1, g22 = g�� = 1=r2, g33 = g'' = 1=R2 and gij = 0 for all i 6= j . R(r; � ) = R0 + r cos� with R0

the major radius of the torus at the magnetic axis. The JacobianJx is then equal to Jx = rR .

2.2. Simpli�ed magnetic con�guration and current
Consistently with the chosen coordinate system, the magnetic topology is �xed and consists of concentric

toroidal magnetic surfaces with circular poloidal cross-sections. The magnetic �eldB is de�ned as B =
(B0R0=R) [� (r )e� + e' ] with � (r ) = r=(qR0). B0 corresponds to the magnetic �eld on the magnetic axis.
The vectors e� = rrrr � and e' = Rrrr ' are the unit vectors in the poloidal and toroidal periodic directions.
The safety factor pro�le q(r ) is de�ned by three parameters q1, q2, and q3 asq(r ) = q1 + q2 exp (q3 log(r=a)).
With this choice of angles, B � rrr '= B � rrr � = q(r )R0=R, namely the local �eld line pitch depends not only
on r but also on � . The current is decoupled from the �eld and the magnetic �eld is assumed to satisfy the
Amp�ere equation, but not the force balance equation. Then the Amp�ere equation leads to a current of the
form � 0J = � 0JT Rrrr ' with � 0JT = B 0 R 0

R
�
r

�
1 + r

�
d�
dr � r

R cos�
�

.

2.3. Full-f gyrokinetic Vlasov equation
Let us consider the gyro-center coordinate system (xG ; vGk ; � s) where xG corresponds to 3D space

coordinates, vGk is the velocity parallel to the magnetic �eld line and � s = msv2
G? =(2B ) the magnetic
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moment. Let Fs be the particle distribution function of species s and �Fs the one associated to the guiding-
centers. The global gyrokinetic codeGysela models for each speciess, the time evolution of the guiding-
center distribution function �Fs, with no separation between equilibrium and perturbation. The non-linear
time evolution of �Fs is governed by the 5D collisional gyrokinetic equation described by Brizard and Hahm
[16]

@t �Fs �
�
H; �Fs

�
GC = Rhs( �Fs) (1)

where H the Hamiltonian of the system is de�ned as H = 1
2 msv2

Gk + � sB + qs �U and where [:; :]GC are the
gyrokinetic Poisson brackets expressed as (see equation (150) in [16])

[X; Y ]GC =
B �

s

msB �
ks

�
�
rrr X@vG k Y � @vG k X rrr Y

�
�

b
qsB �

ks

� (rrr X � r rr Y ) (2)

with b = B =kB k the unit vector along the magnetic �eld line at the guiding-center position. Here, �U = J � :U
is the gyro-average of the uctuating electrostatic potential U. It corresponds to an average over a cyclotron
motion: J � :U =

H2�
0 U d' c

2� , where ' c stands for the cyclotron phase. This gyro-average operatorJ � will be
discussed in more detail in section 2.5. The scalarB �

ks corresponds to the volume element in guiding-center
velocity space. It is simply B �

ks = B �
s � b with B �

s de�ned as

B �
s � B +

ms

qs
vGkrrr � b (3)

i.e
B �

ks � B +
ms

qs
vGkb � (rrr � b) (4)

In our case, the right hand sideRhs of the previous Boltzmann equation (1) is given by

Rhs( �Fs) = B �
ks

�
Dr ( �Fs) + K( �Fs) + C( �Fs) + S

�

where Dr and K are respectively a di�usion term and a Krook operator applied on a radial bu�er region
(see section 2.10),C corresponds to a collision operator (see section 2.7) andS refers to source terms which
are detailed in section 2.9.
Let us de�ne the Poisson bracket as [F; G] = b � (rrr F � r rr G), and the parallel projection as rrr �

kF = b �
s � rrr F .

Let bk represent the covariant components of the unitary magnetic �eld vector b and Jx the Jacobian in
space of the system. Then it can be easily checked that [F; G] = J � 1

x � ijk @i F@j Gbk where � ijk is the Levi-
Civita symbol and b �

s � rrr F = b � i
s @i F . By using this formalism, it can be proven that the Hamiltonian form

(1) is equivalent to the following conservative form

B �
ks

@�Fs

@t
+ rrr �

�
B �

ks
dxG

dt
�Fs

�
+

@
@vGk

�
B �

ks

dvGk

dt
�Fs

�
= Rhs( �Fs) (5)

where the evolution of the gyro-center coordinates of speciess are described (within the electrostatic limit)
by:

dx i
G

dt
= vGkb �

s � rrr x i
G + vE � B s � rrr x i

G + vD s � rrr x i
G (6)

ms
dvGk

dt
= � � sb �

s � rrr B � qsb �
s � rrr �U +

msvGk

B
vE � B s � rrr B (7)
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where b �
s is de�ned as2

b �
s =

B
B �

ks

+
msvGk

qsB �
ksB

rrr � B (8)

The i -th contravariant components of the È � B ' drift are given by

vE � B s � rrr x i
G = v i

E � B s
=

1
B �

ks

� �U; xi
G

�
(9)

and the i -th contravariant components of the `grad{B' and `curvature' drifts read (at low � = nT=(B 2=2� 0)
limit)

vD s � rrr x i
G = v i

D s
=

 
msv2

Gk + � sB

qsB �
ksB

!
�
B; x i

G

�
(10)

Besides, using the fact that the axi-symmetric equilibrium is determined by three of the ideal MagnetoHy-
droDynamic (MHD) equations rrr p = J � B , rrr � B = � 0J and rrr � B = 0, the i -th contravariant components
of b �

s appearing in equation (6) read

b �
s � rrr x i

G = b � i
s =

B � rrr x i

B �
ks

+
msvGk

qsB �
ks

� 0J � rrr x i
G

B
(11)

2.4. Self-consistent coupling with the quasi-neutrality equation

The electron densityne is supposed to follow an adiabatic (Boltzmann) response on a ux surface, namely
ne(x ; t) = ne0 (r ) exp (e [U(x; t) � h U i FS (r; t )] =Te(r )) with Te the electron temperature. hU i FS represents
the ux surface average of the electrostatic potential U, i.e

hU i FS (r ) =

R
U(r; �; ' )Jx d� d'

R
Jx d� d'

Let us de�ne, for each speciess, its initial radial density pro�le ns0 and its concentration cs0 � ns=ne0 .
We also assume thatne0 =

P
s Zsns0 so that

P
s cs0 Zs = 1. Under these assumptions, the quasi-neutrality

equation, self-consistently coupled to the gyrokinetic equation (5), reads

�
1

ne0

X

s

Zsrrr ? �
�

ns0

B0
 s
rrr ? U

�
+ e

�
U � h U i FS

Te

�
=

1
ne0

X

s

Zs (nG s � nG s ;eq) (12)

with 
 s = qsB0=ms and rrr ? =
�
@r ; 1

r @�
�
. Here, the polarization density (�rst term of eq. (12)) is ap-

proximated by its expression in the limit of large wavelengths with respect to the Larmor radius (limit
k? � s � 1). The gyro-center density nG s of speciess is de�ned by nG s (x ; t) =

R
Jv d� dvGk J � : �Fs(x ; v ; t)

{where Jv = (2 �B �
ks=ms) stands for the Jacobian in the velocity space{ similarly nG s ;eq is the gyro-center

density for �Fs = �Fs;eq. In practice, the right hand side of (12) the charge density of guiding-centers� , is
computed as

� (x ; t) =
1

ne0

X

s

Zs

Z
d� J � :

� Z
Jv dvGk ( �Fs � �Fs;eq)

�
(13)

To avoid the problem of the singularity in 1=r, the problem is solved within a ring r min � r � rmax where
r min � 10� 5. One di�culty with equation (12) is to deal with the ux surface average term hU i FS . This
term is non-linear in � , because the space Jacobian depends on� . Therefore, it does not allow one to project
simply in 2D Fourier space. To overcome this problem, solving (12) is performed in two steps as proposed

2Let us mention that in this de�nition b �
s is not equal to B �

s =B �
k s but equal to b �

s = B �
s

B �
k s

�
m s vG k
qs B �

k s

�
b � rrr B

B

�
.
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in [32]. Let us de�ne the di�erential operator L = � 1
n e0

P
s Zsr ? �

�
n s 0

B 0 
 s
r ? �

�
and h � i�; ' the average on

� and ' directions. Then, the �rst step consists in �nding U solution of the following di�erential system,
�

L +
e
Te

�
U = � � h � i �; ' with U(r; �; ' ) = U(r; �; ' ) � h U i �; ' (r ) (14)

The second step consists in solving the following 1D radial di�erential equation

Lh U i FS = h� i �; ' +
�

L +
e
Te

�
h U iFS (15)

In this equation, ' plays the role of a parameter. A Fourier projection is performed in the � direction.
In the radial direction, for both di�erential systems (14) and (15), �nite di�erences are used. Finally, the
electrostatic potential is reconstructed with the formula U = U � h U i FS + h U iFS . For both equations
(14) and (15), Dirichlet boundary conditions are applied at the outer boundary at r max , while Dirichlet
or Neumann can be chosen at the inner boundary atr min . Notice that these boundary conditions then
apply to U, not to the actual electric potential U. Given the relationship betweenU and U, imposing the
Dirichlet condition U(r BC ) = 0, with r BC = f r min ; rmax g, is then equivalent to the following conditions on
U: U(r BC ) = hUi �;' (rBC ) and hUi F S (r BC ) = 0. The Neumann condition proceeds in a similar way. In
GYSELA, it can be only applied to the inner boundary provided r min � 10� 2. In this case, Jx (r min ; � ) is
fairly independent of � , so that the ux surface average is almost equal to the average over both angles:
h�iF S � h�i �;' . In the framework of this approximation, imposing the Neumann condition @r U(r min ) = 0 is
equivalent to @r U(r min ) = @r hUi �;' (rmin ) � @r hUi F S (r min ) = 0. The fact that this solution is equivalent
to solving directly equation (12) and the detailed numerical scheme associated are explained in Appendix
AppendixA.

2.5. Gyro-average operator
The gyro-radius ��� s is transverse to b = B =B and depends on the gyrophase angle' c, i.e ��� s =

(b � v )=
 s = � s (cos' c e? 1 + sin ' c e? 2). Here e? 1 and e? 2 are the unit vectors of a basis in the plane
perpendicular to the magnetic �eld direction b. Let xG be the guiding-center radial coordinate andx the
position of the particle in real space. These two quantities di�er by a Larmor radius ��� s asx = xG + ��� s. The
gyro-average �g of any function g depending on the spatial coordinates corresponds to the following operation

�g(xG ; v? ) =
I 2�

0

d' c

2�
g(x) =

� I 2�

0

d' c

2�
exp(��� s � rrr )

�
g(xG ) (16)

The operator e��� s �rrr corresponds to the change of coordinates (x; p) ! (xG ; pG ). This gyro-average process
consists in computing an average on the Larmor circle. It weakens uctuations that develop at sub-Larmor
scales. Introducingĝ(k) the Fourier transform of g, with k the wave vector, it is possible to prove that the
gyro-average operation reads

�g(xG ; v? ) =
Z + 1

�1

d3k
(2� )3 J0(k? � s)ĝ(k)ei k �x G (17)

where k? is the norm of the transverse component of the wave vectork? = k � (b � k)b, and J0 is the
Bessel function3 of �rst order. Considering the expression (17), in Fourier space the gyro-average reduces
to the multiplication by the Bessel function of argument k? � s. This operation is straightforward in simple
geometry with periodic boundary conditions, such as in local codes. Conversely, in the case of global codes,
the use of Fourier transform is not applicable for two main reasons: (i) radial boundary conditions are non
periodic, and (ii) the radial dependence of the Larmor radius has to be accounted for. Several approaches
have been developed to overcome this di�culty.

3The Bessel function of the �rst kind are de�ned as Jn (z) = i � n

�

R�
0 exp(iz cos� ) cos(n� ) d � .

7



2.5.1. A Pad�e approximation for the gyro-average operator
The �rst one, currently used in the code, consists in simplifying the treatment of the gyro-average

operator by approximating the Bessel function with a Pad�e expansion JPad�e (k? � s) = 1 =
�
1 + ( k? � s)2=4

�

(e.g. see [108]). The advantage of this Pad�e representation is that it does no longer requires to use the
Fourier space as required by the Bessel function. Indeed, since it involvesk2

? , it can easily be treated in the
con�guration space by using the relation r 2

? $ � k2
? : Using this Laplacian equivalence, the gyro-average

operation of any g function is de�ned such that each m Fourier mode of �g is solution of the equation
�
1 �

1
2
 2

s

B0

ms
� s

�
@2

@r2
+

1
r

@
@r

�
m2

r 2

��
�gm (r; ' ) = gm (r; ' ) (18)

where at �rst approximation B (r; � ) has been replaced byB0 to be consistent with the quasi-neutrality
equation. In this di�erential equation, �rst and second derivatives are computed using a Taylor expansion
of second order leading to a tridiagonal matrix system. This Pad�e approximation is asymptotically correct
in the large wavelength limit k? � s � 1 (indeed: J0(k? � s) � 1 � k2

? � 2
s=4 for k? � s � 1), while keepingJPad�e

�nite in the opposite limit k? � s ! 1 . The drawback is a �ltering of small scales: in the limit of large
arguments x ! 1 , JPad�e (x) � 4=x2, whereasJ0(x) � (2=�x )1=2 cos(x � �= 4).

2.5.2. Integration on gyro-circles using Hermite interpolation
A second widespread method for this gyro-averaging process is to use a quadrature formula. In this

context, the integral over the gyro-ring is usually approximated by a sum over four points or more on the
gyro-ring [88]. This is rigorously equivalent to considering the Taylor expansion of the Bessel function at
order two in the small argument limit, namely J0(k? � s) ' 1 � (k? � s)2=4, and equivalent to computing the
transverse Laplacian at second order using �nite di�erences. This method has been extended to achieve
accuracy for large Larmor radius [61],i.e the number of points (starting with four) is linearly increased with
the gyro-radius to guarantee the same number of points per arclength on the gyro-ring. In this approach
{used e.g. in [73] and [77]{ the points that are equidistantly distributed over the ring are rotated for each
particle (or marker) by a random angle calculated every time step. This is performed on a �nite element
formalism and enables therefore high order accuracy by keeping the matricial formulation. In [30] the
inuence of the interpolation operator (which is of great importance when the quadrature points do not
coincide with the grid points) has been studied and it is shown that the cubic splines are appropriate. The
direct integration on gyro-circles proposed in [30] has been recently generalized to arbitrary coordinates
[113] and implemented in the code. For the distribution function the gyro-average operator is applied on
�Fs � �Fs;eq to deal with values close to 0 at the domain boundaries. Two interpolations {cubic splines and
Hermite polynomial{ have been tested on analytical cases and basic gyrokinetic simulations with a 4D drift-
kinetic model, one Larmor radius and the standard linear Cyclone benchmark case (see [113] for more details
and comparison with Pad�e approximation). Both appear to give the same results. However, the Hermite
interpolation is slightly faster and its local character is more favourable for parallelization. The number
of points per circle is an input parameter comprised between 4 and 16. There is no adaptive number of
points depending on the Larmor radius value because the CPU time is in fact determined by the maximum
number. As shown in [113] the method converges with the number of points, so there is no interest in
decreasing the number of points at small radius. It is shown in [104] that 16 points is a good compromise
between accuracy and CPU time consumption (2 times slower than the previous Pad�e approximation due to
its higher algorithmic complexity). All numerical results presented in the following are performed with the
Pad�e approximation. The reason for not choosing the Hermite interpolation is just chronological: this latter
method has been developed only recently. First analyses of new simulations with gyro-average operators
based on Hermite show similar results in terms of conservation laws. The impact on non-linear cases will
be addressed in a future paper.

2.6. Initial and boundary conditions

Boundary conditions are periodic in � and ' directions. Concerning the radial direction, Gysela is a
globalcode,i.e it considers a large fraction of the plasma radius. This is in contrast to ux-tube codes which
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focus on a small volume around magnetic �eld lines by proceeding from a scale separation assumption, the
uctuation scale length being smaller than that of the equilibrium. In such codes, periodicity is almost
always assumed along the radial direction. Conversely, global codes asGysela face the delicate problem of
radial boundary conditions. Non-axisymmetric uctuations of the electric potential and of the distribution
function { i.e (m; n) 6= (0 ; 0) modes, with m and n the poloidal and toroidal wave numbers{ are forced to zero
at both radial boundaries of the simulated domain. As far as the axisymmetric component is concerned, the
value of the potential is prescribed at the outer boundary, while the radial electric �eld is set to zero at the
inner boundary. In addition, so as to avoid possible numerical instabilities, which might occur in the case
where turbulent uctuations reach the frontiers of the simulation domain, bu�er regions have been added at
both radial boundaries. They are characterized by non-vanishing ad-hoc dissipative coe�cients, which aim
at keeping all gradients �nite and damping out all uctuations (see section 2.10).

Initial conditions consist of an equilibrium distribution function �Fs;eq perturbed by a sum of accessible
(m; n) Fourier modes (m and n being the poloidal and toroidal wave numbers, respectively). That means,
�Fs = �Fs;eq + � �Fs where the perturbation part � �Fs reads � �Fs = �Fs;eq g(r ) h(vGk )�p (�; ' ) with �p (�; ' ) =P

m;n � cos (m� + n' + � mn ) where the amplitude � is �xed and the phases� mn have arbitrary values. The
radial function g(r ) (resp. h(vGk )) has a polynomial dependence and vanishes at both radial (resp.vGk )
boundaries. Concerning the initialization of the equilibrium distribution function two choices are possible:
(i) the �rst one is a local conventional Maxwellian, (ii) and the second one is acanonical Maxwellian, i.e
depends on the motion invariants. The Maxwellian distribution function is de�ned as

�Fs;eq(r; E ) = ns0 (r ) � [2�T s(r )=ms]�
3
2 exp

�
�

E
Ts(r )

�
(19)

where E stands for the kinetic energymsv2
Gk=2 + �B (r; � ) which is the second invariant of the system (at

vanishing electric potential). The initial radial pro�les of the ion temperature and density (respectively Ts(r )
and ns0 (r )) are deduced by numerical integration of their gradient pro�les given by the two parameters� and
� r : d log Ts(r) =dr = � � Ts cosh� 2 (( r � r p)=� rTs ) with r p corresponding to the middle of the radial box.
�Fs;eq is constant on a magnetic surface labelled by the radial coordinater . As shown in [38], such initial state
does not constitute an equilibrium of the system solved byGysela at vanishing electric �eld. A stationary
equilibrium of the collisionless equations of the code must depend on the three motion invariants, namely
the adiabatic invariant � , the total energy E and the toroidal kinetic momentum P' = qs + msRv' with
 the poloidal ux and v' the toroidal uid velocity. In Gysela , a convenient choice for this equilibrium is
provided by the canonical Maxwellian (19) in which the radial coordinate r is replaced {as proposed in [4]{
by an e�ective radial coordinate �r , with the dimension of a length, derived from P'

�r = r p �
qp

r p

h
 (r ) �  (r p)

i
�

msqp

eB0r p

h
RvGk � R0 �vGk

i
(20)

where  (r ) = � B0
Rr

0 r 0=qdr 0. The last term �vGk in (20) is de�ned as,

�vGk = sign( vGk )
p

2=ms

p
E � �B max H(E � �B max )

with H the Heaviside function and Bmax the maximum of the magnetic �eld on the whole simulation box.
It has been chosen to minimize parallel ows. With this expression the di�erence between �r and r is of
order � � , the ratio of � s the Larmor radius of speciess and the minor radius a. In the case of a decaying
turbulence it is important to choose �Fs;eq as a function of the motion invariants, especially for studying
zonal ows. It had been observed in [73, 4] that breaking this rule leads to the development of large scale
steady ows, which can prevent the onset of turbulence. This phenomena has also been observed inGysela
simulations where a study of the di�erence between both equilibrium initialization has been performed in
detail [38, 40]. In [40] it has also been shown that when the system is driven by an external source of free
energy, the choice of a canonical equilibrium is less crucial. The turbulence onset is only delayed and its
ultimate nature is unaltered; namely characterized by the same level of parallel and axisymmetric ows, the
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same level of transport and the same correlation times and lengths.

2.7. Simpli�ed collision operator recovering neoclassical e�ects

Although fusion plasmas are weakly collisional, so that a kinetic approach is mandatory, the e�ect of
collisions cannot be fully neglected. Collisional transport plays an important role in regions where turbulent
transport is low, such as transport barriers. Even more importantly, collisional friction damps low frequency
ows, and hence controls the equilibrium radial electric �eld. Collisions also regularize �ne structures in
velocity space. Finally, collisions have also an impact on microinstabilities, e.g via particle detrapping that
is partially stabilizing Trapped Electron Modes (TEMs). In tokamak con�gurations, collisions depend on
Coulomb binary interactions between particles (see Landau [80] for calculations). Then it is shown in [62]
that the collision operator applied to the distribution functions can take the classical Fokker-Planck operator
form:

Css0(Fs; Fs0) =
@

@v
�
��

D(Fs0) �
@

@v
+ V(Fs0)

�
Fs

�
(21)

where V is a dynamical friction term and D is a di�usion term of the order of D � v2
Ts

� ss0 with the collision
frequency � ss0 being de�ned as

� ss0 �
D

v2
Ts

�
ns0

ms

�
1

ms
+

1
ms0

�
q2

s q2
s0 log �

(1 + � 0)2

�
v2

Ts
+ v2

T 0
s

� � 3=2
(22)

where ns0 is the density of speciess0, qs (resp. qs0) is the particle charge of speciess (resp. s0), ms is
the particle mass of speciess, � 0 the permittivity of free space, log � � 17 the Coulomb logarithm and
vTs =

p
Ts=ms is the thermal velocity of speciess. Let us �rst underline that the frequency � ss0 is di�erent

from � s0s. Besides, let us compare the collision frequencies for the di�erent following particle populations: (i)
ion-ion collisions: � ii / Z 4ni =

p
mi T

3=2
i , (ii) electron-electron collisions: � ee / ne=

p
meT3=2

e , (iii) electron-
ion collisions: � ei � Z� ee and (iv) ion-electron collisions: � ie � m e

m i
Z 2� ee � � ii � � ee. Therefore, the

ion-electron collisions can be neglected. At the moment in the code, the electrons are considered adiabatic,
therefore only the ion-ion collisions and impurity-ion collisions (see section 2.8.1) are taken into account.
The full gyro-averaged and linearized Landau operator has been derived in [126] but such a full Coulomb
collisional operator is di�cult to implement in Gysela without severe loss of parallelisation e�ciency . As
described in section 3.2, theGysela parallelization takes advantage of the fact that the magnetic moment
� is an adiabatic invariant, that plays the role of a parameter in Boltzmann equation. A unique value of � is
assigned to each processor. It was shown that the predictions of the neoclassical theory at low collisionality
could be entirely recovered with a reduced collision operator acting in thevk direction only [36]. In short, this
results from the fact that the main ions of tokamak plasmas are weakly collisional. In this so-called banana
regime, collisions essentially perturb the banana orbits at their turning points, where the parallel velocity
of trapped particles vanishes. This corresponds to the trapped-passing boundary in the (vk ; v? ) plane.
Accounting for di�usion in vk then reveals su�cient to model such a transport, governed by the broadening
of the trapped-passing boundary due to collisions. It also has the advantage of keeping� invariant, hence
not degrading the e�ciency of the code parallelization. The operator implemented in the code is a simpli�ed
version of the Lenard-Bernstein operator [89]. This simpli�ed version has been derived in [51] where it is
especially shown that it recovers the exact neoclassical transport in the banana and plateau regimes4 (see
Helander's book [64] p.149 for complete neoclassical transport regime description). This generic energy and
momentum-conserving collision operator has been implemented and successfully tested in the code (see [2],
[36]). A new version also valid for the P�rsch-Sch•ulter regime is under development. The current collision

4The physics of neoclassical transport depends on the collisionality � � . If the collisionality is low, � � < 1, the particle
orbits are completed by a typical thermal particle. In this so-called banana regime, trapped particles almost fully determine
the transport coe�cients. In the opposite limit, � � > � � 3=2 , the particle orbit is not fully completed because its motion is
disturbed by collisions before. This high collisionality regime is called the P�rsch-Sch•ulter regime or uid regime. In-between,
the plateau regime is characterized by a weak dependance of the transport on the collisionality of the plasma.
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operator is expressed as a simpli�ed Lorentz-type operator where only thevGk contribution is taken into
account:

Cs( �Fs) =
1

B �
ks

@
@vGk

�
B �

ksDks
�FM s

@
@vGk

� �Fs
�FM s

��
(23)

where �FM s is a shifted Maxwellian distribution {chosen such that Cs( �FM s ) = 0{ de�ned as:

�FM s =
ns0

(2�T s;coll =ms)3=2
exp

�
� ms

(vGk � Vks;coll )2

2Ts;coll
�

� sB
Ts;coll

�
(24)

The collision term Dks reads for each� s:

Dks(r; v ) = A s(r )
�

�( v) � G(v)
2v

�
with A s(r ) = 3

p
�

2

v3
Ts; coll

� 3=2

qR0
� � s (25)

where v(r; vGk ) =
p

E=Ts;coll . The scalar � � s, associated to the mains species, is a dimensionless ion-ion
collisionality parameter depending on the ion-ion collision frequency� ss such that:

� � s =
qR0

vTs; coll � 3=2
� ss with � ss =

4
p

�
3

ns e4 log �
(4�� 0)2m2

sv3
Ts; coll

(26)

wherevTs; coll denotes the initial thermal velocity vTs; coll = ( Ts;coll =ms)1=2, q the safety factor, R = R0+ r cos�
the major radius, � = r=R0 the inverse aspect ratio andns the density of ion speciess. The explicit expression
(25) also involves the error function � and the Chandrasekhar function G de�ned as

G(v) =
�( v) � v� 0(v)

2v2 with �( v) =
2

p
�

Z v

0
e� x 2

dx and � 0(v) =
2

p
�

e� v2
(27)

Considering that the � � s scalar which is given (as input data) in the code corresponds to the main species,
the collision frequencies� s0s0 for minority species s0 are deduced from this value as

� s0s0 =
vTs 0; coll

� 3=2

qR0
� � s0 with � � s0 =

�
ns0

ns

� �
Zs0

Zs

� 4 �
Ts;coll

Ts0;coll

� 2

� � s (28)

Let us express for each� s, the operator Vks as

Vks(r; v ) = �

�
vGk � Vks;coll

�

v2
Ts; coll

Dks(r; v ) with vTs; coll =
q

Ts;coll =ms (29)

then the collision operator (23) can be expressed with a more classical Fokker-Planck structure as:

Cs( �Fs) =
1

B �
ks

@
@vGk

�
B �

ks

�
Dks

@�Fs

@vGk
� V ks

�Fs

��
(30)

where the operatorsDks and Vks respectively model a di�usion and a drag in the parallel velocity direction.
The conservation properties of parallel momentum and energy are ensured by constrainingDks to depend
on � s only and de�ning the local uid velocity Vks;coll and ion temperature Ts;coll as follows (see Appendix
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AppendixB for more details)

Vks;coll = P � 1

"*
ms

B �
ks

@vG k (B �
ksDksvGk )

+


msDksvGk

�

�

*
1

B �
ks

@vG k (B �
ksDks)

+
D

m2
sDksv2

Gk

E
#

(31)

Ts;coll = P � 1
h


msDks
� D

m2
sDksv2

Gk

E
�



msDksvGk

� 

m2

sDksvGk
� i

(32)

where

P =


msDks

�
*

ms

B �
ks

@vG k (B �
ksDksvGk )

+

�


m2

sDksvGk
�

*
1

B �
ks

@vG k (B �
ksDks)

+

(33)

with the brackets h�i corresponding to the velocity space integralh�i =
R

� Jv d� s dvGkFs. The impact of the
collisions on the evolution of the distribution function �Fs is taken into account by stepping the evolution of
the distribution function @t �Fs = Cs( �Fs) with a Crank-Nicolson scheme. This collision operator forces the
system to relax towards the Maxwellian distribution function, calculated from the instantaneous and local
parallel ow Vks;coll and the isotropic temperature Ts;coll � Ts;coll k .

