Spectral detection in the censored block model - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Conference Papers Year : 2015

Spectral detection in the censored block model

Abstract

We consider the problem of partially recovering hidden binary variables from the observation of (few) censored edge weights, a problem with applications in community detection, correlation clustering and synchronization. We describe two spectral algorithms for this task based on the non-cktracking and the Bethe Hessian operators. These algorithms are shown to be asymptotically optimal for the partial recovery problem, in that they detect the hidden assignment as soon as it is information theoretically possible to do so.
Fichier principal
Vignette du fichier
saa1.pdf (392.58 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

cea-01140716 , version 1 (18-10-2022)

Identifiers

Cite

Alaa Saade, Florent Krzakala, Marc Lelarge, Lenka Zdeborová. Spectral detection in the censored block model. ISIT 2015 - IEEE International Symposium on Information Theory, Jun 2015, Hong-Kong, China. pp.1184-1188, ⟨10.1109/ISIT.2015.7282642⟩. ⟨cea-01140716⟩
177 View
63 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More