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ABSTRACT

We studied the accuracy, robustness, and self-consistency of pixel-domain simulations of the gravitational lensing effect on the primor-
dial cosmic microwave background (CMB) anisotropies due to the large-scale structure of the Universe. In particular, we investigated
the dependence of the precision of the results precision on some crucial parameters of these techniques and propose a semi-analytic
framework to determine their values so that the required precision is a priori assured and the numerical workload simultaneously op-
timized. Our focus was on the B-mode signal, but we also discuss other CMB observables, such as the total intensity, T , and E-mode
polarization, emphasizing differences and similarities between all these cases. Our semi-analytic considerations are backed up by
extensive numerical results. Those are obtained using a code, nicknamed lenS2HAT – for lensing using scalable spherical harmonic
transforms (S2HAT) – which we have developed in the course of this work. The code implements a version of the previously described
pixel-domain approach and permits performing the simulations at very high resolutions and data volumes, thanks to its efficient par-
allelization provided by the S2HAT library – a parallel library for calculating of the spherical harmonic transforms. The code is made
publicly available.
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1. Introduction

The cosmic microwave background (CMB) anisotropies in both
temperature and polarization are one of the most studied sig-
nals in cosmology and one of the major available sources of
constraints of the early-Universe physics. After having decou-
pled from matter and set free at the time of recombination, CMB
photons propagated nearly unperturbed throughout the Universe.
The large-scale structures (LSS) emerging in the Universe in the
post-recombination period have left their imprint on them, how-
ever, which are referred to as secondary anisotropies. In particu-
lar, the gravitational pull of the growing matter inhomogeneities
has deviated the paths of primordial CMB photons, modifying
somewhat the pattern of the CMB anisotropies observed today.
This weak lensing effect on the CMB (see Lewis & Challinor
2006 for an extensive review) therefore offers a unique probe of
the matter distribution at intermediate redshift where the forming
LSS were still in the nearly-linear regime. Because this depends
on the cumulative matter distribution in the Universe, it is ex-
pected to be particularly efficient in constraining the properties
of all the parameters affecting the growth of LSS, such as neu-
trino masses and dark energy physics (de Putter et al. 2009; Das
& Linder 2012; Hall & Challinor 2012).

The first observational evidence of the CMB lensing signal
had been indirect and obtained through cross-correlation of the
CMB maps with high-redshift mass tracers (Smith et al. 2007;
Hirata et al. 2008). More recently, more direct measurements
have become available, thanks to the latest generation of high-
precision and resolution ground-based CMB temperature experi-
ments, which have collected high-quality data and made possible
a direct reconstruction of the power spectra of this deviation us-
ing CMB alone (Das et al. 2011; van Engelen et al. 2012). Even
more recently, this has been further elaborated on by the Planck

results based on the first 15 months of the total intensity data
collected by the mission (Planck Collaboration 2013).

The forthcoming next generation of low-noise CMB po-
larization experiments such as EBEX (Oxley et al. 2004),
POLARBEAR (Kermish et al. 2012), SPTpol (McMahon et al.
2009), and ACTpol (Niemack et al. 2010) and their future up-
grades (e.g., POLARBEAR-II, Tomaru et al. 2012) will be able
to target a CMB observable most affected by weak lensing –
the B-mode polarization. Indeed, primordial CMB gradient-like
polarization (E-modes) is converted into curl-like polarization
(B-modes) by gravitational lensing (Zaldarriaga & Seljak 1998)
and is expected to completely dominate the primordial signal at
least at small angular scales. The lensing-generated B-modes are
interesting because of their sensitivity to the large-scale struc-
ture distribution, but also because they are the main contaminant
of any primordial B-modes signal, which is expected in many
models of the very early Universe, and which is one of the major
goals of the current and future CMB observations. Since sensi-
tivities of the CMB polarization arrays are rapidly improving,
the experiments aiming at setting constraints on values of the
tensor-to-scalar ratio parameter r . 10−2 are expected to be ul-
timately limited by the lensing signal (e.g., Errard & Stompor
2012). This acts as an extra noise source with a white spec-
trum shape on large scales and an amplitude of approximately
5 µK-arcmin, which could in principle be separated from the
primordial signal with the help of an accurate de-lensing pro-
cedure (Kesden et al. 2002; Seljak & Hirata 2004; Smith et al.
2012).

The high quality of forthcoming datasets requires the
development, testing and validation through simulations of data-
analysis tools capable of fully exploiting the amount of informa-
tion present there. An important part of this effort involves sim-
ulating very accurate, high-resolution maps of the CMB total
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intensity and polarization, covering a large fraction of the sky
and with lensing effects included. The relevant approaches have
been studied in the past (e.g. Lewis 2005; Basak et al. 2009;
Lavaux & Wandelt 2010) and resulted in devising and demon-
strating an overall framework for such simulations, as well as in
two publicly available numerical codes (Lewis 2005; Basak et al.
2009). Because the computations involved in such a procedure
are inherently very time-consuming, the proposed implementa-
tions of those ideas unavoidably involve trade-offs between cal-
culation precision and their feasibility, giving rise to a number
of problems, practical and more fundamental, which need to
be carefully resolved to ensure that these techniques produce
high-quality, reliable results. The main objective of this paper
is to provide comprehensive answers to some of these problems,
with special emphasis on those arising in the context of high-
precision and-reliability simulations of the B-mode component
of the CMB polarization signal.