2.8. Collisional transfer between two species

The inter-species operator currently implemented in the code is highly simpli�ed. It only ensures the
moment transfers and energy transfers between species. A more complete version, satisfying neoclassical
results for impurity transport, is under development.

2.8.1. Collisional energy transfer
The energy exchange between two species is approached by the following reduced collision operator

d �Fs

dt
= �

� E
ss0

(2�T mean =ms)3=2

� Tss0

Tmean

�
Ess0

Tmean
�

3
2

�
exp

�
�

Ess0

Tmean

�
� CE

ss0(Ess0) (34)

d �Fs0

dt
= �

� E
ss0

(2�T mean =ms0)3=2

� Ts0s

Tmean

�
Es0s

Tmean
�

3
2

�
exp

�
�

Es0s

Tmean

�
� CE

s0s(Es0s) (35)

where d=dt stands for the phase space Lagrangian derivative and the following de�nitions have been adopted

Tmean =
Ts + Ts0

2
; � Tss0 = Ts � Ts0 = � � Ts0s (36)

Vmean =
Vks + Vks0

2
; � Vss0 = Vks � Vks0 (37)

Ess0 =
ms

�
vGk � Vmean

� 2

2
+ � sB ; Es0s =

ms0

�
vGk � Vmean

� 2

2
+ � s0B (38)

The temperatures and uid velocities which enter these de�nitions are ux surface averaged,i.e. by consid-
ering h � iFS =

R
� Jx d� d'=

R
Jx d� d' . Then velocities correspond toVks(r ) = h

R
vGk

�Fs d3v i FS=Ns(r ) with
density Ns(r ) = h

R �Fs d3v i FS , the volume element being de�ned as d3v = Jv dvGk d� s. Temperatures are

de�ned as Ts(r ) = 2 =3h
R

Es �Fs d3v i FS=Ns(r ) where Es = ( ms=2)
�
vGk � Vks

� 2
+ � sB . The parameter � E

ss0

has been designed so that particles and parallel momentum are conserved

� E
ss0 =
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� 2 ns0
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Ts;coll =ms
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T 0
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v2
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! � 3=2

� � s (39)
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where the normalized ion-ion collision frequency� � s is given by eq.(26) (for detailed calculation see Appendix
AppendixC.1). Numerically, equation (34), is solved as �Fs(t + � t) = �Fs(t) + � t C E

ss0(Ess0; t).

2.8.2. Parallel momentum transfer
Parallel momentum exchange between two species can be modelled by the following approximate collision

operator:

d �Fs

dt
= � �

vG k

ss0 � Vss0vGk exp
�

�
Es

Tmean

�
� C

vG k

ss0 (Es) with Es =
1
2

msv2
Gk + � sB (40)

d �Fs0

dt
= � �

vG k

s0s � Vs0svGk exp
�

�
Es0

Tmean

�
� C

vG k

s0s (Es0) (41)

where Tmean is de�ned by equation (36). � Vss0 is equivalent to eq.(37). The parameters�
vG k

s0s and �
vG k

ss0 are
designed such that only parallel momentum exchanges are induced by this operator, thus leading to

�
vG k

ss0 = ns0m2
s

� "
2�

� 3=2 1
qR0

p
Ts;coll

T5=2
mean

�
Zs0
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� 2 vTs
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� � s and �
vG k
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�

ms0

ms

� 3=2

�
vG k

ss0 (42)

where the velocityvT> corresponds to the maximum value betweenvTs and vT 0
s

(for more details see Appendix
AppendixC.2).

2.9. Flux-driven code with source terms

2.9.1. Sources of heating, momentum and vorticity
As introduced previously Gysela is a full- f code, namely the back reaction of turbulent transport

is accounted for in the time evolution of the equilibrium. In such a framework, the turbulence regime
is evanescent if no free energy is injected in the system. Turbulent transport results in the attening of
the temperature pro�le, which would ultimately reach marginal stability in the absence of any forcing. A
heat source is mandatory in view of exploring the long time {on energy con�nement times{ behaviour of
turbulence and transport. In Gysela , the possibility to drive the system by a prescribed source was added
in 2009 [105]. This source consists of the sum of the product of Hermite and Laguerre polynomials invGk and
� s, respectively, in the spirit of the pioneering work by Darmet et al [34]. It is versatile enough to allow for
separate injection of heat, parallel momentum and vorticity. Such a versatility imposes serious constraints
on the expression of the source in phase space. The separation between these three kinds of sources is
achieved using projections onto the bases of orthogonal Hermite polynomials invGk and orthogonal Laguerre
polynomials in � s. The retained expression for the source is the following (see Appendix AppendixD for
detailed description)

d �Fs

dt
= Sheat (r; �; v Gk ; � s) + Smoment (r; �; v Gk ; � s) + Svorticity (r; �; v Gk ; � s) (43)

where the pure heating source is de�ned as:

Sheat =
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�v2
G k s �

1
2
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2 � J 2
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(2 � �� s)
�
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r e
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G k s � �� s (44)

with �� s = � sB=Ts;srce, �vG k s = vGk=
p

2Ts;srce=ms, JkB �
p

2msTs;srce=(qsB 2) � 0Jk and � = ( ms=q2
s )�

Ts;srce=(2B 2). Smoment is a pure momentum source expressed as

Smoment =
�
2�vG k s(2 � �� s) � JkB
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1 + 2�vG k s � �� s

�� S
vG k
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4� 3=2 (Ts;srce=ms)2 S
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r e

� �v2
G k s � �� s (45)
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while Svorticity is a pure source of vorticity

Svorticity = �
h
2�v2

G k s � �� s

i S

0

� (2�T s;srce=ms)3=2
S


r e
� �v2

G k s � �� s (46)

The prescribed radial envelopesSE
r , S

vG k
r and S


r are chosen as the sum of two hyperbolic tangents but
could be any radial function under the constraint that the integral over the minor radius is normalized to
1 while SE

0 , S
vG k

0 and S

0 correspond to the source amplitudes andTs;srce to the temperature of the source.

They are usually localized close to the inner boundary of the simulation domain [105]. The heat source is
an isotropic source that takes particles at a vanishing velocity and accelerates them up tov � 1:5vTh . See
schematic view with �gure 2. As a remark, there is another choice possible for the heat sourceSheat in the
code, which corresponds to

Sheat =
SE

0

3
p

2
�

�T s; srce

m s

� 3=2
Ts;srce

�
E

Ts;srce
�

3
2

�
exp

�
�

E
Ts;srce

�
SE

r (47)

There are two main advantages in dealing with a prescribed heat source: (i) the forcing of turbulence
can mimic that in experiments, in contrast to simulations where the mean gradient is prescribed and (ii)
the sum of the spatially and time (on the � E time scale) averaged turbulent and neoclassical heat uxes
must balance the prescribed driving ux. In this case, the response is the temperature gradient, which
ultimately governs the internal energy and therefore the performance of the discharge. An example of initial
and �nal temperature pro�les is shown in �gure 1. Flux driven simulations then allow investigating the
impact of heating power on the energy con�nement time [106]. The source of vorticity described before has
been e�ciently used to polarize the plasma [115] inducing the development of sheared electric �elds in the
turbulent core. The creation of ion transport barriers by these externally induced shearedE � B ows has
been studied in details in [116, 115].

Figure 1: Schematic view of a heat source and bu�er regions in the case of a ux driven simulation. Comparison between
initial temperature pro�le (black line) and �nal temperature (red line).

2.9.2. Energetic particle source
A source of energetic particles (EPs) has been also implemented in the code to study the interaction

between EPs and turbulence. EPs are characterized by energies larger than the thermal energy. The
excitation by EPs of the geodesic acoustic modes (GAMs) {corresponding to the oscillatory component of
large scaleE � B zonal ows{ creates modes which are called energetic geodesic acoustic modes (EGAMs)
[50, 95]. For more details on the impact of EGAMs on turbulence see [127, 128, 45]. In practice this source
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is coupled to the heating source, such that dt �Fs = Sheat + SEP where SEP is also built, as for the previous
sources, by using projection onto the Laguerre and Hermite polynomial bases, with the constraint to inject
only parallel energy. For symmetry reason, the energetic particle source, is built as

SEP (r; �; v Gk ; � s; t) = S EP
0 (t)S EP

r (r ) (S+ + S� ) with S� (�; v Gk ; � s) = S+ (�; � vGk ; � s)

whereS EP
0 is the source amplitude andS EP

r the radial pro�le is normalized such that
R

r drS EP
r = 1. After

the same kind of calculation as in the previous sources, the �nal expression reads

S� =
�
(�vG k s � �v0)2 �

1
2

� Q EP (2 � �� s)(2(�vG k s � �v0) � JkB )
�

e� (�vG k s � �v0 )2

e� �� s (48)

where �� s = � sB (r; � )=TS? and QEP = JkB =
�

2 � J 2
kB (1 + 2�v2

0)
�

with �v0 = v0=
p

2TSk an arbitrary normal-
ized velocity. The expressions of the parallel currentJkB and the velocity �vG k s are the same as in equation
(44) where Ts;srce is replaced byTSk . TSk and TS? correspond to the normalized parallel and perpendicular
temperatures of the energetic particle source. Each of the termsS+ and S� does not inject neither mass
{which is essential because electrons are considered adiabatic in the code{ nor vorticity. See �gure 2 for a
representative view of the source in parallel velocity direction. The source mimics the e�ects of two tan-

Figure 2: Schematic view of the energetic particle source as a function of the parallel velocity

gential neutral beam injectors, oriented in the co-and counter-current directions. It is localized around the
mid position r = 0 :5 (rmin + r max ) and brings the distribution function out of the equilibrium by creating a
positive slope in energy. As explained in [128]v0 and TSk are both critical parameters in view of exciting
EGAMs. Gysela results for EGAMs excitation have been successfully compared to analytical theory [128]
and benchmarked [9] more recently with ORB5 code.

2.9.3. Source of impurities
Finally, it is also possible to add a source of impuritiess0 of the form

Sn s 0 =
Sn s 0

0 Sr
�

2�T s 0; srce

m s 0

� 3=2

 
5
2

�
� s0B

Ts0;srce
�

ms0v2
Gk

2Ts0;srce

!

exp

 

�
ms0v2

Gk

2Ts0;srce
�

� s0B
Ts0;srce

!

(49)

Let us notice that this source of matter is not a pure source, due to the fact that it also injects some amount
of vorticity. This injection is balanced by a sink for the major speciess, such that

Zs

Z
Sn s Jvs dvGk d� s + Zs0

Z
Jvs 0Sn s 0 dvGk d� s0 = 0
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2.10. Di�usion terms in the bu�er regions

Finally, to avoid strong gradients at the boundaries, radial di�usion and arti�cial damping can be added
in bu�er regions. These bu�er regions are de�ned at each side of the radial domainr 2 [r min ; rmax ] as a sum
of hyperbolic tangents:

Hbu� (r ) = 1 +
1
2

�
tanh

�
r � r max + BL L r

BS L r

�
� tanh

�
r � r min � BL L r

BS L r

��
(50)

where L r is the length of the radial domain. BL and BS are respectively the location and the sti�ness of
the bu�er regions. The function Hbu� plays the role of a mask which is equal to 1 in the bu�er regions and
0 elsewhere. The di�usion term which is applied in the bu�er regions is of the form

Dr ( �Fs) =
1

B �
ks

�
1
r

@
@r

�
r� (r )B �

ks
@
@r

�Fs

��
(51)

with � (r ) = � 0Hbu� (r ) ( � 0 being the di�usion coe�cient). The equation @t �Fs = Dr ( �Fs) is solved by using
a Crank-Nicolson scheme (see Appendix AppendixE). An arti�cial damping term � 0 is introduced in the
bu�er regions by de�ning a Krook operator K r ( �Fs) = � � (r )( �Fs � �Fs;eq) with � (r ) = � 0Hbu� (r ) and solving
@t �Fs = K r ( �Fs). Let � t be the time step, then an analytic solution of the previous equation is given by
�Fs(t + � t) = �Fs;eq + ( �Fs(t) � �Fs;eq) exp (� � (r )� t). This mechanism restores the distribution function to
its initial equilibrium state �Fs;eq, in the bu�er regions, by slowly damping all the turbulent modes of the
system. It also plays the role of a heat sink by e�ectively coupling the plasma with the outer thermal baths.

3. A highly parallel semi-Lagrangian code

Solving the set of gyrokinetic equations (5)-(12) is very challenging. It consists of (i) one evolution
equation (5) of the distribution function for each ion species (so far, we are limited to 3 distribution functions
in GYSELA. Considering that kinetic electrons will soon become operational, this leaves 2 slots for ions:
either Deuterium and Tritium, or a main ion species plus any kind of impurity, either intrinsic like Helium
or extrinsic, such as Tungsten for instance) in the 4D phase space parametrized by the adiabatic invariant
� ; (ii) the set of four coupled ordinary di�erential equations (ODE) for the trajectories (6)-(7); and (iii) 3D
integro-di�erential equations for the �eld, namely the quasi-neutrality equation (12). This set of equations is
nonlinear, the dominant quadratic nonlinearity being due to the E � B advection term. The quasi-neutrality
equation is generally solved in most of the gyrokinetic codes by using Fourier projection in all the periodic
directions and �nite di�erences or �nite elements in the others. Concerning the global algorithm, the
challenge consists in �nding numerical schemes which preserve the �rst principles such as the conservation
of Casimir invariants, the phase space volume and the total energy. Various numerical schemes, classi�able
as PIC, Eulerian or semi-Lagrangian, have been explored until now. In the following, we focus on the
semi-Lagrangian approach which is speci�c of theGysela code.

3.1. Speci�city of the Gysela code: the semi-Lagrangian scheme

Semi-Lagrangian (SL) schemes have been �rst used for the advection of vorticity in simpli�ed models of
large scale ows. It has gained maturity when the discretization approach was introduced in the relevant
context of atmospheric ows. A comprehensive review of semi-Lagrangian methods in this meteorological
context until 1990 is due to Staniforth [112]. It is also applied to geophysical uid dynamics (cf. [46]). In
magnetized plasma turbulence area, the SL method has been �rst applied to calculate a turbulence driven
by passing ions in 2D (1D in space, 1D in velocity) [111] and trapped ions in 3D (2D in space, 1D in
velocity) [35, 108]. This method was then extended to the 4D model (3D in space andvk (with � = 0))
of Ion Temperature Gradient (ITG) driven turbulence in cylindrical geometry with the development of the
Gysela code (for GYrokinetic SEmi-LAgrangian code) [55] and the CYGNE code [19]. The 4D drift-kinetic
slab-ITG version of the Gysela code has shown good properties of energy conservation in non-linear regime
[55] as well as accurate description of �ne spatial scales [107]. In the CYGNE code the standard Taylor
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expansion is replaced by a B•urlisch-Stoer scheme (for the 2D advection) to increase the spatial accuracy and
the logarithmic interpolation technique is used to ensure the positivity of the distribution function. Brunetti
et al. [19] have shown that (i) the positivity can be preserved but at the cost of larger di�usion and (ii)
that non-equidistant meshes in radial and parallel velocity directions are a key tool for obtaining accurate
results. Due to the good conservation property obtained in 4D, the gyrokinetic 5D version of theGysela
code [57] has been based on the same numerical scheme. The global algorithm for the new 5D gyrokinetic
multi-ion species version of the code will be described in the following both in terms of numerics (section
3.1.3) and parallelisation (section 3.2). Advantages and drawbacks of such a 5D semi-Lagrangian code will
be discussed. The purpose of the semi-Lagrangian method is to take advantage of both the Lagrangian
and Eulerian approaches, with an accurate description of the phase space, in particular regions where the
density is low, as well as an enhanced numerical stability. It is based on the fact that the most precise way
to solve convection (or advection) hyperbolic PDE is to use their characteristics along which the distribution
function remains constant. This method was primarily developed by Cheng and Knorr [27]. It has been
cast in more general framework of SL by Sonnendr•ucker in 1998 [111] and Nakamura in 1999 [94]. In this
approach, the phase-space mesh grid is kept �xed in time (Eulerian method) and the Vlasov equation is
integrated along the trajectories (Lagrangian method) using the invariance of the distribution function along
the trajectories. The Gysela code is based on this standard semi-Lagrangian approach [111]. This approach
has been recently renamedBackward semi-Lagrangian approach (BSL)by its author to make the distinction
with the emergence of new schemes: (i)Forward semi-Lagrangian approach (FSL) �rstly proposed in 2009
[33] and (ii) Conservative semi-Lagrangian approach (CSL)proposed in [31, 15] through Parabolic Spline
Method [129]. The main di�erence between BSL and FSL approaches is that the advection equations are
solved backward in time in the �rst case and forward in the second one. They are both based on solving
the advective form of Vlasov equation while the CSL methods deal with the conservative form of the Vlasov
equation. FSL and CSL schemes have both been tested inGysela [84, 14] but the actual version of the
code is the standard BSL approach as described in the following.

3.1.1. Backward Semi-Lagrangian (BSL) concept
Let us consider the 5D gyrokinetic Vlasov equation
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= 0 (52)

which corresponds to equation (5) without collisions and source terms. By using the incompressibility

property of the gyrocenter ow in the 4D phase space,i.e rrr
�

B �
ksdt xG
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+ @vG k
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ksdt vGk

�
= 0, the previous

conservative Vlasov equation (52) is equivalent to its advective form
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+
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rrr � �Fs +

dvGk

dt
@�Fs

@vGk
= 0 (53)

Let � = ( xG ; vGk ; � s) be a position vector in the phase space solution of the characteristic equations (6)-
(7). Then equation (53) leads to dt �Fs(� (t); t) = 0. The semi-Lagrangian method uses this invariance
of the distribution function �Fs along its characteristics. Let us consider the computational 5D domain
[x1

G min ; x1
G max ]� [x2

G min ; x2
G max ]� [x3

G min ; x3
G max ]� [vGk min ; vGk max ]� [� s min ; � s max ] and the associated grid

(�xed in time) de�ned by the �nite set of mesh points � ijklm =
�

x1
G i

; x2
G j

; x3
G k

; vGk l ; � sm

�
with xp

Gq
= q� xp

G

for all q = 0 ; � � � ; Np with p = 1 ; 2; 3 ; vGk l = l� vGk for all l = 0 ; Nvk and � sm for all m = 0 ; N � . N1,
N2, N3 are the number of cells in each spatial directions andNvk the number of cells in vGk direction.
The (N � + 1) values for � s are not necessary equidistributed. Actually, the standard choice inGysela
corresponds to an equidistributed grid in

p
� . This choice leads to a better accuracy when computing

integrals in � . Let us also assume that �Fs is known at each point � ijklm of this grid at time tn . Therefore
the distribution function can be computed at the next time tn + � t, with � t the time step, on the same
grid by using the invariance property �Fs (� ikjlm (tn + � t); tn + � t) = �Fs (� (tn ; � ijklm ; tn + � t); tn ) where
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� (tn ; � ijklm ; tn + � t) corresponds to the solution of the characteristic at time steptn which is equal to
� ijklm at time tn + � t. The method consists in (i) �nding the foot of the characteristic at the time
tn : � (tn ; � ijklm ; tn + � t) by solving backward in time the advection equations (6)-(7) and (ii) computing
�Fs (� (tn ; � ijklm ; tn + � t); tn ) by interpolation, using the fact that at this time tn the distribution function
is known over the whole �xed grid. Cubic spline interpolations are used in the code, because it o�ers a good
compromise between accuracy (small di�usivity) and simplicity (numerical cost) [49, 7].

3.1.2. Time-splitting
In low-dimensional systems, the semi-Lagrangian method is very e�cient. When applied to higher

dimensional problems, one faces the problem of multidimensional interpolation, which is extremely expensive
for high dimensional problems. However, this problem has been partially cured by using the time-splitting
idea of Cheng and Knorr [27]. Using the incompressibility property, Strang's operator decomposition into
space and velocity can be applied, replacing equation (5) by a set of two conservative equations. Besides,
to avoid dealing with a 3D space operator, the latter is also divided into two parts. Let us denoteXG =
(x1

G ; x2
G ) = ( r; � ) and remind that in our case x3

G = ' then the Boltzmann equation (5) is solved by applying
a splitting of Strang [114] as
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This splitting into three equations was introduced in the 4D version of the code. As explained in [55], in the
4D drift-kinetic slab case the conservative and advective forms of the equations are equivalent in the (r; � )
direction and z direction separately due to the independent vanishing divergence property, see equations
(9)-(10) in [55] due to rrr � vGC = 0 and @zvk = 0. In the 5D gyrokinetic case rrr ? � (B �

ksdt XG ) 6= 0 and
@' (B �

ksdt ' ) 6= 0 so that these terms should be taken into account as source terms of the advective form of
equations (54) and (55). However, they are presently set to zero. This simpli�cation may alter the accuracy
of the conservation properties of the code (see section 5). Also, it likely has an impact on the maximal
value acceptable for the discretization time step. A solution to overcome this problem could be to use a
conservative scheme instead of the BSL one but the �rst tests we have performed [14] are not conclusive.
This constraint on the numerical value of � t is acceptable for ion turbulence simulations but could become
problematic when addressing kinetic electrons. The development of more e�cient semi-Lagrangian schemes
is still an active axis of research. An idea currently under evaluation is to separate and to treat di�erently
the linear and non-linear parts. Encouraging results have been presented in [85]. The splitting operation
stays a drawback of the semi-Lagrangian method. An alternative method without splitting (based on a 4D
advection and 4D cubic spline interpolation) is currently developed. The �rst drawback is an increase of the
numerical di�usion due to the 4D interpolation which will require to be quanti�ed.
In the current version, the advections in ' and vGk directions are straightforward, but that in the XG direction
requires more attention. If we consider the 2D advection in (r; � ) direction between times t and t + � t, the
value of the electric �eld E at time t +� t=2 is required in second order time scheme. This value is calculated
by using a predictor-corrector method. Besides, computing these 2D trajectories is equivalent to solving
dXG =dt = V (XG ; '; t ), V being the advection �eld. This system is solved by using the parabolic assumption
developed in [111]. LetXG ij be the position of XG (tn +� t) at time tn +� t, then there exists a displacement
d ij = ( � ij ; � ij ) tangent to the parabola such that XG (tn ) = XG ij � d ij and XG (tn � � t) = XG ij � 2d ij . The
displacementd ij can be calculated by solving the implicit equation d ij = � t V (XG ij � d ij ; tn ) (see p. 129
in [56]). This is done with a Taylor expansion which is equivalent at second order to a Newton algorithm.
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3.1.3. GYSELA global algorithm
Concerning now the complete Boltzmann equation (5) the right hand side is also split to treat separately

the collision operator, the Krook operator, the di�usion and source terms. Let ~XG denote the shift operator in
the poloidal cross-section (r; � ) associated to equation (54) over a time step �t. Similarly, ~' and ~vGk denote
the shift operators respectively in the ' (equation (55)) and vGk directions (equation (56)). As described
in the previous paragraph, each of these three shift operators are based on a backward semi-Lagrangian
scheme which means two steps for each mesh point: (i) �rst the computation of the characteristic feet and
(ii) second an interpolation by cubic splines. Let us denote~C the collision operator corresponding to solving
@t �Fs = C( �Fs) and ~D the operator associated to the radial di�usion @t �Fs = Dr ( �Fs). They are both solved
by applying a Crank-Nicolson scheme (see Appendices AppendixB.2 and AppendixE). The Krook operator
~K corresponding to the Krook di�usion equation @t �Fs = K( �Fs) is trivial while solving @t �Fs = S associated
to the source operator ~S is described in Appendix AppendixD.5. Then, using these notations the following
sequence is used to solve the 5D Boltzmann equation (5)
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(57)

where the factor 1=2 means that the operator is applied on half a time step. The choice of the sequence
(57) is not unique but some constraints are imposed in the code: (i) the �rst one is to impose a symmetry
to keep second order accuracy in the splitting (Strang splitting [114]), (ii) the second one is to �x the 2D
operator ~XG which is the most costly at the middle of the algorithm; (iii) �nally the operators coupled to
the right hand side, respectively to the Vlasov equation, are contiguous. Let us also de�ne the operator~Q
(corresponding to the Poisson solving) which denotes symbolically the four steps: (i) computation of right
hand side of the quasi-neutrality equation (12) using expression (13), (ii) solving the QN equation (12) to
deduce the electrostatic potential U, (iii) computation of the gyro-averaged electric potential �U = J � :U
with a Pad�e approximation (18) or with an integration on the gyro-circles as described in section 2.5 and
(iv) computation of the electric �eld as E = �r rr �U.
Finally, the global numerical algorithm of the Gysela code can be summarized (see schematic view in
Figure 3) as follows,

1. Initialization
Considering a prescribed magnetic �eldB (r; � ) (see section 2.2) and equilibrium pro�les of density
n0(r ), ion temperatures Ts(r ) and safety factor q(r ) (see section 2.6), then

(a) Computation of the equilibrium distribution function �Fs;eq as a local or canonical Maxwellian by
using (19) and (20).

(b) Initialization of �Fs(t = 0) as �Fs(t = 0) = �Fs;eq(1 + perturbation) as described in section 2.6.

2. For each time iteration,
Considering the distribution function �F n

s = �Fs(t = tn ) at time tn known on the 5D mesh grid, then
the distribution function �F n +1

s at the next time tn +1 = tn + � t on the same mesh grid is computed
by using a predictor-algorithm as

(a) Computation of the electric �eld E(tn ) by using the ~Q sequence.

(b) Prediction on �t =2:

� Computation of �Fs(t = tn + � t=2) by solving ]Boltz=2 sequence withE(tn ).
� Computation of E(tn + � t=2) by solving ~Q.

(c) Correction on �t :

� Starting from �Fs(t = tn ) {given that this 5D distribution function has been stored before
prediction{, computation of �Fs(t = tn + � t) by solving ]Boltz on a time step � t with the
electric �eld E(tn + � t=2) at time tn +1 =2.
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Figure 3: Schematic view of the coupling between the Poisson and Vlasov solvers in the GYSELA code.

3.2. An e�cient hybrid OpenMP/MPI parallelization

The code is developed in Fortran 90 with some I/O routines in C (47k lines of Fortran 90 and 2:3k
lines of C code) using GIT as version control system. Doxygen is used to generate documentation from the
source code. The only external library dependence is the HDF5 library. HDF5 is the chosen format for
all output saving, both 0D to 3D diagnostics and 5D restart �les. Diagnostic analyses are performed with
Python. The parallelization is based on a hybrid MPI/OpenMP paradigm. This hybrid approach is suitable
for cluster of SMP (symmetric shared memory multiprocessor) nodes where MPI provides communication
capability across nodes and OpenMP exploits loop level parallelism within a node. Let us denote byNspecies

the number of ion species and byN � the number of � values. As the magnetic momentum� is an adiabatic
invariant it plays the role of a parameter. So for each species we haveN � independent Boltzmann equations
(5) to solve. Let N r , N � , N ' and NvG k be the number of points in each directionsr , � , ' and vGk . Large
data structures are used inGysela : 5D data of sizeN r � N � � N ' � NvG k � N � for distribution functions
and 3D data of sizeN r � N � � N ' for the electrostatic potential and its derivatives as for �rst moments
of the distribution function (used for diagnostics). An MPI parallelization is mandatory to treat such
large amount of data. Let us take the example of a typical 5D mesh used for our simulations5, namely
(N r � N � � N ' � NvG k � N � ) = (256 � 128� 128� 128� 16). It corresponds to a mesh of almost 8:6
billion points. The size of one 5D array for the distribution function is of the order of 68 Gbytes, which
is not tractable on a single node. For information, the biggest simulation run so far with Gysela was an
ITER simulation [3] with 272 billion points. Taking into account the fact that two distribution functions are
necessary for the numerical integration over time due to predictor-corrector scheme, more than 1 Tbytes of
data (just for 5D arrays) were manipulated. So, as described in the following, we use a domain decomposition
so that a MPI process never contains the complete 5D distribution function.
Concerning the MPI parallelization, an MPI communicator is de�ned per species. Inside each one of the
MPI SPECIES communicators, an MPI communicator is de�ned for each value of the magnetic moment� .

5For current Gysela simulations, N � is chosen equal to 16 or 32 while the choice of N vG k is much larger (typically,
N vG k � 4N � ). Notice however that N � should be compared to N vG k =2, since the grid in � goes from 0 to � max , while that
in vG k covers the range � vG k ;max to + vG k ;max . The choice of N vG k > 128 is necessary to take correctly into account the
trapping and de-trapping of particles and also to solve accurately the collision operator (at this time, only in parallel velocity).
The same number of points for � direction will be required when collision operator e�ects will be added in perpendicular
direction (mandatory step for kinetic electrons).
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Within each MPI MU communicator a 2D domain decomposition allows us to assign to each MPI process
a sub-domain in (r; � ) dimensions. Let us considerpr (resp. p� ) the number of sub-domains inr (resp. � )
direction. The number of MPI processes used during one run is equal toNMP I = pr � p� � N � � Nspecies. This
MPI decomposition of the default MPI COMM WORLD communicator is summarized in Figure 4. Thus,
each MPI process is then responsible for the sub-domain of the distribution function�Fs(r = [ i start ; i end ]; � =
[j start ; j end ]; ' = � ; vGk = � ; � = � id ) with the integer � id 2 [0; N � � 1]. The local valuesi start , i end , j start and
j end associated to the parallel decomposition are initially set by using a classical domain decomposition in
(pr � p� ) blocks. The OpenMP paradigm is used in addition to MPI. Let us denote byN thread the number
of threads in each MPI process, then the number of cores for a simulation corresponds toN thread � NMP I .

Figure 4: MPI COMM WORLD communicator decomposition for two species, 8 values of � , pr = 4 radial sub-domains and
p� = 2 sub-domains in the poloidal direction. In this case, the number of MPI processes is equal to 128.

3.2.1. Parallel Vlasov solver: How to treat non-local interpolation aspects ?
A di�culty when parallelizing the semi-Lagrangian Vlasov solver is due to the cubic spline interpolation.

Cubic splines are a good compromise between simplicity and accuracy but a drawback is that they are non-
local. Indeed, a lot of the values of the distribution function �Fs are required to reconstruct the interpolated
value of the function at any position in the domain. Two strategies are available in the code to overcome
the problem: (i) local cubic spline interpolation or (ii) transposition. The Hermite spline interpolation on
patches [28, 29, 83] has been speci�cally developed for dealing with 2D domains distributed on several MPI
processes. The idea is to compute local cubic spline coe�cients on each 2D (r; � ) sub-domains by solving
reduced linear systems. Then one ensures aC1 global interpolator similar to the sequential one by imposing
Hermite boundary conditions at the interface of each patch [28]. The �rst limitation of this technique is that
a minimum of 32 points per directions is needed per MPI process [83] (i.e N r =pr � 32 and N � =p� � 32) to
provide good numerical stability and small communication overhead (in 2D, each processor has to exchange
derivatives with its 8 neighboring processors). The second constraint is that the shift at one point on the
border of a sub-domain, which results from the motion along the trajectories in the 4D phase space, must
not exceed the elementary cell width. This constraint is linked to the choice made to limit the size of the
interface transferred between processors. This CFL condition can be extremely restrictive specially in the�
direction where large shifts can occur but also in the radial direction when a source is imposed in the case of
ux-driven simulations. For these reasons the choice of a 4D data transposition is now often preferred. This
transposition consists in modifying in each MPI COMM MU communicator the parallel decomposition of �Fs
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such that each processor then contains only part of the data in' and vGk direction but all the information
in the poloidal cross-section. Standard cubic spline interpolation in (r; � ) plane are then possible. Let us
de�ne the transposition operation TF and its inverse T � 1

F as

�Fs(r block ; � block ; ' = � ; vGk = � ; � = � id )
TF)
(

T � 1
F

�Fs(r = � ; � = � ; ' block ; vG k block ; � = � id )

then the sequence (57) described above for solving the Boltzmann equation is replaced by the following one
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3.2.2. A scalable quasi-neutral solver
The parallel quasi-neutrality algorithm presently used in the code is summarized in algorithm 1. For

more details on the di�erent improvements which have been performed to obtain this parallel solver see
[86, 82]. The presence of the non-local termhU i FS (r ) couples the � and ' directions and penalizes the
parallelization but the most important cost is the communication induced by the computation of the r.h.s,
namely task 2 in algorithm 1. Indeed this calculation requires a collective communication step that involves
all MPI processes. Instead of broadcastingU(r = � ; � = � ; ' = � ) to all MPI processes, a re�ned strategy has
been setup to reduce the large communication cost. It consists in sending to each process only a sub-domain
in ' direction of U. With this decomposition the gyro-average computation ofU as the partial derivatives
in r and � directions are straightforward. Afterwards, a transposition is performed to calculate@' U. For a
complete performance analysis of the di�erent steps of the algorithm see [87].

Algorithm 1 : Quasi-neutrality algorithm in the GYSELA code

Input: �Fs(r block ; � block ; ' = � ; vGk = � ; � = � id )

1. vGk integration of �Fs to compute within each MPI COMM MU communicator

intdvpar Fs(r block ; � block ; ' = � ; � = � id ) =
Z

Jv dvGk
� �Fs � �Fs;eq

�

2. Remapping within each MPI COMM MU communicator of intdvpar Fs {because the gyroaverage
operation requires to have all the data for each (r; � ) plane{ as

intdvpar Fs(r block ; � block ; ' = � ; � = � id ) ) intdvpar Fs(r = � ; � = � ; ' block ; � block ):

3. For all ' , computation of the gyroaverage ofintdvpar Fs and integration over � to obtain

� s(r = � ; � = � ; ' block ) =
Z

d� sJ � : � (intdvpar Fs(r = � ; � = � ; ' block ))

4. MPI reduction towards the Nspecies MPI COMM SPECIES communicators to �nally compute
� =

P
s Zs � s, the right hand side of the quasi-neutrality equation (12).

5. Solving (14) and (15) to deduceU(r = � ; � = � ; ' block ) and broadcast to the Nspecies � N �

communicators.

Output: U(r = � ; � = � ; ' block ) on each MPI process.
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3.2.3. Performing weak and strong scaling
The weak and strong scaling, presented in this section, have been performed on two di�erent high

performance computers. The strong scaling has been tested on the thin nodes of the Curie machine at
TGCC 6, Bruy�eres-le-Châtel, France which are based on bullx B510 architecture. Each node contains two 8
cores processors (INTEL Xeon E5-2680 Sandy-Bridge) running at 2:7 GHz with 64 GB of 1:6 GHz memory.
The weak scaling has been performed on the IBM Blue Gene/Q machine JUQUEEN at JSC/IAS7, Juelich,
Germany which is composed of 24 racks grouping 1024 nodes. Each node contains a single 17-cores processor
running at 1:6 GHz with 16 GB of 1:33 GHz memory. These cores are twice slower compared to Sandy
Bridge cores. The improvements of the code to adapt it e�ciently to the BlueGene architecture are detailed
in [11]. The scaling results are detailed in Figures 5 and 6 for the 4 main components of the code, namely
(i) Vlasov solver, solving the Boltzmann equation as described in section 3.2.1; (ii)Field solver, solving the
quasi-neutrality equation as summarized in algorithm 1; (iii) Derivatives computation, the computation of
the �rst derivatives of the gyroaveraged electrostatic potential J � :U in the three r , � and ' directions and
(iv) Diagnosticscorresponding to all physical quantities from 0D to 3D computed and saved in HDF5 format
like densities, parallel and perpendicular temperatures, velocities, uxes, energies et caetera. The strong
scaling has been performed with the mesh size parametersN r = 512, N � = 512, N ' = 128, NvG k = 128
and N � = 32. The number of threads was kept constantN thread = 8 to assign two MPI process per node.
The couple (pr ; p� ) of processors inr and � directions take the following values (2; 4), (8; 2), (8; 4), (16; 4),
(16; 8) and (16; 16) so that the scaling spans from 2048 to 65536 cores. For the weak scaling the testbed
case was composed from 64k to 458k cores. The considered meshes vary from 17:18 to 481 billion points
de�ned with N r = 512, N � = 1024, N ' = 128, NvG k = 128 and 7 di�erent values of N � = 2 ; 4; 8; 16; 32; 48
and 56. The triplet ( pr ; p� ; N thread ) is kept constant equal to (16; 32; 64). The number of threads is chosen
equal to 64 such that a single MPI process is mapped per node and 4 threads are dedicated per core as
determined for BlueGene/Q optimization. The results of both scalings are summarized in Figures 5 and
6. Let us �rst remark that the weak scaling test (Fig. 6) exhibits an excellent scalability of the code with
90:9% of relative e�ciency at 458752 cores {which corresponds to the totality of the JUQUEEN computer{
compared to 16k. Concerning the strong scalingGysela globally scales with a relative e�ciency of 89% at
16k cores and 60:6% on 65k cores compared to 2048 cores (Fig. 5). This is already a very good result for
such a semi-Lagrangian code. Looking into more detail, we see that the deterioration from 89% at 16k to
60:6% at 65k is mainly due to the diagnostics and �eld solver. Indeed, the Vlasov solver which represents
60% of the application at 2k cores and 48% at 65k cores exhibits a good e�ciency of 74:6% at 65k processors.
Conversely, the diagnostics which correspond to 37:5% of the total time for the reference case, end taking as
much time as the Vlasov solver due to the decreased e�ciency at 55:8%. A lot of work has already been done
to improve the �eld solver [82, 86, 87] but this work must continue because an e�ciency of 41% impacts
the global scalability. Let us �nally notice that even if the computation time of the derivatives remains
negligible until 16k, a further e�ort is needed to prepare the code to future exascale machines.
The execution times are not comparable in the two scalings presented here because the considered meshes
are not the same. Performance comparisons between BlueGene/Q and Bullx architectures are found in
[11]. Production runs are commonly running on both architectures. In general, depending on simulation
parameters, the code is a factor 2:5 to 3 times faster on bullx machines (as Curie or Helios at CSC, Rokkasho,
Japan) than on BlueGene machines (as JUQUEEN or Turing at IDRIS, Orsay, France or Fermi at CINECA,
Bologna, Italy). This behavior is consistent with that observed with many other codes.

3.2.4. Memory scalability
Due to the previous scalability results Gysela uses frequently from 8k to 32k cores for one ion species

with adiabatic electrons and the twice these values when an impurity is taken into account. Besides, a
simulation often runs during several weeks. The annual time consumption on HPC machines is currently of
51 millions of core hours. So the code already bene�ts from petascale computational power of the current high

6http://www-hpc.cea.fr/en/complexe/tgcc.htm
7http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
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(a) Execution time (b) Relative e�ciency

Figure 5: Strong scaling performed on the Curie machine from 2048 to 65536 cores: Execution time (a) and relative e�ciency
(b) for one Gysela run of 4 iterations for a mesh ( N r � N � � N ' � N vG k � N � ) = (512 � 512� 128� 128� 32) with 8 threads
and 32 values in � direction.

(a) Execution time (b) Relative e�ciency

Figure 6: Weak scaling performed on the JUQUEEN machine from 64 k to 458k cores: Execution time (a) and relative e�ciency
(b) for one Gysela run of 4 iterations for a mesh �xed in 4D as ( N r � N � � N ' � N vG k ) = (512 � 1024� 128 � 128) but for 7
di�erent values of � = 2 ; 4; 8; 16; 32; 48; 56. The number of parallel domains in r , � directions and the number of threads are
�xed such that ( pr ; p� ; N thread ) = (16 ; 32; 64). The number of cores varies as pr � p� � N � � N thread =4 because 4 threads per
core are used for BlueGene optimization.

24



performance computers. We also know that at short term when adding kinetic electrons, a simulation with
ITER parameters on several con�nement times will require exascale HPC capabilities. Among the Exascale
challenges, the reduced memory per core has been identi�ed as one of the most critical. This is particularly
true for the Gysela code due its global character which requires huge 5D meshes. The mesh discretization
is already constrained by the memory required per node. The C/Fortran MTM (Modelization & Tracing
Memory consumption) library has been developed [103] to investigate in detail the memory consumption of
the code. This library provides an Application Programming Interface (API) which replaces the standard
calls to allocation/de-allocation routines. This intrusive technique permits to retrieve precisely the peak of
memory consumption and all the arrays involved. External Python scripts have been designed to analyze
these results and provide memory prediction. Continued e�orts are made to reduce the memory footprint
of the code and to improve its memory scalability (see [103] for details) but Table 1 shows that lots of work
remains to be done to be able to run ITER simulations on machines with only 16GB per node. Indeed, for a
minimum ITER mesh, namely (N r � N � � N ' � NvG k � N � ) = (1024 � 1024� 256� 128� 16), Table 1 shows
that such simulations can run on Curie Machine (64 GB/node) with 8192 cores but would require 524288
cores on the BlueGene current architecture (16 GB/node)- knowing that the optimal number of threads
is 64. This number of cores is still out of reach on European high performance computers. Currently, as

h h h h h h h h h h h h h hhMPI procs
OpenMP threads

16 32 64 128

128 126.1 GB 126.9 GB 128.7 GB 132.2 GB
512 35.2 GB 36.1 GB 37.8 GB 41.3 GB

2048 16.4 GB 16.4 GB 16.5 GB 23.2 GB
8192 12.5 GB 12.5 GB 12.5 GB 19.1 GB

Table 1: Memory peak (in GBytes) depending on the number of MPI procs and of OpenMP threads for a 5D mesh ( N r � N � �
N ' � N vG k � N � ) = (1024 � 1024 � 256 � 128 � 16).

shown in Table 2 and in Figure 7, the global memory scalability of the code is of 47:8%. This strong scaling
was performed with a constant 5D mesh of (1024� 4096� 1024� 128� 2) points using MTM prediction
mode and varying the number of MPI processes from 128 to 2048 by increasing the number of points inr
and � directions. The 4D structures are very scalable (relative e�ciency of 89:9%) compared to the others
(see Fig.7). Indeed, 3D structures with 23:8% represent 32% of the global cost for 32k cores against 16%
for 2048 cores. The 3D structures are then no more negligible. The scalability of the 1D structures is with
19% of the order of the 3D arrays but the cost is still not signi�cant. At the opposite, the incompressibility
of 2D structures between 256 and 2k MPI processes is extremely penalizing leading to an increase of the
cost percentage by a factor 10. The fact that the memory for 2D structures remains constant (equal to 7:1
GBytes) is probably due to incompressible temporary arrays allocated for OpenMP loops. Improvement of
memory footprint of 3D and 2D structures will be pursued in the future.

Another bottleneck for Exascale applications will be the possibly increased crash probability following that
of the number of cores of future machines [24]. The Weibull law [109] gives an estimate of the time between
two crashes which is of the order of the minute for a number on nodes larger than 105. Two approaches
have been explored until now to try to improve the fault tolerance of the code. The �rst one consists
in employing an asynchronous method to increase the frequency of the restart �le writing. AGysela
simulation runs typically several days or even weeks. So the complete simulation is split into a series of jobs
of approximately 10 hours with automatic re-submission. The restart �les are not only saved at the end
of each job but several times during the job in parallel to calculations (see [119] for complete description).
Another checkpointing using the FTI library [6] (high performance Fault Tolerance Interface for hybrid
systems) is under investigation. The main idea is to bene�t from fast access local SSD disks available on
some HPC architectures.
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Number of cores 2k 4k 8k 16k 32k
Number of MPI processes 128 256 512 1024 2048

4D structures
Memory size 207.2 GB 104.4 GB 53.7 GB 27.3 GB 14.4 GB

Memory percentage 79.2% 71.5% 65.6% 52.2% 42.0%

3D structures
Memory size 42.0 GB 31.1 GB 18.6 GB 15.9 GB 11.0 GB

Memory percentage 16.1% 21.3% 22.7% 30.4% 32.1%

2D structures
Memory size 7.1 GB 7.1 GB 7.1 GB 7.1 GB 7.1 GB

Memory percentage 2.7% 4.9% 8.7% 13.6% 20.8%

1D structures
Memory size 5.2 GB 3.3 GB 2.4 GB 2.0 GB 1.7 GB

Memory percentage 2.0% 2.3% 3.0% 3.8% 5.1%

Total per MPI process in GBytes 261.5 145.9 81.8 52.3 34.2

Table 2: Strong scaling for each kind of data for a 5D mesh (1024 � 4096� 1024� 128� 2): (�rst lines) memory allocation size
in GBytes and (second lines) percentage with respect to the total memory at the peak of the memory consumption. (Table
from [103]).

Figure 7: Memory relative e�ciency for a GYSELA simulation at the memory peak of time consumption for the four kind of
structures used in the code (1D arrays to 4D arrays). The results are extracted from Table 2. The reference point corresponds
to 128 MPI processes.
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4. GYSELA veri�cation

Since the �rst steps 15 years ago, the code has evolved signi�cantly, including more and more physics with
more and more numerical complexity and high level of parallelism. Portability of the code on several HPC
architectures has been achieved. In such a complex code it becomes very di�cult to track or to propagate
changes by being sure to reproduce previous results and simulations. Over the past two years, a large
e�ort has been made to improve the development process with due regard to modularity, reproducibility
and e�ciency. This approach is based on the joint use of a version control system (GIT8) together with
that of a continuous integration platform such as JENKINS9. At each commit on the GIT reference branch,
automatic compiling and executing are submitted. For more details on our strategy the reader can refer to
[10]. A database of non-regression tests is also under construction with the objective to be run less frequently
(every night or week) but to ensure that new changes have no impact on well-established results. All the
tests proposed in this section, which were used for GYSELA veri�cation10, are detailed with the objective
to become part of the non-regression database. They all correspond to 5D gyrokinetic simulations for one
species. Other veri�cation tests can be founded on simpler 4D models in [55, 85].