2. Simulating weak lensing of the CMB

2.1. Algebraic background

The CMB radiation is completely described by its brightness
temperature and polarization fields on the sky, T (ϑ, ϕ) and
P(ϑ, ϕ). Since both fields are (nearly) Gaussian, they are char-
acterized by their power spectra after their harmonic expansion
in a proper basis. Temperature is a scalar field and can be conve-
niently expanded in terms of scalar spherical harmonics,

T (ϑ, ϕ) =

lmax∑
l=0

l∑
m=−l

TlmYlm(ϑ, ϕ), (1)

while polarization is described by the Stokes parameters Q and
U, which are coordinate-dependent objects, that behave like a
spin-2 field on the sphere under rotations (Zaldarriaga & Seljak
1997; Kamionkowski et al. 1997). The polarization field must
therefore be expanded in terms of spin-2 spherical harmonics,
±2Ylm(ϑ, ϕ),

P(ϑ, ϕ) = (Q + iU)(ϑ, ϕ) (2)

=

lmax∑
l=0

l∑
m=−l

−(2Elm + i2Blm)2Ylm(ϑ, ϕ),

where 2Elm and 2Blm are the gradient and curl harmonic compo-
nents of a spin-2 field, whose general definitions for and arbi-
trary spin-s field are

|s|Elm ≡ −
1
2

(
|s|alm + (−1)s

−|s|alm

)
(3)

i|s|Blm ≡ −
1
2

(
|s|alm − (−1)s

−|s|alm

)
.

Weak gravitational lensing shifts the light rays coming from an
original direction n̂ on the last scattering surface to the observed
direction n̂′, inducing a mapping between the two directions
through the so-called displacement field d, i.e., for a CMB ob-
servable X ∈ {T,Q,U}

X̃(n̂) = X(n̂′) = X(n + d). (4)

Hereafter, we use a tilde to denote a lensed quantity, we also
use a tilde over a multipole number of a lensed quantity, i.e.,
˜̀ , to distinguish it from a multipole number of its unlensed
counterpart.

The displacement field is a vector field on the sphere and can
be decomposed into a gradient-free and a curl-free component.
In most cases we can neglect the gradient-free component and
consider the displacement field d as the gradient of the so-called
lensing potential Φ(ϑ, ϕ), the projection of the 3D gravitational
potential Ψ on the 2D unit sphere. This quantity can be com-
puted with Boltzmann codes (e.g. CAMB1 or CLASS2), from
galaxy surveys or N-body simulations (Carbone et al. 2008; Das
& Bode 2008),

Φ(n) ≡ −2
∫ η∗

0
dAη

dA(η∗ − η)
dA(η)dA(η∗)

Ψ(η, n). (5)

Here η∗ is the comoving distance to the last scattering surface,
η is the co-moving distance, dA is the co-moving angular diam-
eter distance. The lensing potential is expected to be correlated
on a large scale with temperature anisotropies and E-modes of
polarization through the integrated Sachs-Wolfe effect; this cor-
relation mainly affects the large angular scales and is of the or-
der of 1% at ` ≈ 100 and will thus be neglected in the following
analysis.

Since the lensing potential is a scalar function and can be ex-
panded into canonical spherical harmonics, its gradient (a spin-1
curl-free field) can be easily computed in the harmonic domain
with a spin-1 spherical harmonic transform (SHT):

1Elm =
√

l(l + 1)Φlm 1Blm = 0. (6)

2.2. Pixel-domain simulations

2.2.1. Basics

Because typical deviations of CMB photons are on the order of
few arcminutes (although coherent over the degree scale), we
can work in the Born approximation, i.e., considering this devi-
ation as constant between n̂ and n̂′, and evaluate the displaced
field along the unperturbed direction.

In practice this means that to compute the lensed CMB at a
given point it is sufficient to compute the unlensed CMB at an-
other position on the sky. This observation provides the basis for
the pixel-based approaches to simulating lensing effects of the
CMB maps. For every direction on the sky corresponding to a
pixel center these methods first identify the displaced direction
and then compute the corresponding sky signal value, which is
used to replace the original value at the pixel center. The imple-
mentations of this approach typically involve the following main
steps (Lewis 2005; Basak et al. 2009; Lavaux & Wandelt 2010):

1. Generating a random realization of the harmonic coefficients
of the unlensed CMB map and its synthesis.

2. Generating a random realization of the harmonic coefficients
of the lensing potential and then of the spin-1 displacement
field in the harmonic domain. Synthesizing the displacement
field.