4.1. Normalization

The Gysela code is written in normalized units based on the following normalization choices. We use SI
units and a thermal energy scale in electron volts (1eV = 1 :6022 10� 19J ). The four fundamental dimensional
normalizing quantities are: a reference ionic massm0 = A0mp (Kilogram), a reference ionic chargeq0 = Z0e
(Coulomb), a reference magnetic inductionB0 (Tesla) and a reference thermal energyT0 (eV). Here, A0 and
Z0 are the (dimensionless) mass number and charge state of the main ion species ande the modulus of the
electron charge. These quantities are used to de�ne the reference ion cyclotron frequency 
c0 , the reference

thermal speedvT0 and the reference Larmor-radius� 0 as 
 c0 = Z 0 e B 0
m 0

, vT0 =
q

T0
m 0

and � 0 = vT 0

 c 0

=
p

T0 m 0
Z 0 e B 0

.
Finally, we choose the equilibrium electron density at mid radiusn0 as reference density. Physical quantities
(mass, length, time, charge and density) can be recovered from the normalized quantities used in the code
(denoted with a hat symbol) by choosing values for [A0; Z0; B0; T0; n0] and applying ms = Asmp = m0Âs

with As = A0Âs, qs = Z0 e Ẑs, l = � 0 l̂ , t = t̂

 c 0

and ns = n0 n̂s. The velocities are normalized to the

corresponding thermal velocitiesvTs 0 =
p

T0=ms, i.e v = vTs 0 v̂s = vT 0p
Â s

v̂s. The main normalizations are

thus U = T0
Z 0 e �̂ , B = B0B̂ , Ts = T0T̂s while � s = T0

B 0
�̂ s with �̂ s =

v̂2
? s

2B̂
and � 0J = B 0

� 0
Ĵ with Ĵ = r̂rr � B̂ .

By deduction, E = E0Ê with E0 = vT0 B0 and the normalized distribution function F̂s, which evolves in
the code, is de�ned asF̂s = Fsv3

Ts 0
=n0. Finally, the energy is normalized to the reference thermal energy

T0. The subsequent normalized equations used in the code are presented in Appendix AppendixF. In what
follows, all the quantities considered are normalized coordinates, but hat symbols are omitted for the sake
of readability.

4.2. Invariance test

In the present work the source terms are not taken into account. Let us callsimu1 a �rst �xed gradient
simulation ( i.e no source term) for one unique species of chargeZ1 and massA1 and simu2 a second one
for a species of chargeZ2 = � Z Z1 and massA2 = � A A1. Then it is possible to de�ne the other parameters
of the second simulation, only depending on the multiplying factors� Z 2 N and � A 2 N such that both
simulations simu1 and simu2 are identical. The idea is to de�ne an invariance test which permits to verify
that charge and mass are correctly taken into account in the code. Notice that such a transformation departs
from a simple � � scaling, where only the� � parameter is modi�ed (via e.g. a change of the minor radius
at constant aspect ratio) [23, 92]. Such a test can be de�ned as a non-regression test of any gyrokinetic

8http://git-scm.com/
9http://jenkins-ci.org

10 The numerical results presented in the following are based on the GIT release 17.0 of the code.
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code but it is not generic. It depends on the equations treated in each code. For any code, the solved
equations (gyrokinetic + quasi-neutrality) are invariant under certain groups of transformations. Within
these groups, the invariance is exact provided that the code actually solves the equations it is supposed
to. We have derived in Appendix AppendixG such a group of transformations which leaves the solution
unchanged for the Gysela code. Seven control parameters are required� x , � t , � Te , � � , � coll , � di� and
� Krook that respectively rescale space, time, electron temperature, electrostatic potential, collision operator,
di�usion term and Krook operator. The only issue which cannot be accounted for (i.e. which cannot be
rescaled) in this operation is the impact of the boundary conditions. The invariance constraints (i.e the
relationships between the various scaling factors which leave the Boltzmann equation invariant under these
transformations), as summarized in Table 3, are� x =

p
� A =� Z , � t = � A =� Z , � Te = 1=� Z , � coll = 1,

� di� = 1=� Z and � Krook = � Z =� A . Then, the relation between the electrostatic potential � 1 solution of the
�rst simulation and � 2 the electrostatic potential of the second one is� 2 = � � � 1 with � � = 1=� Z .

Simulation 1 Simulation 2

Charge Z1 Z2 = � Z Z1

Mass A1 A2 = � A A1

Mesh discretization � x1 � x2 =
p

� A

� Z
� x1

Time step � t � t1 � t2 = � A
� Z

� t1

Temperature Te Te1 Te2 = 1
� Z

Te1

Collision coe�cient K coll1 K coll2 = K coll1

Krook coe�cient K krook1 K krook2 = � Z
� A

K krook1

Di�usion coe�cient K di�1 K di�2 = 1
� Z

K di�1

Table 3: Parameter dependence between two equivalent simulations. � Z and � A are the multiplying factors between both
cases respectively for charge and mass.

Three di�erent simulations were run to test the invariance property of the code, considering �rst a reference
plasma with Hydrogen (massAs = 1 and charge Zs = 1), then Helium ( As = 4 and Zs = 2) and �nally
Tungsten (As = 150 and Zs = 50). For the following, let us respectively call simu1 A1Z1, simu2 A4Z2and
simu3 A150Z50these three simulations. These cases are not relevant in terms of physics but have been
designed for numerical tests. The idea was to de�ne small cases tractable as non-regression tests. So the
reference simulation is based on a small plasma (� � = 1=150) for a radial domain between 0:15� and 0:85�
(with � = r=a) and for half a torus. The parallel velocity space is de�ned as� 7vTs 0 � vGk � 7vTs 0 and
the perpendicular direction is represented by 16 values of� between 0 and 12T0=B0. The radial pro�les
of density ns0 (r ), temperature Ts0 (r ) and safety factor q(r ) are analytically prescribed as d logns0 (r )=dr =
� 2:2 cosh� 2 (( � � 0:5)=0:04), d logTs0 (r )=dr = � 8 cosh� 2 (( � � 0:5)=0:04) with � = r � rmin =(r max � r min )
and q(r ) = 1 :5+1:7 exp(2:8 log(r=a)). A Krook operator (see section 2.10) of amplitude 0:01 and a di�usion
(eq.(51)) of 0:015 are applied in a bu�er region de�ned by eq.(50) with a location BL = 0 :06 and a sti�ness
of 0:017635. The collision operator (eq.(30)) is applied every iterations whileTs;coll (eq.(32)) and Vks;coll

(eq.(31)) are refreshed every 10 iterations. All the numerical parameters of thissimu1 A1Z1simulation are
summarized in Tables 4 and 5. For the complete description of the case see the associated input data �le of
the code (Figure I.19) in Appendix AppendixI.
So taking into account the equivalences de�ned in Table 3, the second simulationsimu2 A4Z2 is de�ned
with the same parameters assimu1 A1Z1except the fact that Helium is considered instead of Hydrogen
and (i) � = 2 :, (ii) 
 c0 � t = 10:, (iii) D coe� = 0 :0075, (iv) Krookcoe� = 0 :005 while (v) the diagnostic
time step 
 c0 � tdiag = 100 instead of 50. The species concentrationcs has been divided by 2 to satisfy
the constrainst

P
s csZs = 1. The third simulation simu3 A150Z50is performed for a Tungsten species

As = 150 and Zs = 50 and di�ers from simu1 A1Z1 by the following parameters: (i) 1=� � = 36:7423
(1=� ?simu1 �

p
150=50), (ii) cs = 0 :02, (iii) � = 50, (iv) 
 c0 � t = 15, (v) 
 c0 � tdiag = 150, (vi) D coe� = 0 :0003

28



N r N � N ' NvG k N � nbvth 0 � max

256 256 128 128 16 7: 12:

� � R0=a rint =a rext =a Torus Zs As 
 c0 � t

1=150 3:3 0:15 0:75 1=2 1: 1: 5:

q1 q2 q3 � ns 0 � ns 0 � T s0 � T s0 Ti =Te

1:5 1:7 2:8 2:2 0:04 8: 0:04 1:

Table 4: Main parameters for reference simulation simu1 A1Z1. The velocity phase space is de�ned by � nbvth 0vTs 0 �
vG k � nbvth 0vTs 0 and 0 � � � � max T0=B0 . Torus indicates the fraction of the torus simulated. The safety fac-
tor radial pro�le is de�ned as q(r ) = q1 + q2 exp(q3 log(r=a)). The radial density pro�le is de�ned by its gradient as
d log ns0 (r )=dr = � � ns 0 cosh� 2 (( r � 0:5)=� r ns 0 ). The same analytical expression is used for the temperature with � T s 0
and � r T s 0 .

Bu�er region Collision operator

BL BS D coe� Krookcoe� � � ;bu� � � ;coe� nbstepcoll nbrefreshcoll

0:06 0:017635 0:015 0:01 20: 0:28 1 10

Table 5: Main parameters for simu1 A1Z1simulation concerning bu�er region and collisions. B L and B S correspond respectively
to the location and the sti�ness of the bu�er regions where both di�usion and Krook operator are applied with respective
amplitude D coe� and Krook coe� . The collision operator is applied every nbstep coll iterations but refreshed every nbrefresh coll
iterations.

and (vii) Krook coe� = 0 :01=3. The di�erences between the three considered simulations are highlighted in
Table 6. The time evolution of the zonal ow component (m = 0, n = 0), where m and n are respectively
poloidal and toroidal mode number in the middle of the radial domain is presented in Figure 8 for the three
simulations. It exhibits a relative error of 10� 15 when Hydrogen case is compared to Helium case and of
10� 7 when compared with Tungsten simulation. The loss of accuracy for Tungsten is probably due to the
small size of the plasma considered (a = 36:7423=� 0). In this case boundary conditions can play a more
important role. For each test the results are su�ciently accurate to consider that the charge and mass
factors have been correctly implemented in the code equations. The same order of magnitude is obtained
when the distribution function values are compared.

As Zs 1=� � � 
 c0 � t 
 c0 � tdiag D coe� Krookcoe�

simu1 A1Z1 1: 1: 150: 1: 5: 50: 0:015 0:01

simu2 A4Z2 4: 2: 150: 2: 10: 100: 0:0075 0:005

simu3 A150Z50 150: 50: 36:7423 50: 15: 150: 0:0003 0:00333333

Table 6: Modi�ed parameters according to the scaling law for the three simulations used in invariance tests.

The same invariance exercise was performed for a smaller reference case:� � = 1=75, N r = 128, N � = 128
and a full torus (all the other simulation parameters being identical to the ones described in Tables 4
and 5). The two others simulations de�ned for comparison follow the same rules as previously which
corresponds to a� � of 1=18:37 for the Tungsten case. The relative error is also of the order of 10� 15 when
comparing Hydrogen and Helium but of 10� 6 when considering the Tungsten. The two cases� � = 1=75 for
Hydrogen and Helium will be good candidates as non-regression tests. Regarding the Tungsten simulations
more work could be done. The �rst idea would be to consider a� � = 1=75 plasma for Tungsten, but
this would imply a reference case with� � � 1=306:205 for the Hydrogen (i.e a mesh of the order of 68
billion of points with ( N r ; N � ; N ' ; NvG k ; N � ) = (512 ; 512; 128; 128; 16)). Such a simulation is feasible but
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extremely time consuming for a veri�cation test (several hours on 8192 cores). It would not be possible on
the development cluster Poincare (92 nodes of 8 Sandy Bridge E5-2670 bi-processors (2.60GHz)) at IDRIS
french supercomputing center that has been used for all tests presented above (performed on 512 cores).

Figure 8: Invariance test between three simulations. Left Figure: Time evolution of Zonal Flows � 00 at a �xed radial position
0:5� with � = ( r max � r min )=a. � 00 for simu1 A1Z1with Hydrogen must be compared to 2� 00 of simu2 A4Z2for Helium and
50� 00 obtained with simu3 A150Z50for Tungsten. Right Figures: Relative errors in function of time: (top) between simu1 A1Z1
and simu2 A4Z2, (bottom) between simu1 A1Z1and simu3 A150Z50.

4.3. Usual linear and non-linear gyrokinetic benchmarks
Together with the veri�cation invariance test described above, several other benchmarks have already

been performed in the past to validate the code. The so-called \Rosenbluth-Hinton test" (RH) [102] {which
became an essential test for gyrokinetic codes to check the validity of zonal ows and Geodesic-Accoustic-
Modes (GAMs) treatment{ was veri�ed in 2008 [58]. Linear and non-linear benchmarks were successfully
achieved [58] with the classical Cyclone DIII-D base case (CBC) [43]. Non-linear benchmarks were also
performed [57] with the global PIC code ORB5 [77]. We also participated to the European turbulence code
benchmarking e�ort [48]. Finally, ux-driven simulations have been compared [106] between GYSELA,
ORB5 and XGC1 [25, 26]. In the following we present only the tests which have been recently investigated
again with the new multi-species version of the code to be added as non-regression tests, namely the RH
test and the linear CBC test. These tests have been re-designed with the objective of being su�ciently small
to be automatically launched on the continuous integration platform(JENKINS) at a reasonable frequency
with the aim of recovering the predicted results. Here are described the results of our investigation. This
work is still in progress and we plan to continue decreasing the CPU time consumption of such tests in the
future.

4.3.1. Rosenbluth-Hinton test as a non-regression test
This test consists in computing the linear evolution of the zonal ow component � 00 for an initial elec-

trostatic perturbation. In practice it corresponds to initializing the code with the distribution function
�Fs = �Fs;eq(1 + � sin(2� (r � r min )=2L r )) with a perturbation amplitude � equal to 10� 3. This initial state
leads to the development of GAMs which correspond to the (m; n) = (0 ; 0) mode coupled to sidebands
(m; n) = ( � 1; 0) as a result of toroidal coupling. These GAMS are Landau-damped because of the �nite
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poloidal wavenumber of the sideband while the zonal ows relax towards a residual value which has been
analytically predicted in the case of large aspect ratio and small� � [65] as � 00(t1 ) = � 00(t0) � A r with
A r = 1=(1 + 1 :6q2=

p
r=R), r being the minor radius of the considered magnetic surface,R and q corre-

sponding respectively to the major radius and the safety factor on this surface of interest. Eight simulations
(detailed in Table 8) were performed varying both time and phase space discretizations. For all simulations
(see Table 7 for common parameters), the safety factor pro�le is constant (q(r ) = 1 :98r 2 [r min ; rmax ]). The
density and temperature pro�les are quasi-constant with � T s0 = � ns 0 = 10 � 7. For a complete description of
the case see the associated input data �le of the code (Figure I.20) in Appendix AppendixI. Time evolution
of the (0; 0) mode is plotted in Figure 9 for the highest discretized simulation (simu 1 in Table 8). The
theoretically predicted residual value A r is found to be recovered up to 20% in this case. A much better
agreement can be found by decreasing the� � value of the simulation as noticed by Biancalani (see �gure 4 in
[8]). One of the possible reasons is that the radial boundaries may have a stronger impact at large� � values.
A detailed analysis of both the transient GAM oscillation and damping on the one hand, and of the residual
value of zonal ows on the other hand, is presented in AppendixH. The numerical echo appearing at time
t = 15000
 � 1

C0
is due to �nite discretization of the velocity phase space. The numerical damping rates GAM

and frequencies! GAM reported in Table 8 are all computed betweent 2 [0; 15000 
 � 1
C0

]. We observe that all
the values are equal to GAM = 2 :46459 10� 4
 C0 and ! GAM = 9 :11061 10� 3
 C0 with an error smaller than
3% except for simulations number 4, 6 and 8 in Table 8. The error larger than 7% for both simulations 4 and
6 is due to the fact that the numerical echo appears at timet = 9000 
 � 1

C0
instead of t = 15000
 � 1

C0
, making

the numerical residual estimation impossible. Error in simulation 4 is due to the fact that four values of�
are not su�cient for � integral computation required for the r.h.s of the quasi-neutrality equation. Results
for simulation 6 shows that 64 in parallel velocity direction are not su�cient. The CPU times reported
as results in Table 8 correspond to mono-core hours on the Poincar�e machine where all simulations were
performed with 4 threads and (2� N � ) MPI processes for a �nal time equal to t = 20000
 � 1

C0
. Simulation 7

corresponding to 30 minutes on 64 cores is a non-regression test for the code.

� � As Zs R0=a rint =a rext =a Torus nbvth 0 � max

1=100 1: 1: 2:78 0:2 0:8 1: 7: 12:

q1 q2 q3 r peak =a � ns 0 � ns 0 � T s0 � T s0 Ti =Te

1:9 0: 0: 0:5 1:e� 7 0:2 1:e� 7 0:2 1:

Table 7: Common parameters for Rosenbluth-Hinton test. The velocity phase space is de�ned by � nbvth 0vTs 0 � vG k �
nbvth 0vTs 0 and 0 � � � � max T0=B0 . Torus indicates the fraction of the torus simulated. The safety factor radial pro-
�le is de�ned as q(r ) = q1 + q2 exp(q3 log(r=a)). The radial density pro�le is de�ned by its gradient as d log ns0 (r )=dr =
� � ns 0 cosh� 2 �

(r � r peak =a)=� r ns 0

�
. The same analytical expression is used for the temperature with � T s 0 and � r T s 0 .
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Figure 9: Comparison of the residual value of the (0 ; 0) mode � 00 (r peak ; t )=� 00 (r peak ; t = 0) = A r where A r = 1 =(1 +
1:6q2=

p
r=R ) = 0 :06825 is given by Rosenbluth-Hinton theory. This result corresponds to simulation 1 described in Table 8.

CPU time
simu. N r N � N ' NvG k N � 
 C0 � t  GAM ! GAM (monoproc)

1 128 128 32 128 16 2: 2:46459 10� 4 9:11061 10� 3 7219: h.

2 128 128 32 128 16 5: 2:46459 10� 4 9:11061 10� 3 2921: h.

3 64 64 16 128 8 5: 2:46459 10� 4 9:11061 10� 3 159: h.

4 64 64 16 128 4 5: 2:63456 10� 4 9:73893 10� 3 79: h.

5 64 64 16 128 8 10: 2:46459 10� 4 9:11061 10� 3 41: h.

6 64 64 16 64 8 10: 2:54957 10� 4 9:42477 10� 3 83: h.

7 64 64 16 128 8 25: 2:46459 10� 4 9:11061 10� 3 37. h.

8 64 64 16 128 8 50: 2:54957 10� 4 9:42477 10� 3 21: h.

Table 8: Rosenbluth-Hinton test: Values of numerical damping  GAM and frequency ! GAM for 8 Gysela simulations varying
according to 5D mesh size ( N r ; N � ; N ' ; N vG k ; N � ) and time discretization.

4.3.2. Linear benchmark based on Cyclone DIII-D case for global codes
For the present benchmark, the considered physical parameters are the same as the ones de�ned in

Lapillone's paper [81] corresponding to the standard linear Cyclone base case (CBC) [43]. The circular
concentric magnetic equilibrium is de�ned with an aspect ratio of R=a = 2 :78 and a safety factor pro�le
q(r ) = 0 :86 � 0:16r=a + 2 :52(r=a)2. This corresponds to a local safety factorq(r peak ) = 1 :4 and a local
magnetic shears(r peak ) = 0 :8 with r peak = r min +0 :5(rmax � r min ) and s(r ) = ( r=q)dq=dr . The initial density
and temperature pro�les are de�ned with the radial form function f (r ) = exp( � � x � r x tanh(( r � r peak )=� r x ).
The � x and � r x parameters are chosen to obtain peaked pro�les at the middle of the radial boxr peak with
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� ns 0 = � T s0 = 0 :3, � ns 0 = 2 :23 and � T s0 = 6 :96 (see Figure 1 in [81]). To be consistent with the DIII-D
shot � � is chosen equal to 1=180. For a complete description of the case see the associated input data �le of
the code (Figure I.21) in Appendix AppendixI.

� � R0=a rint =a rext =a nbvth 0 � max Zs As

1=180 2:78 0:1 0:9 6: 7: 1: 1:

q1 q2 q3 � ns 0 � ns 0 � T s0 � T s0 Ti =Te

0:86 � 0:16 2:52 2:23 0:3 6:96 0:3 1:

Table 9: Main parameters of the � � = 1 =180 linear CBC simulation. The velocity phase space is de�ned by � nbvth 0vTs 0 �
vG k � nbvth 0vTs 0 and 0 � � � � max T0=B0 . The safety factor radial pro�le is de�ned as q(r ) = q1 + q2 (r=a) + q3 (r=a)2 .
The radial density pro�le is de�ned by its gradient as d log ns0 (r )=dr = � � ns 0 cosh� 2 (( r � 0:5)=� r ns 0 ). The same analytical
expression is used for the temperature with � T s 0 and � r T s 0 .

The �rst di�culty with a full- f code asGysela is that the separation between linear and non-linear
terms is not possible. So non-linear mode coupling cannot be avoided, which implies that the time window
for linear growth rate estimation is limited. To prevent this coupling all the toroidal mode numbers n
are �ltered except the one n initialized as perturbation in the initial distribution function �Fs(t = 0) =
�Fs;eq(1 + �

P m max
m =1 cos(m� + n' + � mn )) with a perturbation amplitude � = 10 � 6. This �ltering is performed

by applying, after the quasi-neutrality equation solving, the condition F (� )mn = 0 for all 1 � m � mmax

where F denotes the 2D Fourier transform in (�; ' ). Besides, the global aspect of the code implies that
large toroidal mode numbersn are hardly accessible because a large mesh discretization is then necessary.
For the 6 cases which were run forjnj ranging from 5 to 30 (see Table 10) the discretization of the velocity
space was kept constant (NvG k ; N � ) = (64 ; 16) but increased in real space forjnj > 15. The number
of radial points is kept constant (N r = 128) but doubled in both poloidal and toroidal directions for
jnj � 25. This corresponds to a mesh of 8 billions of points for the smallest poloidal mode numbers but
of 32 billions of points for the largest. The time step � t is equal to 40:=
 C0 for jnj � 15 and divided by
a factor 4. The linear growth rate is estimated by a linear �t of the exponential growth of

R
� 2 d3x d3v

during the linear phase. An example of this exponential growth is plotted at the top of Figure 11 for the
smallest k� � s = jnjq(r peak )� � =rpeak = 0 :078. So the linear �t is performed on a time interval 
 C0 [t init ; tend ]
depending on the duration of this linear phase. This interval is taken equal to [5000; 50000] fork� � s = 0 :078
and [4000; 18000] for the others. The frequency is estimated on the same time intervals by spectra analysis.
Both have been compared with GENE results [81] and show a very good agreement (see Figure 10). This
work is in progress in the framework of the Eurofusion project [9]. The smallest runs were performed
on Poincare machine on 512 cores (with (pr ; p� ; p� ; N thread ) = (2 ; 4; 16; 4)) with a CPU time cost of 9k
hours/monoprocessor (for 1300 iterations). The two largest cases ran on Turing (IDRIS-France) BlueGene
machine using 32768 processors ((pr ; p� ; p� ; N thread ) = (8 ; 4; 16; 64)) with an expensive CPU time cost of
1:7 millions of monoprocessor hours for 2000 iterations (equivalent to 1:3 106 h. on an INTEL machine as
Curie (CCRT-France)). Such simulations are de�nitively more expensive for a global full-f code than for �f
ux-tube codes. This explains why the two last points performed by GENE for k� � � > 0:5 (Fig. 10) have
not been simulated with GYSELA. Nevertheless, the global aspect can give access to useful information like
the time evolution of the radial structure of poloidal modes (for toroidal mode jnj=5). This radial structure
is plotted at 4 di�erent times on Figure 11, going from initialization to the end of the linear phase. It shows
that the linear phase, i.e the exponential growth, starts as soon as the global eigenmode {characterized by a
singlen and severalm mode numbers{ acquires its radial structure. The process of mode reorganization and
the main physical parameters involved (asq pro�le, 1 =LT shape or ...) would be interesting to investigate
in more detail.
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n mmax N � N ' k� � s 
 C0 � t 
 C0 [t init ; tend ]  err !

� 5 7 256 128 0:078 40: [5000; 50000] 0:045 0:00258 0:106

� 10 14 256 128 0:156 40: [4000; 18000] 0:158 0:0069 0:238

� 15 21 256 128 0:233 40: [4000; 18000] 0:217 0:00123 0:476

� 20 25 256 128 0:311 10: [4000; 18000] 0:257 0:00127 0:636

� 25 35 512 256 0:389 10: [4000; 18000] 0:271 0:00468 0:827

� 30 42 512 256 0:467 10: [4000; 18000] 0:253 0:002 0:978

Table 10: CBC results: Linear growth rate  and frequencies ! estimated in the time interval 
 C 0 [t init ; t end ] for 6 di�erent
toroidal mode numbers n. The poloidal wave number k� is computed as k� � s = jnjq(r peak )� � =rpeak = jnj � 1:4=(2 � 180),
r peak being the middle of the radial box. These results are compared to GENE results in Figure 10

Figure 10: Benchmark between GYSELA and GENE codes for the Cyclone base Case for 6 di�erent k� � s values: (Left) Linear
growth rate (plotted with the error bar de�ned in Table 10), (Right) Linear frequency. Private communication [9].

Figure 11: Radial structure of the electrostatic potential for ( m; n ) = (7 ; 5) and a bandwidth of m � 3 modes, at di�erent
times: (i) initial time, (ii) beginning of the linear phase t = 7200
 � 1

C 0
, (iii) t = 36000
 � 1

C 0
and (iv) end of the linear phase

t = 50400
 � 1
C 0

.
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5. Local conservation laws

Verifying adequate conservation laws is an essential step in providing a correct description of mean ows.
Since the controversy on the suitability of gyrokinetic codes for describing toroidal momentum transport
[98, 99] a speci�c e�ort has been devoted to address conservation equations both in the context of a reduced
gyrouid model [17] or gyrokinetic �eld theory [110, 18]. As shown in this section, it is also possible [2]
to derive local conservation equations for density, energy and toroidal momentum from the gyrokinetic
electrostatic model (5)-(12) implemented in the Gysela code (more detailed calculations can be found in
Abiteboul's PhD [1]). The radial force balance is presented in section 5.1 while the conservation laws are
detailed for: (i) charge density in section 5.2, (ii) energy in section 5.3 and toroidal momentum in section 5.4.
As explained in [2], the force balance equation added to the energy and toroidal momentum conservation
equations ensures a self-consistent treatment of the radial electric �eld and ows. We present for each
property an example of numerical results, (see Figures 12 to 15) for a simulation close to the non-linear
CBC simulation proposed in [81] for � � = 1=180. It corresponds to a collisionless simulation, with Dirichlet
boundary conditions and without di�usion or Krook operators. Contrary to the linear case, there is no
�ltering on the toroidal modes. The initial perturbation is de�ned as p(r; �; v Gk ) = �

P m max
m =1

P n max
n =1 cos(m� +

n' + � mn )f eq(r; �; v Gk )=(mmax nmax ) for mmax = 28 and nmax = 20 and random values for � mn phases. The
perturbation amplitude � is equal to 10� 6. The equilibrium distribution function f eq is a local Maxwellian
function given by eq.(19). The other numerical parameters of this simulation are summarized in Table 11.
The conservation equations are derived at second order in� � . Accurate results (error of 2%) were already

N r N � N ' NvG k N � nbvth 0 � max

256 256 128 64 16 7: 12:

� � R0=a rint =a rext =a Torus Zs As 
 c0 � t

1=180 2:78 0:1 0:9 1=2 1: 1: 10:

q1 q2 q3 � ns 0 � ns 0 � T s0 � T s0 Ti =Te

0:86 � 0:16 2:52 2:23 0:3 6:96 0:3 1:

Table 11: Main parameters of the � � = 1 =180 simulation used to check conservation law properties. The velocity phase space
is de�ned by � nbvth 0vTs 0 � vG k � nbvth 0vTs 0 and 0 � � � � max T0=B0 . Torus indicates the fraction of the torus simulated.
The safety factor radial pro�le is de�ned as q(r ) = q1 + q2 (r=a) + q3 (r=a)2 . The radial density pro�le is de�ned by its gradient
as d log ns0 (r) =dr = � � ns 0 cosh� 2 (( r � 0:5)=� r ns 0 ). The same analytical expression is used for the temperature with � T s 0
and � r T s 0 .

shown with the code for force balance and toroidal momentum for a simulation with� � = 1=512 (see Figure
2 in [2]). For a larger � � = 1=180 the results are still accurate with a relative error of 5 to 10%. As expected,
boundary conditions play a more important role leading to a degradation of the accuracy outside an internal
region 0:4 � r=a � 0:7. Comparing to relative errors for all conservation properties (Figures 12 to 15), the
local energy conservation (Fig. 14) is the least accurate. It was not possible to analyze the energy behaviour
for smaller � � (as 1=300 and 1=512) because such simulations are extremely expensive (several millions of
mono-processor hours) and the diagnostic was not fully implemented in large simulations until present. This
will be investigated in more details on the upcoming big simulations. Complete ux driven simulations with
source terms and collisions have also been analyzed (but not presented here). Even for large� � = 1=150,
the force balance equation, local charge density and toroidal momentum are conserved with less than 10%
error even at times when turbulence is fully developed. The fact that this requirement is not met for energy
is still under investigation.

5.1. Radial force balance equation

In the uid description, the radial electric �eld and the ows are related via the force balance equation.
It was veri�ed that this relation holds also in gyrokinetics [38, 51]. Indeed the radial force balance can
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be recovered analytically from the conventional �rst order gyrokinetic equations (see Appendix E in [2]),
yielding the standard uid expression

@� � eq +
@� Peq

neqe
+

B
I

Vkeq = q
B 2R2

I 2 (V � r � ) (58)

where the equilibrium density neq, pressurePeq, velocity Vkeq and potential � eq are functions of � P' =e
(which is approximately equal to � at �rst order in � s). The label of ux surfaces � is chosen as the
opposite of the poloidal ux of the magnetic �eld, i.e � � �  pol with  pol = � (2� ) � 1

R
S�

dS B � r �= jr � j.
Considering the form of the magnetic �eld used presently in the codeB = ( B0R0=R(r; � )) [ � (r )e� + e' ] with
� (r ) = r=(qR0), the label � is determined by � = B0

Rr
0 r 0=q(r 0) dr 0 which implies d�= dr = B0r=q.

In order to check that the force balance equation is veri�ed numerically, we comparevGYS
� the poloidal

velocity directly computed within Gysela {from the distribution function as the sum of the poloidal ExB,
curvature, grad-B and magnetization ows{ with the expected velocity from the force balance equation,
namely vFB

� corresponding to the left-hand side of eq.(58) (see Figure 12 (left)). This agreement was robustly
veri�ed in Gysela simulations for a wide range of parameters for temperature gradient, collisionality and
normalized gyroradius� s [39, 36]. A precision of 2% was obtained for a ITER parameter case with� � = 1=512
[2]. In Figure 12 (right), we recover this good agreement for the case� � = 1=180 described in Table 11.
Indeed, even for a larger� � = 1=180, the relative error {de�ned here as the di�erence normalized to the
quadratic mean{ is smaller than 0:08 at time t = 20040
 � 1

C0
which corresponds to the beginning of the

non-linear phase.

Figure 12: Left: Numerical test of the radial force balance equation (58) at time t = 20040
 � 1
C 0

, comparing the poloidal velocity

vGYS
� directly computed in the code and vFB

� the sum of the three contributions � E r , rrr p=ne and v� B � . Right: Relative error
between both. The parameters used for this simulation are summarized in Table 11.

5.2. Local charge density conservation
To obtain local conservation equations, we perform integrations of the conservative form of the gyrokinetic

equation (5) over the velocity space and over the magnetic ux surfaces,i.e over d� � � Jx d� d' d3v with
d3v = Jv dvGk d� s. We recall that Jx = 1=(B � r � ) is the Jacobian in real space andJv = 2 �B �

ks=ms is the
Jacobian in gyro-center velocity-space.
We considera radial region outside the bu�er region and without source terms, i.e we consider the following
simpli�ed version of the conservative Boltzmann equation (5)

d �Fs

dt
=

@�Fs

@t
+

1
B �

ks

r z �
�

_zB �
ks

�Fs

�
= C( �Fs) (59)
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where z = ( �; �; '; v Gk ; � s) and _z = d t z. We integrate eq.(59) in a small phase-space volume between two
surfaces� and � + �� and apply a divergence theorem. Using the collision operator conservation propertyR

C( �Fs) d� � = 0 and summing over all species, this leads directly to the usual expression for local transport
of charge density

@t �� + @� J � = 0 (60)

where �� is the charge density andJ � is the radial current of gyrocenters:

�� =
X

species

qs

Z
d� � �Fs and J � =

X

species

qs

Z
d� � ( _z� r � ) �Fs (61)

Figure 13 shows that equation (61) is numerically satis�ed with an error of less than 1%. Part of this error
is due to the fact that the time derivative @t �� is computed from post-processed data (�� is not saved at each
time step � t but at each diagnostic time step (� t diag = 12 � t for this simulation)). Another error source is
the fact that the terms r ? � (B �

ksdt � G ) and @' (B �
ksdt ' ) are neglected in the splitting algorithm (see section

3.1).

Figure 13: Numerical test of the charge density conservation for simulation de�ned in Table 11. All the quantities are ux-
surface averaged. Left: Comparison of the two terms � @� J � and d�= dt which must be equivalent according to equation eq.(60).
Middle: Relative error (de�ned as the di�erence normalized to the quadratic mean). Right: Contribution of the neoclassical
and turbulent parts.

5.3. Local energy conservation

Similarly, a conservation equation for the total energy can be derived by multiplying the gyrokinetic
equation (59) by the gyrocenter Hamiltonian, which reads

�H s =
1
2

msv2
Gk + � sB + qs �U with �U = J0s � U (62)

Using the fact that our collision operator is constructed to conserve the total Hamiltonian and integrating
over d� � yields

@t

Z
d� �

�
1
2

msv2
Gk + � sB

�
�Fs +

Z
d� � qs �U@t �Fs +

Z
d� � �H s

1
B �

ks

r z �
�

_zB �
ks

�Fs

�
= 0 (63)

Then for each speciess, equation (63) can be rewritten as an equation for the radial energy transport as

@t EK s + @� Qs = Ws (64)
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where EK s corresponds to the kinetic energy of the gyrocenters for the species; the termQs is equivalent to
a radial ux of energy and the right-hand side Ws appears as a kinetic energy source

EK s �
Z

d� �
�

1
2

msv2
Gk + � sB

�
�Fs ; Qs =

Z
d� � �H s ( _z � r � ) �Fs ; Ws = � qs

Z
d� � �U@t �Fs

The term Ws corresponds to an exchange of energy between a given species and the turbulence, and is
generally referred to as turbulent heating [91, 122, 66, 121, 52]. It corresponds to a transfer of energy
between particles and the electromagnetic �eld. The numerical computation of this term is expensive
because it requires saving the 5D distribution function of each species at two successive time steps which
corresponds to a large amount of memory. So to obtain a local conservation equation with no source term,
we consider the total energy by summing (64) over all species. Then,

@t EK + @� Q = W with EK =
X

s

EK s ; Q =
X

s

Qs and W =
X

s

Ws (65)

The term W is decomposed into two parts as

X

s

qs

Z
d� � �U@t �Fs =

X

s

qs

Z
d� � U

�
J0s � @t �Fs

�
+

X

s

qs

Z
d� � �

(J0s � U) @t �Fs � U
�
J0s � @t �Fs

�	
(66)

As detailed in Appendix AppendixJ.2 the �rst term in eq.(J.5) can be expressed in function of the potential
energy Ep as

X

species

qs

Z
d� � U

�
J0s � @t �Fs

�
� @t Ep with Ep �

1
2

X

species

qs

Z
d� � U

�
J0s � �Fs

�

Besides, the second termI E =
P

s qs
R

d� �
�

(J0s � U) @t �Fs � U
�
J0s � @t �Fs

�	
in eq.(J.5) corresponds to a

polarization term, due to the di�erence between particles and gyro-center densities. As a remark, considering
that the gyroaverage operator J0s is a self-adjoint operator, this term vanishes when integrating over the
whole phase-space volume. It is indeed the divergence of a ux in the local conservation equation. To
express this term explicitly as a ux contribution, let us consider the low wavenumber approximation of the
gyroaverage operator used in the code,i.e the Pad�e approximation J0s ' 1 + 1

2 r �
�

m s � s
q2

s B r ?

�
(see section

2.5.1 for more details). Using this approximation, I E can be expressed for each species as

I E =
ms

2qs
@�

� Z
d� � @t �Fs

�
B

r � � r ? U �
Z

d� � U
�
B

r � � r ? (@t �Fs)
�

It can also be expressed in a more compact form using the gyrocenter perpendicular stressPs; ? =
R

d3v �Fs � sB .
This leads to the following conservation equation summed over all species

@t (EK + Ep) + @� (Q + Qpot + Qpol ) = 0 (67)
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where EK =
P

s EK s , Ep =
P

s Eps , Q =
P

s Qs, Qpot =
P

s Qs; pot and Qpol =
P

s Qs; pol with

EK s =
Z

d� � Es �Fs with Es =
1
2

msv2
Gk + � sB (68)

Eps =
qs

2

Z
d� � U(J0s � �Fs) (69)

Qs =
Z

d� � Es( _z� r � ) �Fs (70)

Qs; pot =
Z

d� � (J0s � U)( _z� r � ) �Fs (71)

Qs; pol =
ms

2qs

Z
Jx d� d'

1
B 2

n
@t Ps; ? r U � r � � Ur (@t Ps; ? ) � r �

o
(72)

We recall that, although the polarization term is necessarily the divergence of a ux term, the expression for
Qpol given here is not exact as it relies on an approximation of the gyroaverage operator.Qs corresponds
to the energy ux of speciess while Qs; pot corresponds to the ux due to the electric potential. For the
numerical results presented in Figure 14 the termQs; pol is not taken into account. Indeed, it requires 3D
values ofU and Ps; ? which were not saved for this simulation because this possibility has been more recently
implemented in the code. Analyzing recent non-linear ux-driven simulations where this computation is
available shows that the assumptionQs; pot � 0 is justi�ed. Even in regimes where turbulence is well
developed the termQs; pot stays su�ciently small to have no impact on the local energy conservation law.

Figure 14: Numerical test for local energy conservation for simulation de�ned in Table 11. Left: Comparison between �h @� Qi FS
and dhE i FS =dt with Q = Qs + Qs; pot + Qs; pol and E = EK s + Eps de�ned by eqs.(67)-(72). Middle: Relative error (de�ned
here as the di�erence normalized to the quadratic mean). Right: Detailed contribution of each terms.

The numerical validation of equation (67) is performed on ux surface average quantities. The comparison
betweenh@� (Q + Qpot + Qpol ) i FS and h(EK + Ep) i FS seen in Figure 14 (left) shows an agreement better
than 15% at time t = 20040
 � 1

C0
. The separate contribution of each terms given by equations (68)-(72) are

plotted at Figure 14 (right) showing that this energy conservation derives from the compensation of di�erent
complex radial pro�les.

5.4. Local toroidal momentum conservation

Formally, the derivation of a conservation law for toroidal angular momentum is very similar to that for
energy in the previous section. The general idea is to multiply the conservative gyrokinetic equation (59) by
an invariant of motion. For the energy, this invariant was the gyro-center Hamiltonian �H s given by eq.(62).
For this conservation law, let us consider the gyrocenter toroidal canonical momentumP' de�ned as

P' = msu' � qs � (73)
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with the de�nition u' = ( I=B )vGk = R2b � r 'v Gk . P' is an exact invariant of the unperturbed gyrocenter
motion described by the Hamiltonian �H s;eq = 1

2 msv2
Gk + � sB + �Ueq, which corresponds to collisionless motion

in a fully axisymmetric system. �Ueq is the gyroaverage of the equilibrium electric potentialUeq independent
on the toroidal angle. When axisymmetry is broken, which can occur for instance due to turbulence or
magnetic �eld ripple, P' is no longer a motion invariant. In particular, when the electric potential becomes
non-axisymmetric, the evolution of P' is governed by the equation dt P' = � qs@' �U. This result can be
obtained by using the expression of the gyrokinetic Poisson brackets in the gyro-center coordinates [�; �]GC
(see [16], equation (150))

[X; Y ]GC =
B �

s

msB �
ks

�
�
rrr X@vG k Y � @vG k X rrr Y

�
�

b
qsB �

ks

� (rrr X � r rr Y ) (74)

Details of the calculation are presented in Appendix AppendixJ.3. From the de�nition of P' given by
eq.(73), we de�ne the local toroidal angular momentum as

L ' =
X

species

ms

Z
d� � u' �Fs (75)

Note that L ' is the momentum for gyrocenters, which di�ers from the particle momentum by terms of order
O(� 2

s). As said before, in order to derive a local conservation equation forL ' , we multiply the conservative
gyrokinetic equation (59) by P' and integrate over all variables other than � , leading to

Z
d� � P'

@�Fs

@t
+

Z
d� � P'

1
B �

ks

r z �
�

_zB �
ks

�Fs

�
=

Z
d� � P' C( �Fs)

Using the conservation properties of the collision operator
R

d� � P' C( �Fs) = 0 and integrating by parts the
second term, then

@t

� Z
d� � P' �Fs

�
�

Z
d� � �Fs

@P'
@t

�
Z

d� � �Fs
1

B �
ks

r z �
�

_zB �
ksP'

�
+ @�

Z
d� � ( _z� r � ) �Fs P' = 0

Finally, using the fact that d t P' = � qs@' �U, we obtain for each speciess,

ms@t

Z
d� � u' �Fs � qs

Z
d� � �@t �Fs + qs

Z
d� � �Fs@' �U + @�

Z
d� � ( _z� r � ) �Fs P' = 0 (76)

Summing over all species, this leads to

@t

 
X

s

ms

Z
d� � u' �Fs

!

� �
X

s

qs

Z
d� � @t �Fs +

X

s

qs

Z
d� � �Fs@' �U+

@�

 
X

s

ms

Z
d� � ( _z� r � ) �Fsu'

!

� @�

 

qs

X

s

�
Z

d� � ( _z� r � ) �Fs

!

= 0

Using the local particle conservation eq.(60), the second term can be written as�@� J � . We also iden-
tify the last term as � @� (�J � ). Then the conservation equation of the local toroidal momentum L ' =P

s ms
R

d� � u' �Fs reads
@t L ' + @� � �

' + T �
pol = J � (77)

where

� �
' =

X

species

ms

Z
d� � �Fsu' v�

G ; T �
pol =

X

species

qs

Z
d� � �Fs@' �U ; J � =

X

species

qs

Z
d� � v�

G
�Fs
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Equation (77) is an exact equation for the transport of gyrocenter toroidal momentum, in the sense that it
was obtained directly from the gyrokinetic model, with no speci�c assumptions regarding the ordering. The
term T �

pol corresponds to a polarization ux of momentum term.

Figure 15: Numerical test for local toroidal momentum conservation for simulation detailed in Table 11. All the quantities
are ux-surface averaged. Left: Comparison between @t L ' and J � � @� � �

' � T �
pol which must be equal according to eq.(77).

Middle: Relative error (de�ned here as the di�erence normalized to the quadratic mean). Right: Detailed contributions of
neoclassical and turbulent parts.

The numerical results obtained with the code are presented in Figure (15) with the contribution of the
di�erent terms of equation (77) (at the right) averaged on the ux surface. The relative error plotted at the
middle shows an accuracy better than 10%.

6. Conclusion

A complete description of the multi-ion species version of the 5D non-linear gyrokinetic codeGysela
has been presented. Adding to its global full-f character its original semi-Lagrangian scheme, theGysela
code is unique. It can tackle the complex problem of ion turbulence self-organization (in adiabatic electrons
and electrostatic limits), a special care having been taken to fully consistently model the interplay between
turbulence and collisions as well as the interplay between all possible scales in the problem, with no assump-
tion of scale separation. Code veri�cation has been successfully performed with a permanent concern for
improving its reliability, namely (i) comparison with analytical theory; (ii) benchmarks with other gyroki-
netic codes; (iii) invariance tests to check the correct implementation of mass and charge parameters; and
(iv) conservation law properties of the semi-Lagrangian method. Particular attention was recently paid to
ensure the traceability of the code for the two main developments under progress; the implementation of
kinetic electrons and taking into account of a more realistic magnetic con�guration. The code is scalable up
to actual parallel machine sizes.
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AppendixA. Quasi-neutrality solver

AppendixA.1. How to overcome the di�culty due to h�̂ i FS term ?

In this appendix, the numerical solving of the quasi-neutrality equation is described. This description is
based on the normalized quasi-neutrality equation implemented in the code

�
1

n̂e0

X

s

Âs r̂ ? �
�

n̂s0 r̂ ? �̂
�

+
1

Z 2
0 T̂e

h
�̂ � � h�̂ i FS

i
=

1
n̂e0

X

s

Ẑs [n̂G s � n̂G s ;eq] (A.1)

It explains the particular treatment performed to overcome the problem of the ux surface average term
h iFS in Fourier space. The previous equation (F.11) can be written as

L �̂ +
1

Z 2
0 T̂e(r̂ )

h
�̂ � � h�̂ i FS

i
= � (r̂; �; ' ) (A.2)

where the di�erential operator of second orderL is de�ned as

L = �
1

n̂e0 (r̂ )

X

s

Âsn̂s0 (r̂ )
�

@2

@̂r 2 +
�

1
r̂

+
1

n̂s0 (r̂ )
dn̂s0 (r̂ )

dr

�
@
@̂r

+
1
r̂ 2

@2

@�2

�

and the right hand side reads

� (r̂; �; ' ) =
1

n̂e0 (r̂ )

X

s

Zs [n̂G s (r̂; �; ' ) � n̂G s ;eq(r̂; � )]

The constant � can be chosen equal to 1 (by default) or equal to 0. Let for all functiong, hg i �; ' being the
radial function equal to

hg(r̂ ) i �; ' =
1

L � L '

Z Z
g(r̂; �; ' ) d� d'

By applying the integration 1
L � L '

R R
� d� d' to the previous equation (A.2) and by using the fact that

h h�̂ i �; ' i FS = h�̂ i �; ' then:

Lh �̂ i �; ' +
1

Z 2
0 T̂e

h
h�̂ i �; ' � � h�̂ i FS

i
= h� i �; ' (A.3)

Let �̂ being �̂ = �̂ �h �̂ i �; ' then, by subtracting (A.3) to (A.2), and by using Dirichlet boundary conditions
we obtain 8� 2 R, 8� 2 [0; L � ] and 8' 2 [0; L ' ]:

8
><

>:

�
L + 1

Z 2
0 T̂e

�
�̂(^r; �; ' ) = %(r̂; �; ' ) with %= � � h � i �; ' 8r̂ 2 [r̂min ; r̂ max ]

�̂(^rmin ; �; ' ) = �̂(^r max ; �; ' ) = 0
(A.4)

Besides, (A.3) can be written as

L
�

h�̂ i �; ' � h �̂ i FS

�
+ Lh �̂ i FS

+
1

Z 2
0 T̂e

h�
h�̂ i �; ' � h �̂ i FS

�
+ h�̂ i FS � � h�̂ i FS

i
= h� i �; '
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Then using the fact that h �̂ i FS = h �̂ i FS � h h �̂ i �; ' i FS and using Dirichlet boundary conditions, the
previous equation leads to the following system:

8
><

>:

�
L + (1 � � ) 1

Z 2
0 Te

�
h�̂ i FS = h� i �; ' +

�
L + 1

Z 2
0 T̂e

�
h�̂ i FS

h�̂ i FS (r̂ min ) = h�̂ i FS (r̂ max ) = 0
(A.5)

Using the de�nition of �̂, then

h�̂ i FS = h�̂ i FS � h h �̂ i �; ' i FS

= h�̂ i FS � h �̂ i �; ' (becauseh h�̂ i �; ' i FS = h�̂ i �; ' )

so h�̂ i �; ' = h�̂ i FS � h �̂ i FS

and using the fact that �̂ = �̂ + h�̂ i �; ' , we obtain the expression of the electric potential�̂ as:

�̂ (r̂; �; ' ) = �̂(^r; �; ' ) � h �̂ i FS (r̂ ) + h�̂ i FS (r̂ ) (A.6)

To summarize, the solving of the equation (F.11) can be replaced by the solving of two simpler equations
(A.4) and (A.5). Indeed, the equation (A.5) is a di�erential equation only depending on the radial direction.
Besides, in (A.4) the variable ' plays the role of a parameter, then the discretization of the equation can be
performed by projecting in Fourier space in� direction and by using �nite di�erences in the radial direction
as described in the following paragraph. However, it is important to realize that the boundary conditions
are not directly applied on �̂ but on �̂ = �̂ � h �̂ i �; ' . So the fact to impose�̂(^r min ) = 0 does not imply
�̂ (r̂ min ) = 0 but �̂ (r̂min ) = h �̂ i �; ' (r̂ min ) (same remark can be done at ^r = r̂ max ). Another treatment is
available when r̂ min is su�ciently close to 0 ( r̂ min < 10� 2 in the code). Indeed, let us assume that in this
caseJx (r̂ min ; � ) is equal to a constant. Then, for all function g,

hg i FS (r̂ min ) =

R
gJx (r̂min ; � ) d� d'

R
Jx (r̂ min ; � ) d� d'

=
1

4�
hg i �; ' 8 jr̂min j � 1

In this case employing a Neumann boundary condition on the (0; 0) mode at the axis (i.e @r h�̂ i �; ' (r̂min ) = 0)
is equivalent to applying @r h�̂ i FS (r̂min ) = 0 in the matrix system (A.5).