3. Sampling the displacement field at pixel centers and, for each
of them, computing the coordinates of a displaced direc-
tion on the sky using the spherical triangle identities on the
sphere.
Defining α as the angle between the displacement vector and
the eϑ versor, such that d = d cosα eϑ + d sinα eϕ, the value

1 http://camb.info
2 http://lesgourg.web.cern.ch/lesgourg/class.php
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of a lensed field, i.e., T , Q and U, in a direction (ϑ, ϕ) is
given by the unlensed field at (ϑ′, ϕ + ∆ϕ) where,

cosϑ′ = cos d cosϑ − sin d sinϑ cosα (7)

sin ∆ϕ =
sinα sin d

sinϑ′
· (8)

4. Computing temperature and polarization fields at displaced
positions.

5. Re-assigning the temperature and polarization from the dis-
placed to new positions to create the simulated lensed map
sampled on the original grid. For the polarization, we need
also to multiply the lensed field by an extra factor taking into
account the different orientation of the basis vector at the two
points. Calling γ the difference between the angles between
eϑ and the geodesic connecting the two points, and defining

A = tanα′ =
dϕ

d sin d cotϑ + dϑ cos d
(9)

e2iγ =
2(dϑ + dϕA)2

d2(1 + A2)
− 1 +

2i(dϑ + dϕA)(dϕ − dϑA)
d2(1 + A2)

, (10)

the lensed polarization field becomes

P̃(ϑ, ϕ) = e2γiP(ϑ′, ϕ′). (11)

6. Smoothing and, potentially, re-pixelizing the lensed map to
match a particular experimental resolution, if needed.

2.2.2. Challenges and goals
There are two main, closely intertwined challenges involved in
implementing the approach detailed in the previous section. The
first one is related to the bandwidths of fields used in, or pro-
duced as a result of, the calculation, and in particular to the need
of imposing those on the fields, which are either naturally not
band-limited or are band-limited but have too high bandwidths
to make them acceptable from the computational efficiency point
of view. The other challenge arises from step 4 of the algorithm:
the displaced directions do not correspond in general to pixel
centers of any iso-latitudinal grid on the sphere, and thus the
lensed values of the CMB signal cannot be computed with the
aid of a fast SHT algorithm and a more elaborated, and compu-
tationally costly approach is needed.

We emphasize that both these problems should be looked at
from the perspective of the efficiency of the numerical calcu-
lations as well as accuracy of the produced results. We discuss
them in some detail below.

Signal bandwidths. Because the lensing procedure needs to be
applied prior to any instrumental response function convolution,
the relevant sky signals on all but the last steps above require
using a resolution sufficient to support the signal all the way to
its intrinsic bandwidth, `X

intr, where X is either T for the total
intensity, or P for the polarization, or Φ – for the gravitational
potential. However, because mathematically the lensing effects
can be seen as a convolution in the harmonic domain (Hu 2000;
Okamoto & Hu 2003; Hu & Okamoto 2002) of the CMB signal
– either the total intensity, T , or the polarization, P, – and of
the potential, Φ, the bandwidth of the resulting lensed field will
be broader than that of any unlensed fields and is given roughly
by `X

intr + `Φ
intr. Consequently, the lensed map produced in step 5

should have its resolution appropriately increased to eliminate
potential power aliasing effects. The resolution of the unlensed
maps produced in steps 1–5 should then coincide with that of the

lensed signal but with the number of harmonic modes set by `X
intr

and `Φ
intr respectively.

One of the problems arising in this context is related to the
fact that the unlensed sky signals, T , P and Φ, considered here
are not truly band-limited even if their power at the small scales
decays quite abruptly as a result of Silk damping. Picking an ap-
propriate value for the bandwidth is therefore a matter of a com-
promise between the precision of the final products and the cal-
culation cost, with both these quantities being quite sensitive to
the chosen value, and which will depend in general on a specific
application. We emphasize that the presence of the high-` power
decay plays a dual role in our considerations here. On the one
hand, it ensures that the lensing effect at sufficiently large scale
can be computed with an arbitrary precision by simply choosing
the bandwidth values sufficiently high. On the other hand it does
introduce an extra complexity in defining a set of sufficient con-
ditions, which ensure required precision, because these will be
typically different in the regime of the high signal power and that
of the damping tail. In either case, though, it is clear that what-
ever the selected bandwidths, the amplitudes of the harmonic
modes of the lensed signal close to the highest value of ˜̀ X sup-
ported by the employed pixelization, i.e., ˜̀ X ∼ `X

intr + `Φ
intr, will

generally be unavoidably misestimated, and satisfactory preci-
sion can only be achieved for harmonic modes lower than some
˜̀ X
ok < `

X
intr. From the practitioner’s perspective the main problem

is therefore, given some precision criterion, ε, which we wish
to be fulfilled by the harmonic modes of the lensed signal up to
some value of ˜̀ X = ˜̀ X

ok, how to determine the required band-
widths of the unlensed signals, `X

intr = `X
intr( ˜̀ Y

ok, ε) where X and
Y can be the same, e.g., in the case of the T or E signal lensing,
or different, e.g., for the potential field or B-modes.

One effect of these considerations is that if these are maps
of the lensed signals, which are of interest as the final product
of the calculation, then the biased high-` modes should either
be filtered out or suppressed before the map is synthesized from
its harmonic coefficients. To ensure that this does not adversely
affect the resolution of the final map, the bias should affect only
angular scales much smaller than the expected final resolution
of the map as produced in step 6 of the algorithm. If the latter
is defined by the experimental beam resolution, one therefore
needs to ensure that no bias is present for ˜̀ X . `beam ∼ σ−1

beam,
where σbeam is an experimental beam width.