AppendixA.2. Finite di�erences in radial direction and Fourier projections in � and �

AppendixA.2.1. Solving of the equation system(A.4)
Let �̂ and %be represented in terms of the Fourier expansion aŝ�(^r; �; ' ) =

P
m �̂ m (r̂; ' ) exp(im� )

and %(r̂; �; ' ) =
P

m %m (r̂; ' ) exp(im� ) then the equation (A.4) can be rewritten in the wave number rep-
resentation, for each poloidal modem and for each independent value of' , as the following di�erential
equation:  

L m +
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Z 2
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!

�̂ m (r̂; ' ) = %m (r̂; ' ) (A.7)

with the operator L m de�ned as
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�
(A.8)

and where�̂ m (resp. %m ) is the Fourier transform in � of �̂ (resp. %). Let N r be the number of radial points
and let assumes that the radial domain is de�ned inside [^r 1; r̂ N r ] (i.e r̂min = r̂ 1 and r̂max = r̂ N r ), then up to
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second order in � r̂ , the system of equations (A.4) leads to the tridiagonal (N r � 2) � (N r � 2) system:
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. . .

. . .
0 l r̂ N r � 2 dm

r̂ N r � 2
ur̂ N r � 2

0 l r̂ N r � 1 dm
r̂ N r � 1

1

C
C
C
C
C
A

0

B
B
B
B
B
B
@

�̂ m
2

�̂ m
3
...

�̂ m
N r � 2

�̂ m
N r � 1

1

C
C
C
C
C
C
A

=

0

B
B
B
B
B
@

%m
2

%m
3
...

%m
N r � 2

%m
N r � 1

1

C
C
C
C
C
A

(A.9)

with for each r̂ i 2 [r̂ 1; r̂N r ]

8
>>>>>><

>>>>>>:

l r̂ i = �
�

� ( r̂ i )
�^ r 2 � � ( r̂ i )

2�^ r

�

dm
r̂ i

= � (r̂ i )
�

2
�^ r 2 + m 2

r̂ 2
i

�
+ 1

Z 2
0 T̂e ( r̂ i )

ur̂ i = �
�

� ( r̂ i )
�^ r 2 + � ( r̂ i )

2�^ r

�

%m = %m (r̂ i )

with

8
<

:

� (r̂ i ) =
P

s Âs
n̂ s 0 ( r̂ i )
n̂ e0 ( r̂ i )

�
1
r̂ i

+ 1
n̂ s 0 ( r̂ i )

dn̂ s 0 ( r̂ i )
dr̂

�

� (r̂ i ) =
P

s Âs
n̂ s 0 ( r̂ i )
n̂ e0 ( r̂ i )

(A.10)
and where �̂ m

1 = �̂ m
N r

= 0.
Solving the previous matrix system (A.9) is equivalent to solve a matrix system of the formAx = b where
A is tridiagonal, with [ d1; � � � ; dN ] = [ dr̂ 2 ; dr̂ 3 ; � � � ; dr̂ N r � 1 ] the diagonal, [l1; � � � ; lN ] = [0 ; l r̂ 3 ; � � � ; l r̂ N r � 1 ]
the lower diagonal and [u1; � � � ; uN ] = [ ur̂ 2 ; � � � ; ur̂ N r � 2 ; 0] the upper one while the right side vector b
corresponds to [b1; � � � ; bN ] = [ %m (r̂ 2); � � � ; %m (r̂ N r � 1)]. The result vector �̂ m is given by [�̂ m

1 ; � � � ; �̂ m
N r

] =
[0; x1; x2; � � � ; xN ; 0].

AppendixA.2.2. Solving of the equation system(A.5)
The system (A.5) can be rewritten as:

8
><

>:

�
L + (1 � � ) 1

Z 2
0 T̂e ( r̂ i )

�
h�̂ i FS (r̂ i ) = �(^ r i ) for each r̂ i 2 [r̂ 1; r̂N r ]

h�̂ i FS (r̂min ) = h�̂ i FS (r̂max ) = 0

with �(^r i ) = h� i �; ' (r̂ i ) +
�

L + 1
Z 2

0 T̂e ( r̂ i )

�
h �̂ i FS where h� i �; ' (r̂ i ) = 1

L � L '

R R
� (r̂ i ; �; ' ) d� d' which is

equivalent (by using the same notation than for the previous matrix system (A.9)) to:

0

B
B
B
B
B
@

dr̂ 2 ur̂ 2 0
l r̂ 3 dr̂ 3 ur̂ 3 0

. . .
. . .

. . .
0 l r̂ N r � 2 dr̂ N r � 2 ur̂ N r � 2

0 l r̂ N r � 1 dr̂ N r � 1

1

C
C
C
C
C
A

0

B
B
B
B
B
B
@

h�̂ i FS (r̂ 2)
h�̂ i FS (r̂ 3)

...
h�̂ i FS (r̂ N r � 2)
h�̂ i FS (r̂ N r � 1)

1

C
C
C
C
C
C
A

=

0

B
B
B
B
B
@

�( r̂ 2)
�( r̂ 3)

...
�( r̂ N r � 2)
�( r̂ N r � 1)

1

C
C
C
C
C
A

(A.11)

with for each r̂ i 2 [r̂ 2; r̂ N r � 1]8
>>>>>>><

>>>>>>>:

l r̂ i = �
�

� ( r̂ i )
�^ r 2 � � ( r̂ i )

2�^ r

�

dr̂ i = 2
�^ r 2 � (r̂ i ) + (1 � � ) 1

Z 2
0 Te ( r̂ i )

ur̂ i = �
�

� ( r̂ i )
�^ r 2 + � ( r̂ i )

2�^ r

�

�( r̂ i ) = h� i �; ' (r̂ i ) +
�

L + 1
Z 2

0 T̂e ( r̂ i )

�
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where � (r̂ i ) and � (r̂ i ) are de�ned by (A.10). Let us notice that the super-diagonal (ur̂ i ) i =2 ;��� ;N r � 2 and the
lower-diagonal (l r̂ i ) i =3 ;��� ;N r � 1 are the same than the ones in the previous matrix system (A.9), while the
diagonal can be deduced from the previous diagonal of the poloidal modem = 0 ( i.e

�
dm

r̂ i

�
i =2 ;��� ;N r � 1

for

m = 0) by the relation dr̂ i = d0
r̂ i

� �= (Z 2
0 Te(r̂ i )).

AppendixA.2.3. Global algorithm for the quasi-neutrality solver
Then the di�erent steps for solving (A.2) and obtaining �̂ are the following:

(i) Compute and save � ,

(ii) Solve (A.4) to obtain �̂ and save the 3D array �̂,

(iii) Compute h�̂ i FS and save this 1D array,

(iv) Compute the RHS of (A.5), i.e h� i �; ' +
�

L + 1
Z 2

0 T̂e

�
h�̂ i FS and save this 1D array,

(v) Solve (A.5) to obtain h�̂ i FS and store it, and �nally

(vi) Compute �̂ (r̂; �; ' ) by using (A.6).

AppendixB. Numerical implementation of the collision operator in GYSELA

In this appendix, the simpli�ed expression of the Lorentz-type operator which is used in Gysela is
detailed. The expression of this collision operator (including the perpendicular direction, which is not yet
implemented in Gysela ) is

C( �Fs) =
1

B �
ks

@vG k

�
B �

ksDks
�FM s @vG k

� �Fs
�FM s

��
+

1
B �

ks

@�

�
B �

ksD? s �FM s

1
B 2 @�

� �Fs
�FM s

��
(B.1)

where B �
ks(r; �; v Gk ) = B (r; � ) + vGkb � r � b is the Jacobian of the guiding-center coordinates, and�FM s is

the following shifted Maxwellian distribution

�FM s =
ns0

(2�T s;coll =ms)3=2
exp

 

�
ms

�
vGk � Vks;coll

� 2

2Ts;coll
�

� sB
Ts;coll

!

(B.2)

with the mean temperature Ts;coll = Ts;coll (r; �; ' ) and the mean velocity Vks;coll = Vks;coll (r; �; ' ). �FM s is
such that C( �Fs) = 0. The collision term Dks is de�ned by equation (25). The expression ofTs;coll and Vks;coll

are constrained such that the collision operator is momentum and energy preserving. These calculations
and expressions are detailed in a �rst paragraph AppendixB.1 while the numerical implementation based
on a semi-implicit second order Crank-Nicolson scheme is described in the second one AppendixB.2.

AppendixB.1. Expressions of the mean temperatureTs;coll and mean velocityVks;coll for the collision operator

While this simpli�ed collision operator obviously conserves the number of particles, the pro�lesTs;coll (r; �; ' )
and Vks;coll (r; �; ' ) must be chosen so that the operator is also compatible with the conservations of momen-
tum and energy

Z
d3v msvGkC( �Fs) = 0 (B.3)

Z
d3v

�
� sB +

1
2

msv2
Gk

�
C( �Fs) = 0 (B.4)

whereJv = 2 �B �
ks=ms is the jacobian in velocity space and d3v = Jv d� s dvGk is the space velocity element.

Let us �rst consider only the contribution of collisions in the parallel direction. We use the expression of
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the collision operator (B.1) and integrate eq.(B.3) by parts twice in the variable vGk

(B.3)k = 2 �
Z

d� s dvGk

� �Fs
�FM s

B �
ksDks@vG k

�FM s + �Fs@vG k (B �
ksDks)

�

Let us de�ne the averageh�i ash�i =
R

d3v � �Fs and use the fact that @vG k
�FM s = � �FM s

m s (vG k � Vk s; coll )
Ts; coll

, then

(B.3)k =
ms

Ts;coll

(

Vks;coll


msDks

�
�



msDksvGk

�
+ Ts;coll

*
1

B �
ks

@vG k (B �
ksDks)

+)

(B.5)

We perform similar operations on the contribution to eq.(B.4) of collisions in the parallel direction:

(B.4)k =
ms

Ts;coll

(

Vks;coll


msDksvGk

�
�

D
msDksv2

Gk

E
+ Ts;coll

*
1

B �
ks

@vG k (B �
ksDksvGk )

+)

(B.6)

For collisions in the perpendicular direction, eq.(B.3) is trivially veri�ed. We perform two integrations by
parts in the variable � s for eq.(B.4),

(B.4)? =
2�
ms

Z
dvGk d� s

�Fs
�FM s

1
B

@� (B �
ksD? s �FM s )

Then using the fact that @� �FM s = � �FM s
B

Ts; coll
,

(B.4)? =
1

Ts;coll

(*
1

BB �
ks

@� (B �
ksD? s)

+

Ts;coll � hD ? s i

)

(B.7)

Using equations (B.5), (B.6) and (B.7), the conservation equations (B.3) and (B.4) form a linear system
in Ts;coll (r; �; ' ) and Vks;coll (r; �; ' ) as follows

Vks;coll


msDks

�
+ Ts;coll

*
1

B �
ks

@vG k (B �
ksDks)

+

=


msDksvGk

�

Vks;coll


m2

sDksvGk
�

+ Ts;coll

*
ms

B �
ks

@vG k (B �
ksDksvGk ) +

1
BB �

ks

@� (B �
ksD? s)

+

=
D

m2
sDksv2

Gk + D? s

E

Solving this system, we �nd that the conservation constraints are veri�ed if the pro�les Vks;coll (r; �; ' ) and
Ts;coll (r; �; ' ) for the collision operator are de�ned as follows

msPVks;coll =

*
ms

B �
ks

@vG k (B �
ksDksvGk ) +

1
BB �

ks

@� (B �
ksD? s)

+


msDksvGk

�

�

*
1

B �
ks

@vG k (B �
ksDks)

+
D

m2
sDksv2

Gk + D? s

E

PTs;coll =


Dks

� D
m2

sDksv2
Gk + D? s

E
�



msDksvGk

� 2

where

P =


Dks

�
*

ms

B �
ks

@vG k (B �
ksDksvGk ) +

1
BB �

ks

@� (B �
ksD? s)

+

�


msDksvGk

�
*

1
B �

ks

@vG k (B �
ksDks)

+
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and as a reminderh�i =
R

Jv d� s dvGk � �Fs with Jv = 2 �B �
ks=ms.

Let us remind that only collisions in the parallel direction are taken into account at the moment in the
code, i.e D? s = 0 in above expressions. Then, let us de�ne the 5 following integrals:

I 0 = hDks i ; I 1 = hmsDksvGk i ; I 2 = hm2
sDksv2

Gk i

I 3 = h
1

B �
ks

@vG k

�
B �

ks Dks

�
i and I 4 = h

ms

B �
ks

@vG k

�
B �

ks vGk Dks

�
i

Therefore the mean velocity and mean temperature can be simply expressed as:

msVks;coll = P � 1 (I 4 � I 1 � I 2 � I 3) ; Ts;coll = P � 1 �
I 0 � I 2 � I 2

1

�
and P = I 0 � I 4 � I 1 � I 3

.

AppendixB.2. Crank-Nicolson scheme for collision operator solving

In the following, the semi-implicit second-order Crank-Nicolson scheme which is implemented inGysela
to take into account the collisional e�ects as

@t �Fs = Css ( �Fs) =
1

B �
ks

@vG k

n
B �

ksD@vG k
�Fs � B �

ksV �Fs

o
(B.8)

is detailed. The di�usion term D is de�ned asD = Dks(r; v ) = A(r )
�

�( v) � G(v)
2v

�
with A(r ) = 3

p
�

2

v3
T s 0

� 3= 2

qR0
� �

while the expression of the drag termV is given by V = Vks(r; v ) = � (vG k � Vk s; coll )
v2

T s; coll

Dks(r; v ). Classically, let

us write: f n
j � �Fs(r; �; '; v Gk;j ; tn ), where subscript j 2 f 0; : : : ; N g refers to the discretised index in parallel

velocity space and superscriptn refers to the time. For each value of� s, each term in eq.(B.8) reads:

B �
ks@t f ! B �

ks;j

f n +1
j � f n

j

� t
(B.9)

@vG k

�
B �

ksD@vG k f
�

!
1

2� v2
Gk

n
B �

ks;j + 1
2
D j + 1

2

�
f n +1

j +1 � f n +1
j + f n

j +1 � f n
j

�

� B �
ks;j � 1

2
D j � 1

2

�
f n +1

j � f n +1
j � 1 + f n

j � f n
j � 1

� o
(B.10)

@vG k

�
B �

ksVf
�

!
B �

ks;j +1 Vj +1
�
f n +1

j +1 + f n
j +1

�
� B �

ks;j � 1Vj � 1
�
f n +1

j � 1 + f n
j � 1

�

4� vGk
(B.11)

where we use the fact thatB �
ks is linear in vGk , i.e the expressionB �

ks;j � 1
2

= 1
2

�
B �

ks;j + B �
ks;j � 1

�
is exact.

Then, using expressions (B.9), (B.10) and (B.11) in the equation (B.8) gives, for allj = 0 ; � � � ; N :

A j f n +1
j � 1 + B j f n +1

j + Cj f n +1
j +1 = � A j f n

j � 1 +
� 2B �

ks;j

� t
� B j

�
f n

j � Cj f n
j +1 (B.12)

where the coe�cients A j , B j and Cj are de�ned as:

A j = �
� j � 1

2

2� v2
Gk

�
� j � 1

4� vGk
; B j =

B �
ks;j

� t
+

� j + 1
2

+ � j � 1
2

2� v2
Gk

; Cj = �
� j + 1

2

2� v2
Gk

+
� j +1

4� vGk
(B.13)

with
� j = B �

ks;j D j and � j = B �
ks;j Vj (B.14)
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To compute the terms � � 1=2, � � 1, � N +1 =2 and � N +1 required for A0, B0, BN and CN calculations, the
boundary conditions @2D=@v2Gk = 0 and @2V=@v2Gk = 0 are imposed, i.e :

D� 1
2

= 2D0 � D 1
2

and V� 1 = 2V0 � V 1 (B.15)

DN + 1
2

= 2DN � D N � 1
2

and VN +1 = 2VN � V N � 1 (B.16)

and the fact that B �
k is linear in vGk is used,i.e :

B �
ks; � 1

2
=

1
2

�
3B �

ks;0 � B �
ks; 1

2

�
; B �

ks; � 1 = 2B �
ks;0 � B �

ks;1 (B.17)

B �
ks;N + 1

2
=

1
2

�
3B �

ks;N � B �
ks;N � 1

2

�
; B �

ks;N +1 = 2B �
ks;N � B �

ks;N � 1 (B.18)

Finally, let us consider that the second derivative off is vanishing at domain boundaries,i.e f � 1 = 2 f 0 � f 1

and f N +1 = 2 f N � f N � 1 then

(B0 + 2A0)f n +1
0 + ( C0 � A0)f n +1

1 =
� 2B �

ks;0

� t
� B0 � 2A0

�
f n

0 � (C0 � A0)f n
1

(AN � CN )f n +1
N � 1 + ( BN + 2AN )f n +1

N = � (AN � CN )f n
N � 1 +

� 2B �
ks;N

� t
� BN � 2CN

�
f n

N

The system can be rewritten in the compact tridiagonal form:
0

B
B
B
B
@

B0 + 2A0 C0 � A0

A1 B1
. . .

. . .
. . . CN � 1

AN � CN BN + 2AN

1

C
C
C
C
A

0

B
B
B
B
@

f n +1
0
...
...

f n +1
N

1

C
C
C
C
A

=

0

B
B
B
B
@

Rn
0
...
...

Rn
N

1

C
C
C
C
A

(B.19)

and (Rn
0 ; � � � ; Rn

N )t = R (f n
0 ; � � � ; f n

N )t with the matrix R de�ned as

R =

0

B
B
B
B
B
@

� 2A0 � B0 +
2B �

k s; 0

� t � (C0 � A0)

� A1 � B1 +
2B �

k s; 1

� t

. . .
. . .

. . . � CN � 1

� (AN � CN ) � 2CN � BN +
2B �

k s;N

� t

1

C
C
C
C
C
A

(B.20)

The tridiagonal system (B.19)-(B.20) is solved by using a modi�ed Thomas algorithm.

AppendixC. Expressions for simpli�ed collisional transfer between two species

AppendixC.1. Conservation properties of collisional energy transfer

Let us consider the energy exchange between two species de�ned by equations (34)-(39),i.e. d �Fs=dt =
CE

ss0(Ess0) and d �Fs0=dt = CE
s0s(Es0s) with

CE
ss0(Ess0) � �

� E
ss0

(2�T mean =ms)3=2

� Tss0

Tmean

�
Ess0

Tmean
�

3
2

�
exp

�
�

Ess0

Tmean

�

CE
s0s(Es0s) � �

� E
ss0

(2�T mean =ms0)3=2

� Ts0s

Tmean

�
Es0s

Tmean
�

3
2

�
exp

�
�

Es0s

Tmean

�
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with Ess0, Es0s de�ned by equation (38) and Tmean , � Tss0 de�ned by equation (36). Let us consider the
brackets h � iv;T de�ned as

h � iv;T =
1

(2�T=m s)3=2

Z Z
� exp

�
�

v2

2T
�

�B
T

�
2�
ms

B �
ks d� s dv (C.1)

Let us de�ne �vk = vGk � Vmean . Then, using the fact that h1 i �vk ;T mean
= 1 and

D
ms �v2

k

E

�vk ;T mean

=

h� sB i �vk ;T mean
= Tmean , it is straightforward to show that such a collision operator conserves both par-

ticles and parallel momentum, i.e that



CE

ss0(Es)
�
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CE
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�
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vGkCE
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�

+


vGkCE

s0s(Es0)
�

= 0 where h�i =
Z

� d3v

The parameters � E
ss0 and � E

s0s are designed such that the collisional energy exchange between species satisfy

Es CE
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Es0 CE
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�
. So let us compute the following integral in velocity space,
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which is equivalent to
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Then, using the properties,
D

m2
s �v4

k
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�vk ;T mean

= 3T2
mean and



� 2

sB 2
�

�vk ;T mean
= 2T2

mean and
D

ms �v2
k � sB

E

�vk ;T mean

=

T2
mean , the collisional energy exchange between species occurs at the following rate



Es CE
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ss0
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1 �

� Vss0
2

8Tmean

�
(C.2)

Let us use the property that the energy exchange term between two species is of the form (cf. [62], p.184)

Wss0 = �
4

p
�

 ss0

ms0

nsns0(Ts � Ts0)

(v2
T s + v2

T s0)
3=2

�
Z

d3v
1
2

msv2Css0 with  ss0 �
msvT> v2

Ts

ns0
� ss0

where vT> = max( vTs ; vT 0
s
) and the collision frequency � ss0 is deduced from the ion-ion collision frequency

� ss as

� ss0 =
�

Zs0
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� 2 ns0
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� ss and � ss =
"3=2

qR0

�
Ts;coll
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Therefore

Wss0 = �
4

p
�

� ss0
vT>

vTs

ns
ms

ms0
� Tss0

 

1 +
v2

T 0
s

v2
Ts

! � 3=2

(C.4)
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Finally, by analogy between (C.2) and eq.(C.4) (considering � V 2
ss0=8Tmean � 1 ), this provides for the

e�ective collision frequency � E
ss0 the following expression,

� E
ss0 =

8 "3=2

3
p

�
ns0

ms

ms0

�
Zs0

Zs

� 2
 

1 +
v2

T 0
s

v2
Ts

! � 3=2 p
Ts;coll =ms

qR0
� � s

which is equivalent to the one given by equation (39).

AppendixC.2. Conservation properties of collisional parallel momentum transfer

Let us consider the parallel momentum transfer de�ned by equations (40)-(42),i.e d �Fs=dt = C
vG k

ss0 (Es)
and d �Fs0=dt = C

vG k

s0s (Es0) with

C
vG k

ss0 (Es) � � �
vG k

ss0 � Vss0vGk exp
�

�
Es

Tmean

�
and C

vG k

s0s (Es0) � � �
vG k

s0s � Vs0svGk exp
�

�
Es0

Tmean

�

Considering this approximation, the momentum exchanges between two species reads11



msvGkC

vG k

ss0 (Es)
�

=
Z

d3v msvGk
d �Fs

dt
= � �

vG k

ss0 � Vss0

�
2�
ms

� 3=2

T5=2
mean (C.5)



msvGkC

vG k

s0s (Es0)
�

=
Z

d3v ms0vGk
d �Fs0

dt
� �

vG k

s0s � Vs0s

�
2�
ms0

� 3=2

T5=2
mean (C.6)

Therefore, the action-reaction principle


msvGkC

vG k

ss0

�
= �



msvGkC

vG k

s0s

�
, leads to the �rst constraint �

vG k

s0s =
(ms0=ms)3=2�

vG k

ss0 . The second constraint comes from the neoclassical friction relation,

�
Z

d3v ms0vGk
d �Fs0

dt
= msns � ss0� Vss0 = � ms0ns0� s0s � Vs0s

then using equation (C.5) leads to

�
vG k

ss0 = msns

�
2�
ms

� � 3=2

T � 5=2
mean � ss0

Finally, using the relation (C.3) for � ss0 expression,�
vG k

ss0 can be expressed as

�
vG k

ss0 = ns0m2
s

� "
2�

� 3=2 1
qR0

p
Ts;coll

T5=2
mean

�
Zs0

Zs

� 2 vTs

vT>

� � s

which is equivalent to equation (42).

AppendixD. Source terms

Focussing on the source term, the gyrokinetic equation reads:

d �Fs

dt
= SE (r; �; v Gk ; � s)Sr (r ) (D.1)

11
D

ms vG k C
vG k
ss 0

E
= � �

vG k
ss 0 � Vss 0

�
2�T mean

m s

� 3=2 D
ms v2

G k

E

vG k ;T mean
= � �

vG k
ss 0 � Vss 0

�
2�T mean

m s

� 3=2
Tmean
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The prescribed radial source pro�le Sr (r ) is de�ned as the sum of two hyperbolic tangents

Sr (r ) = �
1
2

�
tanh

�
� � � S � 3L S

L S

�
+ tanh

�
� S � 3L S � �

L S

��
(D.2)

where � S and L S are input data and � = ( r � rmin )=Lr whereL r is the length of the radial box. The energy
dependent part of the source is decomposed on the basis of orthogonal Hermite and Laguerre poynomials
(cf. next section AppendixD.1 as a reminder):

SE (r; �; v Gk ; � s) =
+ 1X

` =0

+ 1X

h=0

ch` Hh (�vG k s)L ` (�� s)e
� �v2

G k s � �� s (D.3)

where the ch` coe�cients depend on the space coordinates only. The following de�nitions have been intro-
duced:

�� s �
� sB

Ts;srce
; �vG k s �

vGkp
2Ts;srce=ms

(D.4)

with Ts;srce the normalized source temperature.

AppendixD.1. Hermite and Laguerre polynomials

The Hermite and Laguerre poynomials form the set of orthogonal basis with respect to the following
scalar products:

Laguerre L ` (x) :
Z + 1

0
L ` L ` 0e� x dx = � `` 0jL ` j2 (D.5)

Hermite Hh (x) :
Z + 1

�1
Hh Hh0e� x 2

dx = � hh 0jHh j2 (D.6)

The Laguerre polynomials are normalized:jL ` j2 = 1. The norm of the Hermite polynomials is:

jHh j2 �
Z + 1

�1
H 2

h e� x 2
dx =

p
� 2h h! (D.7)

The �ve �rst Laguerre and Hermite polynomials are:

L 0(x) = 1 H0(x) = 1 ! j H0j2 =
p

�
L 1(x) = 1 � x H1(x) = 2 x ! j H1j2 = 2

p
�

L 2(x) = 1
2 (2 � 4x + x2) H2(x) = � 2 + 4x2 ! j H2j2 = 8

p
�

L 3(x) = 1
6 (6 � 18x + 9x2 � x3) H3(x) = � 12x + 8x3 ! j H3j2 = 48

p
�

L 4(x) = 1
24 (24 � 96x + 72x2 � 16x3 + x4) H4(x) = 12 � 48x2 + 16x4 ! j H4j2 = 384

p
�

(D.8)

AppendixD.2. Corresponding sources for uid moments

Let us derive the corresponding source of matterSn , of parallel momentum SvG k , of energy SE and of
vorticity S
 . With the adopted de�nitions,

B �
ks = B (1 + JkB �vG k s) and JkB �

p
ms

qs

p
2Ts;srce

B 2 � 0Jk (D.9)
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The parallel current � 0Jk = � 0b:J is prescribed inGysela . Then, the integral over the velocity space reads
as follows:

Z
d3v �

Z + 1

�1
dvGk

Z + 1

0

2�B �
ks

ms
d� s

=
1

p
�

�
2�T s;srce

ms

� 3=2 Z + 1

�1
(1 + JkB �vG k s) d�vG k s

Z + 1

0
d�� s

Notice that (1 + JkB �vG k s) = H0(�vG k s) + J k B

2 H1(�vG k s) and L 0(�� s) = 1. The uid source of matter Sn is
simply Sn �

R
d3v SE Sr . Using the decomposition ofSE on the basis of orthogonal polynomials (D.3), the

source of matter becomes

Sn =
�

2�T s;srce

ms

� 3=2 �
c00 + JkB c10

�
Sr (D.10)

The uid source of parallel momentum SvG k reads as follows:SvG k �
R

d3v vGkSE Sr . Following the same
procedure than for the density source, one �nally obtains:

SvG k = 2 � 3=2
�

Ts;srce

ms

� 2 �
2c10 + JkB (c00 + 4c20)

�
Sr (D.11)

The uid source of energy SE is de�ned as follows: SE �
R

d3v
�

ms
v2

G k

2 + � sB
�

SE Sr . Notice that

(msv2
Gk=2 + � sB ) = Ts;srce(�v2

G k s + �� s). Again, the energy source can also be recast in terms of thech`

coe�cients:

SE =
�

2�T s;srce

ms

� 3=2

Ts;srce

�
2 c20 +

3
2

c00 � c01 +
5
2

JkB c10 + 6JkB c30 � JkB c11

�
Sr (D.12)

AppendixD.2.1. Source of vorticity
The uid source of vorticity S
 is simply: S
 �

R
d3v J0s :(SE Sr ), where J0s is the gyro-average operator.

We use the Pad�e approximation:

J0s � 1 +
ms

q2
s

� s

2B
r 2

? = 1 + � �� s r 2
? with � =

ms

q2
s

Ts;srce

2B 2

Again, the vorticity source can be recast in terms of thech` coe�cients as

S
 = Sn + �
�

2�T s;srce

ms

� 3=2 �
r 2

? ((c00 � c01) Sr ) + JkB r 2
? ((c10 � c11) Sr )

�
(D.13)

AppendixD.3. Pure sources of momentum, energy and vorticity

The expressions ofSn (eq.(D.10)), SvG k (eq.(D.11)), SE (eq.(D.12)) and S
 (eq.(D.13)) provide the
constraints on the ch` coe�cients in order to impose independently zero source of density, of momentum, of
energy or of vorticity. Let us consider three cases:

� Non vanishing source of energy, with no injection of particles nor of momentum.

� Non vanishing source of momentum, with no injection of particles nor of energy.

� Non vanishing source of vorticity, with no injection of particles, of momentum nor of energy.
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These three cases are considered hereafter. Imposing zero source of matter, the uid sources of parallel
momentum, of energy and of vorticity are proportional to:

Sn = 0 ) c00 + JkB c10 = 0 (D.14)

SvG k /
�

2 � J 2
kB

�
c10 + 4JkB c20 (D.15)

SE / 2c20 � c00 + 6JkB c30 � c01 � JkB c11 (D.16)

S
 / �r 2
?

�
JkB c10Sr

�
+ JkB r 2

? (c10Sr ) � r 2
? (c01Sr ) � JkB r 2

? (c11Sr ) (D.17)

AppendixD.3.1. Pure source of energy
Killing the uid sources of particles, momentum and vorticity, while keeping �nite the uid source of

energy, imposes eq.(D.15) and eq (D.17) to vanish. Several solutions can be envisaged. Let's choosec30 = 0
and (c01 + JkB c11) = 0, with (2 c20 � c00) 6= 0. Then, the uid source of vorticitiy trivially vanishes for
c10 = c11. To summarize, we propose the following set of coe�cients for a pure source of energy,

c11 = c10 = �
4JkB

2 � J 2
kB

c20 ; c00 = c01 =
4J 2

kB

2 � J 2
kB

c20 ; c30 = 0 and c20 6= 0 (D.18)

In order to inject solely energy into the system, the source term that should appear in the right hand side
of the gyrokinetic equation would then take the following form:

SE = Sr (c00 + c01L 1 + c10H1 + c11H1L 1 + c20H2) e
� �v2

G k s � �� s

= 4 c20Sr

"

�v2
G k s �

1
2

+
JkB

2 � J 2
kB

(2 � �� s)(JkB � 2�vG k s)

#

e
� �v2

G k s � �� s due to (D.18)

while the uid source of energy SE would have the following magnitude:

SE =
�

2�T s;srce

ms

� 3=2

Ts;srce(2 c20 � c00)Sr according to (D.12) and (D.18)

= 2
�

2�T s;srce

ms

� 3=2

Ts;srce

 

1 �
2J 2

kB

2 � J 2
kB

!

c20Sr

Let us introduce the normalized intensity SE
0 � 2c20

�
2�T s; srce

m s

� 3=2
Ts;srce then the previous equality becomes

SE =

 

1 �
2J 2

kB

2 � J 2
kB

!

SE
0 Sr (D.19)

Then, up to small terms proportional to JkB , Sr {which is normalized such that its volume integral is equal
to unity{ provides the radial shape of the energy source, whileSE

0 gives its magnitude. Finally, SE can be
expressed as:

SE =
SE

0 Sr

p
2

�
�T s; srce

m s

� 3=2
Ts;srce

"

�v2
G k s �

1
2

�
JkB

2 � J 2
kB

(2 � �� s)
�
2�vG k s � JkB

�
#

e
� �v2

G k s � �� s (D.20)

with JkB de�ned by (D.9).
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AppendixD.3.2. Pure parallel momentum
Killing the uid sources of particles, energy and vorticity, while keeping �nite the uid source of parallel

momentum, imposes equations (D.16)-(D.17) to vanish. Again, several options could be considered. Fol-
lowing the same strategy as for the energy, namelyc11 = c10 and c00 = c01 = � JkB c10, then the source
of energy vanishes ifc30 = 0 and 2 c20 = c00. Consistently, in order to inject only parallel momentum, the
following source is proposed

SvG k =
S

vG k

0 Sr

4� 3=2
�

Ts; srce

m s

� 2

h
2�vG k s(2 � �� s) � JkB

�
1 + 2�v2

G k s � �� s

�i
e

� �v2
G k s � �� s (D.21)

where the the normalized intensity S
vG k

0 is de�ned as S
vG k

0 � 4� 3=2
�

Ts; srce

m s

� 2
c10. The corresponding uid

source of momentum is (according to (D.11))

SvG k =

 

1 �
3JkB

2

2
!

S
vG k

0 Sr (D.22)

Then, at leading order in JkB , Sr corresponds to the radial shape of the momentum source, andS
vG k

0 to its
magnitude.

AppendixD.3.3. Pure source of vorticity
So as to inject vorticity only, the simplest choice appears to be:c00 = c10 = c11 = 0 and c20 = 0. Then

the source of vorticitiy is governed by the c01 coe�cient only: S
 / �r 2
? (c01Sr ), while that of momentum

eq.(D.15) is set to zero. The source of energy eq.(D.16) vanishes provided thatc30 = (1 =6JkB ) c01. Obviously,
such a constraint is invalid for those simulations performed at vanishing parallel current. Alternatively, one
decides to allow for some parallel momentum injection by takingc20 = c01=2 6= 0 and c30 = 0. Then, the
source term to be considered is the following

S
 = �
S


0 Sr

�
�

2�T s; srce

m s

� 3=2

h
2�v2

G k s � �� s

i
e

� �v2
G k s � �� s with � =

ms

q2
s

Ts;srce

2B 2 (D.23)

where the normalized intensity S

0 is de�ned by S


0 � � c01�
�

2�T s; srce

m s

� 3=2
and the resulting uid source of

vorticity is
S
 = S


0 r 2
? (Sr ) (D.24)

We recall that such a source does inject some momentum as well. However, its magnitude remains small,

and equal to (� 1
�

q
2m s
Ts

JkB S

0 Sr ).

AppendixD.3.4. Another possibility for the heating source
There exists a simpli�ed version of the heating source possible in the code which is not exactly a pure

source of heating. In this case the energy dependent part of the source is de�ned as:

SE(r; �; v Gk ; � s) =
SE

0

3
p

2
�

�T s; srce

m s

� 3=2
Ts;srce

�
E

Ts;srce
�

3
2

�
exp

�
�

E
Ts;srce

�
(D.25)

where E the energy is equal toE = 1
2 msvGk + � sB . Therefore,

Z 1

�1
dvGk

Z 1

0

2�B �
ks

ms
d� s E SE = SE

0
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AppendixD.4. A source of impurities
According to equation (D.13), it is clear that in this source formalism it is complicate to generate a source

of matter without injecting a source of vorticity. So as �rst choice, we take c00 = c01 and c10 = c11 = 0,
such that S
 = Sn . The injection of momentum and energy can be avoided by imposing in equations (D.11)
and (D.12), c00 + 4c20 = 0 and 2c20 + (3 =2)c00 � c01 + 6JkB c30 = 0. Due to the previous assumptions, this
leads to c30 = 0. Therefore, using the fact that c01 = c00 and c20 = � (1=4)c00, the matter source term take
the form

Sn = Sr c00

�
5
2

� �� s � �v2
G k s

�
e

� �v2
G k s � �� s

Then, according to equation (D.10) and considering the normalized matter sourceSn
0 = (2 �T s;srce=ms)3=2c00,

Sn =
Sn

0 Sr
�

2�T s; srce

m s

� 3=2

�
5
2

� �� s � �v2
G k s

�
e

� �v2
G k s � �� s (D.26)

Let us denote by Sn s (resp. Sn s 0) the source of matter associated to the majority speciess (resp. to the
impurity species s0). The injection of impurity must be compensated by the injection of the majority species
such that

Zs

Z
Sn s Jvs dvGk d� s + Zs0

Z
Sn s 0Jvs 0 dvGk d� s0 = 0

AppendixD.5. Numerical treatment of the source terms
The source terms are taken into account by solving dt �Fs = SE + SvG k + S
 + Sn with SE de�ned by

eq.(D.20), SvG k by eq.(D.21), S
 by eq.(D.23) and Sn by eq.(D.26). For the following, let us use the fact
that each source is of the formSE (r (t); � (t); vGk (t); � s)Sr (r (t)). For more readability let us consider one
unique source knowing that the numerical method described below can be generalized to a sum of sources.
Let us integrate in time between t and t + � t the equation

d �Fs

dt
(r; �; '; v Gk ; � ) = S(t) with S(t) = SE (r (t); � (t); vGk (t); � s)Sr (r (t))

then
�Fs(t + � t) � �Fs(t) =

Z t +� t

t
S(t0) dt0

Sr (r (t0)) = Sr (r (t + � t)) + [ r (t0) � r (t + � t)]
@Sr
@r

(r (t + � t)) + O(� t2)

= Sr (r (t + � t)) + ( t0 � t � � t)
dr
dt

jt +� t
@Sr
@r

(r (t + � t)) + O(� t2)

Besides, let us de�neSE (t0) = SE (r (t0); � (t0); vGk (t0); � s), then

SE (t0) = SE (r (t + � t); � (t0); vGk (t0); � s) +

(t0 � t � � t)
dr
dt

jt +� t
@SE
@r

(r (t + � t); � (t0); vGk (t0); � s) + O(� t2)

� SE (r (t + � t); � (t + � t); vGk (t + � t); � s) +

(t0 � t � � t)
�

dr
dt

jt +� t
@SE
@r

(r (t + � t); � (t + � t); vGk (t + � t); � s)+

d�
dt

jt +� t
@SE
@�

(r (t + � t); � (t + � t); vGk (t + � t); � s)+

dvGk

dt
jt +� t

@SE
@vGk

(r (t + � t); � (t + � t); vGk (t + � t); � s)
�

+ O(� t2)
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Therefore, the distribution function �Fs at time t + � t is given at second order in time by

�Fs(t + � t) = �Fs(t) + � tSE (t + � t)Sr (t + � t) �

� t2

2

�
SE (t + � t)

dr
dt

jt +� t
@Sr
@r

jt +� t + Sr (t + � t)
�

dr
dt

jt +� t
@SE
@r

jt +� t +

d�
dt

jt +� t
@SE
@�

jt +� t +
dvGk

dt
jt +� t

@SE
@vGk

jt +� t

��

In the code, the radial derivatives of the sources of: (i) energy@r SE, (ii) momentum @r SvG k , (iii) vorticity
@r S
 and (iv) density @r Sn are computed numerically as well as the poloidal derivatives. On the other hand,
the derivatives in vGk direction are expressed analytically as

(i) for the pure source of energy:

@SE
@vGk

=
SE

0 Sr

p
2

�
�T s; srce

m s

� 3=2
Ts;srce

1
p
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� �v2
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�
�

�
� 2K h (2 � �� s) � 2�vG k s

�
�v2

G k s �
3
2

� K h (2 � �� s)
�
2�vG k s � JkB

�
��

(ii) for the pure source of momentum:

@SvG k

@vGk
=

S
vG k

0 Sr

4� 3=2
�

Ts; srce

m s

� 2

1
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h
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�
1 � 2�v2

G k s

�
+ 2JkB �vG k s

�
� 1 + 2�v2

G k s � �� s

�i

(iii) for the pure source of vorticity (according to eq.(D.23)):

@S

@vGk

= �
S


0 Sr

�
�

2�T s; srce

m s

� 3=2

1
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� �v2
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2�v2
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(iv) for the source of impurity (according to eq.(D.26)):

@Sn
@vGk

=
Sn

0 Sr
�

2�T s; srce

m s

� 3=2

1
p

2Ts;srce
exp

�
� �v2
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� �
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�
7
2

� �� s � �v2
G k s

��

AppendixE. A Crank-Nicolson scheme for di�usion terms

In this appendix the semi-implicit Crank-Nicolson scheme, which is implemented inGysela to take into
account a di�usion term of the form

@t �Fs =
1
r

@r
�
r� (r )@r �Fs

�
(E.1)

is detailed. Classically, let us write: f n
i � �Fs(r i ; �; '; v Gk ; tn ), where subscript j 2 f 0; : : : ; N g refers to the

discretised index in radial direction and superscriptn refers to the time. Let us also de�neD � r� (r ) with
� (r ) = � 0Hbu� (r ). The di�usion amplitude � 0 is modulated by a radial pro�le Hbu� which is equal to
1 in the bu�er region and equal to 0 elsewhere. For each value of� s, each term in eq.(E.1) reads for all
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i = 0 ; � � � ; N :

f n +1
i = f n

i +
� t

2 � r 2 r i

n
D i + 1

2

��
f n +1

i +1 � f n +1
i

�
+

�
f n

i +1 � f n
i

��

�D i � 1
2

��
f n +1

i � f n +1
i � 1

�
+

�
f n

i � f n
i � 1

�� o
(E.2)

Let us introduce � i = � t
2 � r 2 r i

, then

� � i D i � 1
2
f n +1

i � 1 +
h
1 + � i

�
D i � 1

2
+ D i + 1

2

�i
f n +1

i � � i D i + 1
2
f n +1

i +1 = Rn
i
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Rn

i = � i D i � 1
2
f n

i � 1 +
h
1 � � i

�
D i � 1

2
+ D i + 1

2

�i
f n

i + � i D i + 1
2
f n

i +1

Therefore, for all i = 0 ; � � � ; N ,

A i f n +1
i � 1 + B i f n +1

i + Ci f n +1
i +1 = � A i f n

i � 1 + (2 � B i ) f n
i � Ci f n

i +1 (E.3)

where the coe�cients A i , B i and Ci are de�ned as:

A i = � � i D i � 1
2

; B i = 1 + � i

�
D i � 1

2
+ D i + 1

2

�
; Ci = � � i D i + 1

2

Using the fact that r i � 1=2 = 0 :5 (r i + r i � 1), then D i � 1
2

= 1
4 (r i � i + r i � 1� i + r i � i � 1 + r i � 1� i � 1). Concerning

the boundary conditions, let us consider that the second derivative of the radial pro�le � is equal to 0 at
the boundaries (i.e @2 �

@r2 jr min = @2 �
@r2 jrmax = 0) , then

D� 1
2

=
1
2

�
r 0 �

� r
2

�
(3� 0 � � 1) and DN + 1

2
=

1
2

�
r N +

� r
2

�
(3� N � � N � 1)

Besides, a non-homogeneous Dirichlet boundary condition is applied to the outer radial boundary such that
�Fs(r = rmax ; �; '; v Gk ; � s) = �Fs;eq(r = r max ; �; v Gk ; � s). Concerning the inner radial boundary, there are
two possibility: (i) non-homogeneous Dirichlet boundary condition �Fs(r = rmin ; �; '; v Gk ; � s) = �Fs;eq(r =
r min ; �; v Gk ; � s) in the case of thermal bath or (ii) Neumann boundary conditions (i.e f � 1 = f 1) in the case
of ux-driven simulation. Let us consider the boolean � which is equal to 1 if Neumann boundary conditions
are applied (i.e in the case of ux driven boundary conditions) and is equal to 0 otherwise. The system can
be rewritten in the compact tridiagonal form:

0

B
B
B
B
B
B
@

(1 � � ) + �B 0 � (A0 + C0)

A1 B1
. . .

. . .
. . . CN � 2

AN � 1 BN � 1 CN � 1

0 0 1

1

C
C
C
C
C
C
A

0

B
B
B
B
B
@

f n +1
0

...

f n +1
N

1

C
C
C
C
C
A

=

0

B
B
B
B
B
@

Rn
0

...

Rn
N

1

C
C
C
C
C
A

(E.4)

with 0

B
B
B
B
B
@

Rn
0

...

Rn
N

1

C
C
C
C
C
A

=

0

B
B
B
B
B
B
@

(1 � � ) + � (2 � B0) � � (A0 + C0)

� A1 (2 � B1)
. . .

. . .
. . . � CN � 2

� AN � 1 (2 � BN � 1) � CN � 1

0 0 1

1

C
C
C
C
C
C
A

0

B
B
B
B
B
@

f n
0

...

f n
N

1

C
C
C
C
C
A

The tridiagonal system (E.4) is solved by using a modi�ed Thomas algorithm.
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AppendixF. GYSELA normalized equations

This appendix contains the expression of all the normalized quantities and normalized equations imple-
mented in the codeGysela .

AppendixF.1. GYSELA normalization

Let consider m0 = A0mp (kilograms) a reference ionic mass,q0 = Z0e (coulombs) a reference ionic
charge, B0 (tesla) a reference magnetic induction andT0 (electron volts) a reference temperature.A0 and
Z0 are the (dimensionless) mass number and charge state of the principal ionic species ande the modulus
of the electron charge. These quantities are used to de�ne the reference ion cyclotron frequency 
c0 , the
reference thermal speedvT0 and the reference Larmor-radius� 0 as:


 c0 =
Z0 e B0

m0
; vT0 =

r
T0

m0
; � 0 =

vT0


 c0

=

p
T0m0

Z0 e B0
(F.1)

Actually, the seven normalizing quantities (A0; Z0; n0; T0; B0; a; R0) are not completely free. Three di-
mensionless parameters are further speci�ed in the input data, which provide relationships between these
seven parameters. These are the aspect ratioA = R0=a, rhostar � � 0 =

p
A0mpT0=Z0eB0 and nustar

� � 0 = " � 3=2(qR0=vT 0) � coll: 0 � Z 4
0 n0R0=T2

0 (where " and q are taken at r peak = r min + 0 :5(r max � rmin )). It
follows that, given A, � � 0 and � � 0, it remains only four free normalizing quantities. Hereafter, X̂ refers to
the dimensionless expression of theX quantity. The normalizations used in the code are summarized in the
table F.12.

ms = m0Âs

qs = Z0 eẐs

l = � 0 l̂
t = t̂=
 c0

ns = n0 n̂s

Ts = T0T̂s

B = B0B̂

)

vGk = vTs 0 v̂Gks

= ( vT0 =
p

Âs)v̂Gks

vE � B s = vT0 v̂E � B s

vD s = vT0 v̂D s

� s = ( T0=B0)�̂ s

U = [ T0=(Z0 e)]�̂
E = ( vT0 B0)Ê
Fs = ( n0=v3

Ts 0
)F̂s

and

� = � 2
0 
 c0 �̂

� = 
 c0 �̂
Dks = v2

Ts 0

 c0 D̂ks

Vks = vTs 0 
 c0 V̂ks

SE
0 = n0
 C0 T0ŜE

0

S
vG k

0 = n0
 C0 vTs 0 Ŝ
vG k

0

S

0 = n 0 
 C 0

� 2
0

Ŝ

0

Table F.12: Links between physical and normalized quantities.