Interpolations. Interpolation is the most popular workaround of
the need to directly calculate values of the unlensed fields for
every displaced directions, which typically will not correspond
to grid points of any iso-latitudinal pixelization. Three interpo-
lation schemes have been considered to date in the context of
the polarized signals. Lewis (2005) proposed a generic modified
bicubic interpolation and demonstrated that it seems to work sat-
isfactorily in a number of cases. This approach together with the
direct summation are both implemented in the publicly avail-
able code LensPix3. Two other methods have been proposed
more recently. Basak et al. (2009) implemented the general in-
terpolation scheme, which recasts a band-limited function on the
sphere as a band-limited function on the 2D torus where a non-
equispaced fast Fourier (NFFT) transform algorithm is used to
compute the field at the displaced positions. This method would
be arbitrarily precise if the sky signals were strictly band-limited.
However, the choice of NFFT can become a bottleneck for this
algorithm since its numerical workload scales with the number

3 http://cosmologist.info/lenspix
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of pixels squared, and its memory requirements are huge. As it
is, the NFFT software can be run only on shared-memory archi-
tectures, making it more difficult to resolve both these problems.
Consequently, the issue of the bandwidth values is becoming of
crucial importance for the performance and applicability of the
method, and its relevance in particular in the context of simula-
tions of upcoming and future high-resolution experiments needs
to be investigated in more detail.

Lavaux & Wandelt (2010) proposed a fast pixel-based
method using the spectral characteristics of the field to be lensed
to compute the weighting coefficient for the interpolation of this
field, without using any spherical harmonic algorithm. Its accu-
racy is set by the number of neighboring pixels used to interpo-
late the field at a given point.

In addition, Hirata et al. (2004) used in their work a poly-
nomial interpolation scheme of arbitrary order and precision,
which has been shown to successfully produce temperature maps
(Hirata et al. 2004; Das & Bode 2008) but has not been tested for
the polarized case.

Any interpolation in this context is not without its dangers
because interpolations tend to smooth the underlying signals.
For a genuinely band-limited function this could in principle be
avoided as in, e.g., Basak et al. (2009). However, for the actual
CMB signals the bandwidth is only approximate and is a func-
tion of the required precision and specific application; the sam-
pling density and interpolation scheme therefore need to be cho-
sen very carefully to render reliable results. Again, the choice of
appropriate bandwidth values is therefore central for a success-
ful resolution of this problem.

Numerical workload. Numerical cost of the direct calculation
per direction is given by O(`2

max) and corresponds to the cost
of calculating an entire set of all ` and m modes of associated,
scalar, or spin-weighted, Legendre functions. For Npix directions
the overall cost about O(Npix `

2
max) = O(Npix)2 and is therefore

prohibitive for any values of Npix and `max of interest. Here, we
assumed a relation, `max ∝ N1/2

pix , typically fulfilled for the full-
sky pixelization with a proportionality coefficient on the order of
a few, e.g., for the HEALPix4 pixelization (Górski et al. 2005)
we have `max = 2

√
3 Npix, while for ECP, `max = 2

√
Npix. The

interpolations can cut on this load, trimming it to the one needed
to compute a representation of the signals on an iso-latitudinal
grid, with complexity O(N1/2

pix `
2
max) = O(N3/2

pix ) plus the inter-
polation with the complexity O(Npix), or O(Npix ln Npix) in the
case of NFFT, in both cases with a potentially large pre-factor.
Nevertheless, this is clearly a more favorable scaling than the one
of the direct method and, as has been shown in the past, makes
such calculations feasible in practice. We note, however, that for
the sake of the precision of the interpolation one may need to
overpixelize the sky, meaning using a higher value of Npix than
what would normally be needed to support the harmonic modes
all the way to `max. Hereafter, we denote the overpixelization
factor in each of the two directions, θ and φ, as κ. Consequently,
the number of pixels used is given by κ2 Npix, where Npix is the
standard full-sky number of pixels as determined by the selected
value of `max.

Goals and methodology. This paper has two main goals. One
is to study internal consistency and convergence of the pixel-
domain simulations in the context of the currently viable cos-
mologies. The other is to study the dependence of the precision
of these simulations on some of its most important parameters.

4 http://healpix.sf.net/

In previous works, analyses of this sort have usually been re-
stricted to comparisons of power spectra of the lensed maps de-
rived by a lensing simulation code and the theoretical predictions
computed via an integration of the Boltzmann equation, as im-
plemented in the publicly available codes, CAMB and CLASS.
In these works, the effort has been made to find a set of the
code parameters for which the resulting spectrum is consistent
with the theoretical expectations. Such comparisons are with-
out doubt an important part of a code and method validation.
However, they are limited to the cases of the gravitational poten-
tials, Φ, derived in a linear theory, and are not applicable in some
other cases where the potential is obtained by some other means
such as, N-body simulations. In addition, they may on occasion
be misleading because the numerical effects can easily conspire
to deliver a spectrum tantalizingly close to the desired one, with-
out any reassurance that the map of the lensed sky characterized
by it has correct other statistical properties, such as higher-order
statistics. That this is particularly likely and consequential for
the B-modes spectrum given its low amplitude and the lack of
characteristic, fine-scale features. An example of such a conspir-
acy is shown in Fig. 1, where the power deficit at the high-` end
caused by the oversmoothing due to the interpolation nearly per-
fectly compensates the extra power aliased into the `-range of
interest as a consequence of too crude a resolution of the final
map.

We therefore propose to study the robustness of the simu-
lated results by demonstrating their convergence and internal
stability with respect to sky sampling and band-limit changes,
as expressed by two parameters introduced earlier: the upper
value of the signal band, `max, and the overpixelization factor,
κ. Only once the convergence is reached we compare the re-
sults to those computed by other means, if any are available. We
note that the convergence tests do not have to, and should not
in general, be restricted to the power spectra comparison only
and could instead involve other metrics more directly relevant to
the simulated maps themselves. In all such tests it is typically
required to consider maps with extreme resolutions, which has
been traditionally prohibitive for numerical reasons. We over-
come this problem with the help of a high-performance lensing
code, lenS2HAT, which we have developed for this purpose.

Our second goal, i.e., to study the dependence of the cal-
culation precision on the two crucial parameters, `max and κ, is
complementary and is aimed at providing meaningful and prac-
tically useful guidelines of how to select the values of these pa-
rameters prior to performing any numerical tests given some pre-
defined precision targets. In this context, we present an in-depth
semi-analytical analysis of the impact of these parameters on the
lensed signal recovery. Though ultimately they may need to be
confirmed numerically case-by-case, e.g., using the convergence
tests as discussed earlier, they could be of significant help in pro-
viding a reasonable starting point for such tests.

At last we also present a simple, high-performance parallel
implementation of the pixel-domain approach, lenS2HAT, which
is capable of reaching extremely high sample density on the
sphere thanks to its efficient parallelization and numerical imple-
mentation, and which has been instrumental in accomplishing all
the other goals of this work.

3. Exploring the bandlimits

3.1. CMB lensing in the harmonic domain

This section addresses the second of goals, as stated above, and
describes a semi-analytic study of the impact of the assumed
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Fig. 1. Examples of the CMB B-modes lensing calculation and involved numerical effects. All panels show the recovered B-modes power spectrum
overplotted over the theoretical B-mode spectrum computed with CAMB (color line). The bandwidth of the E-modes and the potential Φ is the
same in all the panels and set to 2500, while the resolution of the maps used for simulating the lensed signal increases progressively from left
to right. ECP pixelization has been used in all cases. The recovered B-spectrum overestimates the theoretical curve in the left panel due to the
power-aliasing effect, while it underestimates it in the result recovered for much higher resolution as shown on the right. The nearly perfect
recovery shown in the middle panel is merely accidental and results from the insufficient signal bandwidth (right panel) that compensates the
extra contribution of the aliasing effect (left panel). The spectrum in the right panel is aliasing-free because it does not change anymore with the
increasing resolution.

bandwidth values on the precision of the lensed signal. Our
discussion is based on the model of Hu (2000) and focuses on
the lensed B-mode signal that is obtained obtained as a result of
the lensing acting upon the primordial E-mode signal, and is the
main target of this paper. Similar considerations can be made,
however, for other CMB observable spectra and we present some
relevant results calculated for these cases (see Sect. 3.2 for some
more details). Using the results of Hu (2000), we represent the
lensed B-mode signal as

C̃BB
˜̀ B =

1
2

∑
`Φ` E

|2F ˜̀ B`Φ` E |2

2 ˜̀ B + 1
CΦΦ
`Φ CEE

` E

(
1 − (−1)L

)
(12)

where 2F ˜̀ B`Φ` E is a spin-2 coupling kernel (see Hu 2000 for a
full expression), L ≡ ˜̀ B + `Φ + ` E and CEE

` E and CΦΦ
`Φ denote

the unlensed power spectra of the E mode polarization and of
the gravitational potential, respectively. This formula can be ob-
tained by a second-order series expansion around undisplaced
direction, which is expected to be accurate to within 1% for mul-
tipoles ˜̀ B . 2000 and then for ˜̀ B � 2000, where the CMB
amplitude is small and can be modeled by its gradient only,
while in the intermediate scales its precision degrades to nearly
5%. The reliability of this analytical model is discussed later in
Sect. 4.3.1. We can now introduce 1D kernels,H` E ( ˜̀ B), defined
as

H` E ( ˜̀ B) ≡
1
2

CEE
` E

∑
`Φ

|2F ˜̀ B `Φ ` E |2

2 ˜̀ B + 1
CΦΦ
`Φ

(
1 − (−1)L

)
. (13)

Summed over ` E for a fixed ˜̀ B, these give the lensed B-mode
power contained in the mode ˜̀ B, Eq. (12), while for a fixed ` E

they define the power spectrum of the lensed B-modes signal,
generated via lensing from the E polarization signal that con-
tains non-zero power in a single mode ` E , and with its amplitude
as given by CEE

` E . The kernels are displayed in Fig. 2 together
with their analogs for the total intensity and E-polarization sig-
nals. We find that the kernels computed for different values of
˜̀ B are similar, just shifted with respect to each other accord-
ingly. The change in the amplitude simply reflects the change in
the assumed power of the E signal, which in turn follows that
of the actual E power spectrum. The kernels are flat for values
˜̀ B � ` E and decay as a power law for ˜̀ B � ` E , display-
ing a sharp dip at ˜̀ B = ` E . Similar observations can be made

for the T and E kernels, with the exception that unlike their E
and T counterparts, the B kernels are not peaked around the dip.
This behavior is related to the fact that the lensed B-modes sig-
nal we discuss here, described by Eq. (12), is generated by the
E-polarization, while the main effect of the lensing on T and E
is imprinted on these signals themselves. A direct consequence
of this is that for any lensed B-modes spectrum mode a contri-
bution from local unlensed multipoles will be less dominant, as
is the case for the T and E signals, and nonlocal contributions
will be relatively more important and therefore required to be
accounted for in high-precision calculations.