Notice that the parallel velocity is normalized to vTs 0 while all drift velocities are normalized to vT0 .
The normalized system of equations is made of the 5D gyrokinetic equation (including source terms and
collisions) self-consistently coupled to the 3D quasi-neutrality. The gyrokinetic equation involves Poisson
brackets [�; �]. Introducing the unit vector b = B =kB k along the magnetic �eld, its covariant components
bk , and the jacobienJx of the con�guration space, these brackets read as follows:

[F; G] = b � (rrr F � r rr G) = J � 1
x � ijk @i F@j Gbk (F.2)

AppendixF.2. Normalized Boltzmann equation

The evolution of the guiding-center distribution function �̂Fs is governed by the following normalized
Boltzmann equation:

@̂�Fs

@̂t
+

1

B̂ �
ks

r̂rr �
�

B̂ �
ks

dx̂G

dt̂
�̂Fs

�
+

1

B̂ �
ks

@
@̂vGks

�
B̂ �

ks

dv̂Gks

dt̂
�̂Fs

�
= D̂r ( �̂Fs) + K̂ ( �̂Fs) + Ĉ( �̂Fs) + Ŝ (F.3)
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whereD̂r and K̂ are respectively a di�usion term and a Krook operator applied on a radial bu�er region (see
section AppendixF.4), while Ĉ refers to a collision operator (see section AppendixF.5) and̂S corresponds to
source terms (see Appendix A in [106] for detailed expressions). The evolution of the gyro-center coordinates
(xG ; vGk ; � s) of speciess is given by:

dx̂ i
G

dt̂
=

1
p

Âs

v̂Gksb̂ �
s � r̂rr x i + v̂E � B s � r̂rr x i + v̂D s � r̂rr x i (F.4)

dv̂Gks

dt̂
= �

1
p

Âs

�̂ sb̂ �
s � r̂rr B̂ �

Ẑsp
Âs

b̂ �
s � r̂rr �̂� + K r B v̂Gks v̂E � Bs �

r̂rr B̂

B̂
(F.5)

The i -th covariant coordinates of the normalized drift velocities are given by:

v̂E � B s � r̂rr x i = v̂ i
E � B s

=
1

B̂ �
ks

h
�̂�; x̂ i

i
(F.6)

v̂D s � r̂rr x i = v̂ i
D s

= K r B

 
v̂2

Gks + �̂ sB̂

ẐsB̂ �
ksB̂

!
h
B̂; x̂ i

i
(F.7)

while b̂ �
s and B̂ �

ks are de�ned as:

b̂ �
s =

1

B̂ �
ks

 

B̂ +

p
Âs

Ẑs

v̂Gks

B̂
Ĵ

!

and B̂ �
ks = B̂ +

p
Âs

Ẑs

v̂Gks

B̂
b � Ĵ (F.8)

The normalized magnetic �eld B̂ is de�ned as

B̂ =
R̂0

R̂(r; � )
[� (r̂ )e� + e' ] with � (r̂ ) =

r̂

qR̂0
(F.9)

while the normalized current reads

Ĵ = ĴT R̂r̂rr ' with ĴT =
R̂0

R̂

�
r̂

�
1 +

r̂
�

d�
dr̂

�
r̂

R̂
cos�

�
(F.10)

The constant K r B has been added for tests in the code.K r B is equal to 1 if the curvature of the magnetic
�eld is taken into account and 0 otherwise. In equations (F.4) and (F.5) the parallel projection r̂rr

�
kF is

computed asb̂ �
s � r̂rr F = b̂� i @̂i F . In equations (F.6) and (F.7), the explicit expressions of the Poisson brackets

[ ��; x i ] and [B; x i ] are given by:

8
>><

>>:

� ��; x 1
�

= 1
J x B

�
B2 @x 3 �� � B3 @x 2 ��

	

� ��; x 2
�

= 1
J x B

�
� B1 @x 3 �� + B3 @x 1 ��

	

� ��; x 3
�

= 1
J x B

�
B1 @x 2 �� � B2 @x 1 ��

	
and

8
>><

>>:

�
B; x 1

�
= � 1

J x B � B3 @x 2 B
�
B; x 2

�
= 1

J x B � B3 @x 1 B
�
B; x 3

�
= 1

J x B (B1 @x 2 B � B2 @x 1 B )

AppendixF.3. Normalized quasi-neutrality equation
The normalized quasi-neutrality equation is 12:

�
1

n̂e0

X

s

Âs r̂ ? �
�

n̂s0

B̂
r̂ ? �̂

�
+

1

Z 2
0 T̂e

h
�̂ � � h�̂ i FS

i
=

1
n̂e0

X

s

Ẑs [n̂G s � n̂G s ;eq] (F.11)

12 In the code, to avoid the expensive gyroaverage operation for each value of vG k {which occur for the computation of the
RHS of the quasi-neutrality equation (F.11){ we use the de�nition (F.8) of B �

k s and therefore the fact that the term ^ nG s � n̂G s ;eq
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where the normalized electron densityn̂e0 is de�ned as n̂e0 =
P

s Z0Ẑsn̂s0 . Notice that, in the polarization
term (�rst term of eq. (F.11)), B̂ has been replaced bŷB0 = 1. The integral h�̂ i FS =

R
�̂ Ĵx d� d'=

R
Ĵx d� d'

represents the ux surface average of̂� (with Ĵx = 1=(B̂ � r̂ � ) being the normalized jacobian space). The
parameter � has been added for tests. It can be chosen equal to 1 or 0. The normalized guiding-center
density n̂G s of speciess is given by:

n̂G s =
Z

d�̂ s

Z
Ĵv dv̂Gks Ĵ0s � �̂Fs (F.12)

with the normalized jacobian in velocity equal to Ĵv = 2 � B̂ �
ks. The correction term n̂G s ;eq in the right

hand side is de�ned as follows:

n̂G s ;eq =
Z

d�̂ s

Z
Ĵv dv̂Gks Ĵ0s � �̂Fs;eq (F.13)

where

�̂Fs;eq = cs
n̂s0

(2� T̂s)3=2
exp

2

4�

�
v̂2

Gks=2 + �̂ sB̂
�

T̂s

3

5 (F.14)

represents the equilibrium part of the distribution function. The concentration cs is such that
P

s csZ0Ẑs =

1. The normalized gyroaverage operatorĴ0s approximated by Pad�e corresponds to Ĵ0s � 1 + 1
2

Â s

Ẑ 2
s

�̂ s

B̂
r̂ 2

?

where, as in the quasi-neutrality equation,B̂ is replaced byB̂0 = 1 in the code.

AppendixF.4. Normalized di�usion terms and Krook operator in bu�er regions

A radial di�usion and an arti�cial damping are applied in bu�er regions. These bu�er regions are de�ned
at each boundaries of the radial domain ^r 2 [r̂min ; r̂ max ] as a sum of hyperbolic tangents:

Ĥbu� (r̂ ) = 1 +
1
2

"

tanh

 
r̂ � r̂ max + BL L̂ r

BS L̂ r

!

� tanh

 
r̂ � r̂ min � BL L̂ r

BS L̂ r

!#

(F.15)

where L̂ r is the normalized length of the radial domain. BL and BS are respectively the location and the
sti�ness of the bu�er regions. The function Ĥbu� plays the role of a mask which is equal to 1 in the bu�er
regions and equal to 0 elsewhere.
A radial di�usion 13 is applied on this bu�er region by solving the following equation

@̂�Fs

@̂t
= D̂r ( �̂Fs) with D̂r ( �̂Fs) =

1

r̂ B̂ �
ks

@
@̂r

�
r̂ �̂ (r̂ )

@
@̂r

�
B̂ �

ks
�̂Fs

� �
(F.16)

where ^� (r̂ ) = �̂ 0Ĥbu� (r̂ ), where the normalized magnitude ^� 0 of the di�usion coe�cient in the bu�er region
is �̂ 0 = � 0=� 2

0
 c0 .

can be expressed as:

n̂G s � n̂G s ;eq = 2 �
Z

d�̂ s

 

B̂ Ĵ0s � I 0 ( r̂; �; '; �̂ s ) +

p
Â s

Ẑs

v̂G ks

B̂
b � Ĵ Ĵ0s � I 1 ( r̂; �; '; �̂ s )

!

where the integrals I 0 and I 1 are de�ned by:

I 0 ( r̂; �; '; �̂ s ) =
Z �

�̂Fs � �̂Fs; eq

�
dv̂G ks and I 1 ( r̂; �; '; �̂ s ) =

Z
v̂G ks

�
�̂Fs � �̂Fs; eq

�
dv̂G ks

13 In the code, there exists the possibility to apply the di�usion term to ( �̂Fs � �̂Fs; eq ) instead of �̂Fs .
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A Krook operator is applied by solving @̂t
�̂Fs = K̂ r ( �̂Fs) with K̂ r ( �̂Fs) = � �̂ (r̂ )( �̂Fs � �̂Fs;eq) where �̂ (r̂ ) =

�̂ 0Ĥbu� (r̂ ) such that �̂ (r̂ ) = � (r )=
 c0 .

AppendixF.5. Normalized collision operator

A collision operator Cs is present on the RHS of the normalized Vlasov equation (F.3), such that the
normalized Boltzmann equation reads:

d �̂Fs

dt̂
= Ĉs( �̂Fs) with Ĉs( �̂Fs) =

1

B̂ �
ks

@
@̂vGks

"

B̂ �
ks

 

D̂ks
@̂�Fs

@̂vGks
� V̂ks

�̂Fs

!#

(F.17)

where the di�usion term D̂ks and the drag term V̂ks in the parallel direction are de�ned as:

D̂ks(r̂; v̂) = Â s(r̂ )
�

�(^v) � G(v̂)
2v̂

�
; V̂ks(r̂; v̂) = �

�
v̂Gks � V̂ks;coll

�

v̂2
Ts; coll

D̂ks(r̂; v̂) (F.18)

where v̂ =

r �
1
2 v̂2

Gks + �̂ sB̂axis

�
=T̂s;coll while the Chandrasekhar function G is de�ned as follows:

G(v̂) =
�(^v) � v̂� 0(v̂)

2v̂2 ; �(^v) =
2

p
�

Z v̂

0
e� x 2

dx ; � 0(v̂) =
2

p
�

e� v̂2
(F.19)

The radial pro�le Â s is given the form

Â s(r̂ ) =
1

p
Âs

 

3
p

�
2

v̂3
Ts; coll

� 3=2

q(r̂ )R̂0

!

�̂ � s (F.20)

The normalized collisionality �̂ � s is an input data. The normalized collisional frequency is then obtained as
follows:

�̂ ss =
1

p
Âs

 
v̂Ts; coll � 3=2

q(r̂ )R̂0

!

�̂ � s (F.21)

Considering that the speciess is the major ion species, the collisionality ^� � s0 of each minority ion speciess0

is determined by

�̂ � s0 =
�

n̂s0

n̂s

�  
Ẑs0

Ẑs

! 4  
T̂s;coll

T̂s0;coll

! 2

�̂ � s (F.22)

In practice, T̂s;coll =T̂s0;coll is approximated by T̂s=T̂s0. The ratio n̂s0=n̂s and T̂s;coll =T̂s0;coll are computed at
the radial point r̂ p which usually corresponds to the middle of the simulation radial domain. The normalized
mean velocity V̂ks;coll and the normalized mean temperatureT̂s;coll can be calculated as follows:

V̂ks;coll = P̂ � 1
�

Î 4 � Î 1 � Î 2 � Î 3

�
; T̂s;coll = P̂ � 1

�
Î 0 � Î 2 � Î 2

1

�
(F.23)

with the normalized mean pressure de�ned byP̂ = Î 0 � Î 4 � Î 1 � Î 3 and where the �ve integrals Î 0, Î 1, Î 2,
Î 3 and Î 4 are

Î 0 = hD̂ks i ; Î 1 = hD̂ks v̂Gks i ; Î 2 = hD̂ks v̂2
Gks i (F.24)

Î 3 = h
1

B̂ �
ks

@̂vG k s

�
B̂ �

ks D̂ks

�
i and Î 4 = h

1

B̂ �
ks

@̂vG k s

�
B̂ �

ks v̂Gks D̂ks

�
i (F.25)
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with the brackets h�i =
R

� �̂Fs Ĵv dv̂Gks d�̂ s.

AppendixF.6. Normalized collisional transfers between two species

Normalized collisional energy transfer. Energy exchange between two species can be expressed by the fol-
lowing reduced collision operator:

d �̂Fs

dt̂
= �

�̂ E
ss0

�
2� T̂mean

� 3=2

� T̂ss0

T̂mean

 
Êss0

T̂mean
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3
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!

exp
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T̂mean
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(F.26)

d �̂Fs0
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Ês0s

T̂mean
�

3
2

!

exp

 

�
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(F.27)

with

T̂mean =
T̂s + T̂s0

2
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�̂ � s (F.28)

Let us notice that in practice, the ux surface average of T̂s;coll is used (compare to the general expression
given by (42)), to consider only the radial dependency of ^� E

ss0. The normalized uid moments V̂ks and T̂s are

computed as 3̂Ts(r )=2 = h
R

Ês �̂Fs d3v̂ i FS=N̂s(r ) and V̂ks(r ) = h
R

v̂Gks
�̂Fs d3v̂ i FS=N̂s(r ) where Ês is de�ned

as Ês = 1
2

�
v̂Gks � V̂ks

� 2
+ �̂ sB̂ while N̂s(r ) = h

R �̂Fs d3v̂ i FS .

Normalized collisional momentum transfer. Momentum exchange between two species can be expressed by
the following reduced collision operator

d �̂Fs

dt̂
= � �̂ vG k Â � 1=2

s � V̂ss0v̂Gks exp

 

�
Ês

T̂mean

!

(F.29)

d �̂Fs0

dt̂
= � �̂ vG k Â � 1=2

s0 � V̂s0s v̂Gks0 exp

 

�
Ês0

T̂mean

!

(F.30)

with
� V̂ss0 = V̂ksÂ � 1=2

s � V̂ks0Â � 1=2
s0 (F.31)

The averagesT̂mean and V̂mean have already been introduced. The energŷEs is equal to 1
2 v̂2

Gks + �̂ sB̂ . The
radial pro�le �̂ vG k reads:

�̂ vG k (r ) =
� "

2�

� 3=2 1

qR̂0

n̂s0

v̂T>

p
T̂s

q
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T̂5=2
mean
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! 2

�̂ � s (F.32)

where the velocity v̂T> is calculated as v̂T> = max( Â � 1=2
s v̂Ts ; Â � 1=2

s0 v̂Ts 0) where v̂Ts =
p

T̂s and v̂Ts 0 =p
T̂s0 and the collision frequencies ^� � s, �̂ � s0 are linked by the relation (F.22).
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AppendixF.7. Normalized source terms

Focusing on the source term, the gyrokinetic equation is:

d �̂Fs

dt̂
= Ŝheat (r̂; �; v̂Gks; �̂ s) + Ŝmoment (r̂; �; v̂Gks; �̂ s) + Ŝvorticity (r̂; �; v̂Gks; �̂ s) (F.33)

where the heat source can be de�ned as

Ŝheat =
ŜE
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r (F.34)

with Ês = 1
2 v̂Gks + �̂ sB̂ or as a pure source of heating
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with �̂� s = �̂ s B̂
T̂s; srce

, �̂vG k s = v̂G k sp
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and the Ŝvorticity is a pure source of vorticity is de�ned as
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The radial components of the sources (i.e ŜE
r , Ŝ

vG k
r and Ŝ


r ) are de�ned as:
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(F.38)

where ^� = ( r̂ � r̂min )=L̂ r . �̂ x
S and L̂ x

S are input data corresponding to the radial position and the normalized
width of the di�erent sources. These radial parts are normalized such that

Z r̂ max

r̂ min

r̂ dr̂ Ŝx
r (r̂ ) = 1

AppendixF.8. Normalized source of impurity

Let us consider the speciess as the major species and the speciess0 as an impurity species. Then, it
is possible to add a source of impurities, by adding to the right hand side of equation (F.33) a source of
matter. The source Ŝn s 0(r̂; �; v̂Gks; �̂ s) of impurity s0 is de�ned by

Ŝn s 0 =
Ŝn 0

s
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(F.39)
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where �̂vG k s0 = v̂Gks0=
q

2T̂s0;srce and �̂� s0 = �̂ s0B̂=T̂s0;srce. Ŝn 0
s

0 corresponds to the normalized intensity of the
source. To avoid any injection of charges, the injection of impurities must be compensated by the injection
of source of matter for the majority species such that

Zs

Z
Sn s Jvs dvGk d� s + Zs0

Z
Sn s 0Jvs 0 dvGk d� s0 = 0

with Jvs (resp. Jvs 0) the jacobian in velocity space for speciess (resp. speciess0). The normalized radial
pro�les of the sources are assumed equal tôSr . Therefore,
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0 Ŝr
�

2� T̂s;srce

� 3=2

�
5
2

� �̂� s � �̂v2
G k s

�
e

� �̂v2
G k s � �̂� s with Ŝn s
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In the code, the temperature pro�le of the density sources are taken equal,i.e T̂s;srce = T̂s0;srce.

AppendixG. Invariance

Let us consider a reference simulation without source terms. Let us also de�ne a second simulation
similar to the reference one but where the mass and charge have been respectively multiplied by a factor
� A and � z . Then, it is shown in this appendix that 7 control parameters (� x , � t , � Te , � � , � coll , � di� and
� Krook that respectively rescale the space, the time, the electron temperature, the electrostatic potential, the
collision operator, the di�usion term and the Krook operator) are su�cient to ensure that both simulations
{reference and scaled{ are equivalent. The constraints on the di�erent control parameters are summarized
in table G.13 and the proof follows.

Charge Mass Length Time Te Elec. potential

Scaling � Z � A
p

� A =� Z � A =� Z � � 1
Z � � 1

Z

Collision Krook Di�usion

Scaling 1 � Z =� A � � 1
Z

Table G.13: Scaling which must be applied to the di�erent characteristic quantities to obtain an equivalence between any
reference simulation and a scaled simulation

For the proof let us �rst consider the following normalized reference Vlasov equation (deduced from
eqs.(F.3) to (F.8)) for a species of chargêZs and massÂs

@̂�Fs

@̂t
+

(
1

p
Âs
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and

D̂ks(r̂; v̂) = Â s(r̂ )
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The Chrandrasekhar function G and the function � are de�ned by equation (F.19). Let us apply a scaling
with the control parameters de�ned below, this leads to the following new Vlasov equation
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Concerning the left hand side, this equation is equivalent to the reference one, if and only if:
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Therefore, according to the last equality of equation (G.2),� x =
p

� A =� Z . Besides, due to the last equality
of equation (G.1), � � = � � 1

Z . And �nally, due to the �rst equality of equation (G.1), � t =
p

� A =� x , so
� t = � A =� Z . Taking into account the collision operator 1=� t = � coll =(

p
� A � x ) which gives � coll = 1. In

addition, the equivalence condition for the Krook operator leads to 1=� t = � Krook thus � Krook = � Z =� A

while for the di�usion term the condition reads 1 =� t = � di� =� 2
x , i.e � di� = � � 1

Z .
Concerning the equivalence for the quasi-neutrality let us consider normalized equation
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Ĵ0s

�
�̂Fs � �̂Fs;eq

�
d3v̂

Therefore, the rescaled equation reads:

�
� A � �

� 2
x

X

s
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Ẑsn̂s;eq

h
�̂ � h �̂ i FS

i
=

X

s

� Z Ẑs
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Ĵ0s

�
�̂Fs � �̂Fs;eq

�
d3v̂

The equivalence between reference and rescaled QN equations is ensured if and only if:
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its invariance is ensured provided the equality� A = � 2
Z � 2

x is ful�lled. This equality is already satis�ed by
the previous constraints.

AppendixH. Rosenbluth-Hinton test

In this appendix, we report on simulations of the so-called Rosenbluth-Hinton (R-H) test [102]. This
consists in studying the collisionless relaxation of an initialE � B poloidal ow, including the transient GAM
oscillation (Geodesic Acoustic Mode), towards a non vanishing residual value. Such simulations are interest-
ing validation tests for gyrokinetic codes because the damping, the frequency and the residual value of the
GAM can be compared to theoretical predictions [59, 130]. In practice, a zonal perturbation in ion density is
initialized, with a radial pro�le of the form sin( �r=a ). This perturbation generates a zonal radial electric �eld
which evolves in time as predicted by the R-H theory. The parameters used for the following simulations are
the same as those used by Biancalani [8], namely: (i) an analytical circular equilibrium with large aspect ratio
(� = a=R = 0 :1); (ii) at density and temperature pro�les with � = Ti =Te = 1 and (iii) at q-pro�les varying
from q = 1 :5 to 3:5. All simulations are performed for a mesh (N r ; N � ; N ' ; Nvk ; N � ) = (256 ; 256; 16; 128; 32).
The results obtained with GYSELA are displayed on �gs.H.16,H.17, where the GAM frequency, the damping
rate and the residual value are plotted as a function of the safety factorq. They are comparable to those
published by the ORB5 team (see �gures 2 and 3 in [8]). Consistently with the theory, the FOW (Finite
Orbit Width) e�ects are already signi�cant at moderate values of q (typically for q � 2, cf. �g.H.16a).
Regarding the residual values, two ratio are considered: either the ratio of the �nite over the initial zonal
electric potential, or the ratio of the radial electric �elds. Both ratios would be equal if the radial pro�les
of the electric potential would not evolve in time, as assumed by the theory. As evident on �g.H.17, this is
actually not the case in these global simulations.

� � As Zs � 0 r int =a rext =a Torus nbvth 0

1=160 1: 1: 0:1 0:01 1: 1: 7:

� max r peak =a � ns 0 � ns 0 � T s0 � T s0 Ti =Te

12: 0:5 1:e� 7 0:2 1:e� 7 0:1 1:

Table H.14: Common parameters for GAM test. The velocity phase space is de�ned by � nbvth 0vTs 0 � vG k � nbvth 0vTs 0 and
0 � � � � max T0=B0 . Torus indicates the fraction of the torus simulated. The radial density pro�le is de�ned by its gradient
as d log ns0 (r )=dr = � � ns 0 cosh� 2 �

(r � r peak =a)=� r ns 0

�
. The same analytical expression is used for the temperature with

� T s 0 and � r T s 0 .
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Figure H.16: Damping rate (left) and frequency (right) of the electric �eld for simulation parameters given in table H.14.
Comparison with explicit analytical values given by Sugama and Watanabe [59] and Zonca [130] where FOW e�ects are taken
into account or not.

Figure H.17: Residual values divided by the initial value
of the electric potential (green stars) or electric �eld (ma-
genta triangles) for the 5 di�erent values of constant q
pro�le :1.5, 2., 2.5, 3. and 3.5. Comparison with analyti-
cal theory given by Rosenbluth-Hinton [102] (red line) and
Xiao and Catto [125] (blue line).

Figure H.18: Radial pro�le of the (0 ; 0) mode of � at the
initial time (blue line) and at the time t = 30000=
 C 0
(red dotted line).
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AppendixI. Input data �les

This appendix contains the input data �les of all simulations used in this paper.

Figure I.19: Input data �le used in the code for the �rst simulation for invariance tests (see section 4.2).
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Figure I.20: Example of input data �le used for Rosenbluth-Hinton test (see section 4.3.1).
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Figure I.21: Example of input data �le used for the Cyclone Base Case benchmark with GENE code (see section 4.3.2).
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AppendixJ. Detailed computations for local conservation laws

In this appendix, we present several detailed calculations useful for the derivation of the gyrokinetic
conservation laws in section 5

AppendixJ.1. Useful integrals

Let us consider two arbitrary �elds X , Y and Z . The aim of this paragraph is to compute the general
integral

I �
Z

Jx d� d� d'X r � (Y r ? Z ) (J.1)

where Jx is the jacobian is space,i.e Jx =
p

g with g representing the determinant of the metric tensor. in
order to perform this integration it is useful to write the operator r � (Y r ? Z ) by using Einstein notations.
Given that r ' � r � = r ' � r � = 0, we can write this operator as

r � (Y r ? Z ) =
1

p
g

@i
� p

gY gij @j Z
�

+
1

p
g

@' (
p

gY g'' @' Z )

where i and j correspond to � or � . With these covariant notations, the perpendicular Laplacian-type
operator we consider is equivalent to14

r � (Y r ? Z ) = r ? � (Y r ? Z ) =
1

p
g

@i
� p

gY gij @j Z
�

Then, the previous integral (J.1) can be written as

I =
Z

Jx d� d� d' X
�

1
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@i
�
Y Jx gij @j Z

�
�

Then, using an integration by parts on the coordinate i

I = �
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d� d� d' (@i X )Y Jx gij (@j Z ) +
� Z

d� d' X Y J x g�j (@j Z )
�

@L�

+
� Z

d� d' X Y J x g�j (@j Z )
� 2�

0

where i and j are still � or � . Because of the periodicity in� , the surface term resulting from the integration
by parts on i = � (i.e last term of previous equation) is equal to 0. Therefore,

I = �
Z

d� d� d' (@i X )Y Jx gij (@j Z ) +
� Z

d� d' X Y J x g�j (@j Z )
�

@L�

(J.2)

Using the fact that gij = r x i � r x j and r X = ( @i X )r x i for all �eld X , then

I = �
Z

Jx d� d� d'
�
Y (@i X )r x i � r x j (@j Z )

�
�

Z
Jx d� d'X Y r � � r x j (@j Z )

therefore,

I = �
Z

Jx d� d� d' [Y r ? X � r ? Z ] +
Z

Jx d� d'X Y r � � r ? Z (J.3)

14 The direction ? corresponds to an approximation of the poloidal plane because it is actually perpendicular to r ' rather
than B .
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Then, using again an integration by parts on the coordinatej for equation (J.2) and the fact that the surface
term

� R
d� d' (@i X )Y Jx gi� Z

� 2�
0 = 0 due to periodicity in � ,
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Finally, previous equation gives
Z

Jx d� d� d'X r ? �(Y r ? Z ) =
Z

Jx d� d� d' r ? �(Y r ? X ) Z �
� Z

Jx d� d' Y g �j f (@j X )Z � X (@j Z )g
�

@L�

(J.4)

AppendixJ.2. Expression of
P
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d� � �U@t �Fs for local energy conservation

The opposite of the total energy source� W =
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Then, using the quasi-neutrality equation (12), the �rst term in eq.(J.5) can be expressed as
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Besides, using the general following equality (J.3) the previous equation is equivalent to
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Let us consider the low wavenumber approximation of the gyroaverage operator used in the code,i.e the
Pad�e approximation J0s ' 1 + 1
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The �rst and third terms cancel each other out. The remaining terms
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So �nally, using the gyrocenter perpendicular stressPs; ? =
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AppendixJ.3. E�ect of the electric potential on the toroidal canonical momentum

The objective of this section is to prove that

dtP ' = � qs@' �U with P' = � qs � +
msI
B

vGk

Due to the fact that P' is an invariant of the equilibrium motion, this result is equivalent to proving that
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GC = qs@' �U (J.6)

where [�; �]GC indicate the Poisson brackets in the gyro-center coordinates. In the gyrokinetic framework, we
recall the expression of the Poisson brackets for two given �elds X and Y
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In the chosen coordinate system, we recall that the magnetic �eldB can be written asB = I (� )r ' + r ' �r �
with I a ux function, then
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Then according to (J.8) and (J.10), equation (J.7) becomes
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Therefore,
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1
B

(@� I ) b � r � = � R2r '
�

I
B 2 @� P + @� I

�

So, using the fact that the volume element in guiding-center velocity spaceB �
ks can be expressed as
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equation (J.11) becomes
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which is equivalent to equation (J.6).
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