Indeed, owing to the flat plateau of the kernels at the low-
` end, in principle all high-` unlensed modes contribute to the
lensed power at the low-` end. The magnitude of their contri-
bution is modulated by the shape of the unlensed E spectrum
and therefore eventually becomes negligible only because of the
Silk damping, i.e., lack of the power at small angular scales in
the unlensed fields. Nevertheless, we can expect that nearly all
the modes of the unlensed E spectrum up to the damping scale
have to be included in the calculation of the lensed B spectrum
to ensure high-precision recovery of the lensed B-modes spec-
trum with ˜̀ B . 1000. Given some specific target precision, we
could and should fine-tune the required E-spectrum bandwidth,
and whatever is the value selected here, the bandwidth for the
potential field will have to be at least the same.

For high-` modes of the lensed B-modes spectrum, ˜̀ B �

1000, the non-locality of the power transfer due to lensing is
even more striking, as due to the low amplitudes of the E spec-
trum the local contributions are additionally suppressed, and the
long power-law tails of the contributions from large and inter-
mediate angular scales, ` E . 1000 are evidently dominant. Less
evident is the fact that also the E-power from even smaller an-
gular scales, ` E & ˜̀ B, may be relevant. The contributions from
each of these modes may appear small, Fig. 2, but are poten-
tially non-negligible due to the large number of those modes. A
high-precision recovery of the high-` tail of the lensed B-modes
spectrum will therefore need a careful assessment of the impor-
tance of all these contributions, nevertheless, a generic expec-
tation would be that the bandwidth of the unlensed E-modes
spectrum will have to be higher than the highest value of the
lensed B-modes signal multipole for which high precision is re-
quired, and potentially higher than the scale of Silk damping.
Because these very high multipoles of the lensed B spectrum are
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Fig. 2. 1D lensings kernels. The lensed power for T , E, and B spectra is computed assuming a delta-like spectra with power in a single mode
`′ = 10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000 and 6000 in the unlensed CMB spectra. The blue dashed line represents the reference lensed
spectra as computed by CAMB. The sum of all single-mode contributions for `′ ∈ [0,∞] would reproduce the lensed spectra. For T and E cases,
the subdominant contribution of the convolution part only is shown for visualization purposes and offset terms are ignored (see Sect. 3.2 and
Eq. (20)). The comparison of 1D kernel shapes for T , E, and B for `′ = 1000 is shown in the bottom-right panel: the peculiar shape of each type
of kernel drives the locality and amplitude of the contribution to the lensed spectra.

expected to have a significant contribution from relatively low
multipoles of the unlensed E signal, i.e., for which ` E � ˜̀ B

given the triangular relations, Eq. (16), and the definition of the
kernels, Eq. (13), we can conclude that the bandwidth of the po-
tential field used in the simulations will have to be at least as
large as ˜̀ B.

There are two main conclusions to be drawn here. First, it is
clear that a high-fidelity simulation of the B-polarization power
spectrum even in a restricted range of angular scales will require
broad bandwidths, potentially all the way up to the scale of Silk
damping, for both the unlensed E-mode polarization signal and
the gravitational potential. However, these bandwidth values are
not expected to depend very strongly on the maximal B-mode
multipole that we want to recover, at least as long as it is in the
range ˜̀ B . 2000. Second, because the expected bandwidths are
broad, it is important to optimize them to ensure efficiency of the
numerical codes without affecting precision of the results.

Thanks to the peaked character of the respective kernels,
the lensed modes for the lensed T and E spectra are typically
dominated by a local contribution coming from the immediate

vicinity of the mode. This in general permits setting the band-
width for the potential shorter than the mode of the lensed spec-
trum to be computed. By contrast, the unlensed T and E spec-
trum have to be known at least up to the multiple of interest of
the lensed spectrum, ˜̀ X , (X = T or E), augmented by the as-
sumed bandwidth of the potential. These observations reflect the
usual rule of thumb, (e.g., Lewis 2005), indicating that lower
bandwidth values can be used in these two cases for the same
required accuracy.

3.2. Accuracy

In this section we aim at turning the consideration presented
above into more quantitative prescriptions concerning the band-
widths of the input fields used in the simulations. For this reason
we introduce 2D kernels, K ˜̀ B (` E , `Φ), defined as,

K ˜̀ B (` E , `Φ) ≡
1
2
|2F ˜̀ B `Φ ` E |2

2 ˜̀B + 1
CΦΦ
`Φ CEE

` E

(
1 − (−1)L

)
. (14)
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Fig. 3. Lensing kernels K ˜̀ X (` Y , `Φ) for X = Y = T , left column, X = Y = E, middle, and X = B,Y = E, right, for two different values of the
multiple number of the lensed signal, ˜̀ X = 500, 1000, top to bottom. The color scale shows the logarithm of the kernel elements and ranges from
dark blue ∼10−15 to ∼1, dark red. The solid-line contours show the best achievable precision of the estimated lensed spectrum, that can be obtained
if the bandwidths of the E and/or Φ unlensed spectra are truncated to ` E and `Φ. The contours range from 25% to 0.01% from left to right. The
precision is computed with respect to the lensed multipoles calculated with ` E

max = `Φ
max = 8000.

These define for a given value of `B a contribution of the E power
at ` = ` E and the Φ power at ` = `Φ to the amplitude of the
lensed B-modes spectrum at that ` = ˜̀ B, which can then be
computed by summing over ` E and `Φ, i.e.,

C̃BB
˜̀ B =

∑
`Φ, ` E

K ˜̀ B (` E , `Φ). (15)

The sum in this equation involves in principle an infinite number
of terms and therefore would have to be truncated in any nu-
merical work, either explicitly, e.g., by setting finite limits in the
formula above, or implicitly, e.g., by selecting the bandwidths,
pixel sizes, etc., in the pixel-domain codes. We therefore used
these kernels to study the precision problems involved in this
type of calculations. As the expressions for the kernels are ap-
proximate, so will be our conclusions. However, as our goal is
to provide guidelines on how to select the correct values for the
simulations codes, this should not pose any problems. We will
return to this point later in this section.

We show a sample of the kernels, K ˜̀ B (` E , `Φ) in Fig. 3.
These are computed for selected values of `B̃ for which the ap-
proximations involved in their computation are expected to be
valid. We note that all elements of the kernel, K ˜̀ B (` E , `Φ), van-
ish if the quantity L, defined in the previous section, is even, as
do those for which the triangular relation∣∣∣` E − `Φ

∣∣∣ ≤ ˜̀ B ≤ ` E + `Φ (16)

is not satisfied. This last fact is a consequence of the Wigner
3-j symbols in the expressions for 2F ˜̀ B `Φ ` E , (Hu 2000). Within
these restrictions it is apparent from Fig. 3 that each multipole
of the lensed B-modes spectra ˜̀B receives contributions from a
wide range of harmonic modes of both E and Φ spectra, ex-
tending to values of ` E and `Φ significantly higher than ˜̀ B and
roughly independent of the latter value at least for ˜̀ B . 2000.
For its higher values a non-negligible fraction of the contribu-
tion starts to come from progressively higher multipoles of both
E and Φ. Clearly, these trends are consistent with what we have
inferred earlier with help of the 1-dim kernels.

As also observed earlier, we find the B-modes kernels quali-
tatively different from those computed for the lensed total inten-
sity and E-modes polarization signals, Fig. 3, and they are more
localized in the harmonic space with the bulk of power coming
mainly from scales for which both `T,E are relatively close to the
considered lensed multipole, ˜̀ T, E .

We note that all the 2D kernels are positive5 and therefore
including more terms in the sum, Eq. (15), will always improve
the precision of the result. From the efficiency point of view
one may want to include in the sum preferably the terms cor-
responding to the largest 2D kernel amplitudes because they
provide the largest contribution to the final lensed result before
adding those with progressively smaller kernel amplitudes until

5 This is not true for the T E kernels, which we comment about later.
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the required precision is reached. This approach would in prin-
ciple ensure that the best accuracy is achieved with the smallest
number of included terms. This may therefore look as a poten-
tially attractive option from the perspective of optimizing the cal-
culations. However, in practice, as the recurrence formulae are
usually employed in the calculations, e.g., either those needed
to compute spherical harmonics in the case of the pixel-domain
codes or those needed to calculate the 3-j symbols as in a direct
application of Eq. (15), and therefore all the terms up to a given
bandwidth are at our disposal at any time, and it therefore seems
efficient and useful to capitalize on those by including all of them
in the calculation. Consequently, we estimated what degree of
precision can be achieved by such calculations by including all
the contributions up to some specific bandwidth values for the E
and Φ multipoles.

For the B-modes spectrum we therefore hereafter express the
precision of the calculations as

AB
˜̀ B (`Φ, ` E) = 1 −

∑`Φ

`Φ
∗ =0

∑` E

`E
∗ =0K ˜̀ B (` E

∗ , `
Φ
∗ )∑`max

`Φ
∗ =0

∑`max

` E
∗ =0
K ˜̀ B (` E

∗ , `
Φ
∗ )
, (17)

where the sums in the denominator should in principle extend
over the infinite range of values of `, but for practical reasons
are truncated to `max = 8000, which for the range of lensed mul-
tipoles of interest in this work, ˜̀ X . 5000, should be sufficient.

This expression can be generalized for all lensed CMB spec-
tra, but in this case our model has to take into account that the
main effect due to lensing is to reshuffle the power of the signal
and not to convert it into some other component. Therefore the
total variance of the signal has to be conserved (e.g. Blanchard &
Schneider 1987). In this case the lensed power spectra of X = T
or =E can be written as

C̃X
˜̀ X =

(
1 − ( ˜̀ X 2 + ˜̀ X − α) R

)
CX

˜̀ X +
∑
` X , `Φ

K ˜̀ X (` X , `Φ) (18)

R =

`Φ
max∑

`Φ=0

`Φ(`Φ + 1)(2`Φ + 1)
8π

CΦ
`Φ , (19)

where α is an integer that is different for each CMB spectra

– α = 4 for X = E
– α = 0 for X = T
– α = 2 for X = TE.

We note that the factor R is a smooth function of the cutoff value
of the sum over `Φ, which quickly becomes nearly constant for
`Φ

max & 1000, Fig. 5. Hereafter, we therefore precompute it once
assuming `Φ

max = `max = 8000 and use it in all subsequent calcu-
lations. The generalized expression for the accuracy function in
Eq. (17) would then be

AX
˜̀ X (`Φ, ` X) = 1 −

OX
˜̀ X +

∑`Φ

`Φ
∗ =0

∑` X

`X
∗ =0K ˜̀ X (` X

∗ , `
Φ
∗ )

OX
˜̀ X +

∑`max

`Φ
∗ =0

∑`max

` X
∗ =0
K ˜̀ x (` X

∗ , `
Φ
∗ )
, (20)

where for shortness we have introduced

OX
˜̀ X ≡

(
1 − ( ˜̀ X 2 + ˜̀ X − α) R

)
CX

˜̀ X .

We note that for cosmological models of the current interest, the
factor R is typically found to be on the order of O(10−6) and thus
the term OX

˜̀ X is expected to be negative for most of the values of
˜̀ X in the range of interest here, see Fig. 5.

In Fig. 3 black solid lines represent the expected error esti-
mates, as expressed by the accuracy function, AX

˜̀ X (`Φ, `Y ), for a
number of selected values ranging from 25% to 0.01%. We note
that for the shown range of ˜̀ only the sub-percent values of the
accuracy are likely to be somewhat biased due to the assumed
cutoff in the denominator of Eqs. (17) or (20), an effect, which is
therefore largely irrelevant for our considerations here. The fact
that our accuracy definition is based on an approximate formula
is also not a problem because any potential (and small, Challinor
& Lewis 2005) discrepancy would affect both the numerator and
denominator of Eqs. (17) an (20) in the same way. It can there-
fore be shown that to the first order in the discrepancies ampli-
tude, precision of our accuracy criterion improves progressively
when the estimated level of the accuracy, A ˜̀ X (`Φ, ` X), tends to
0 and is degraded to the percent level when AX

˜̀ X (`Φ, ` X) ≈ 90%,
i.e., when it is well outside of the region of any interest for the
high-precision simulations considered here (see Appendix A).

The differences in the shape of the lensing kernels result in
differences in the accuracy contours for different lensed signals
and their multipoles as shown in Figs. 3 and 4. In particular,
for lensed B-modes, the contribution of large-scale power of the
CMB to the lensed signal is more significant. In spite of these
differences, we, however, find that the overall contours seem to
share a similar shape made of two lines nearly aligned with the
plot axes which meets at a right angle. Consequently, if one of
the two bandwidths is fixed, then the accuracy, which can be
reached by such a computation, will be limited and, moreover,
starting from some value of the other bandwidth, nearly inde-
pendent on its value. This has two consequences. First, if the at-
tainable precision is not satisfactory given our goals, it can be
improved only by increasing the value of the first bandwidth
appropriately. Second, the value of the second bandwidth can
be tuned to ensure nearly the best possible accuracy, given the
fixed value of the first bandwidth, while keeping it much lower
than what the triangular relation, Eq. (16), would imply. This
could lead to a tangible gain in terms of the numerical workload
needed to reach some specific accuracy. Turning this reasoning
around, we could think of optimizing both bandwidths to mini-
mize the cost of the computation for a desired precision. From
this perspective, taking the turnaround point of the contour for
a given accuracy may look as the optimal choice. However, this
choice would merely minimize the sum of both bandwidths, (or
some monotonic function of each of them) for the given accu-
racy, which may or may not be relevant for a specific case at
hand. Instead we may rather select the bandwidths to minimize
explicitly actual computational cost of whatever code we plan
on using. We present specialized considerations of this sort in
the next section.

On a more general level, we find that the standard rule of
thumb, interpreting the effects of lensing as a convolution of the
unlensed CMB signal with a relatively narrow, ∆` ∼ 500, con-
volution kernel due to the lensing potential, applies only for T
and E signals and even in these cases only to low and interme-
diate values of ˜̀ T, E . 2000 and only as long as a computation
precision on the order of ∼1% is sufficient. For higher values of
the lensed spectrum multipoles or higher levels of the desired
accuracy in the case of T and E and for all multipoles of the
B-polarization signal, the required bandwidths of both the re-
spective, unlensed CMB signal and the gravitational potential
are more similar and indeed the latter bandwidth is often found
to be broader.

We note that an analysis of this sort is somewhat more prone
to problems in the case of the TE power spectrum since the
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Fig. 4. Lensing kernels K ˜̀ X (` Y , `Φ) for X = Y = T , left column, X = Y = E, middle, and X = B,Y = E, right, for two different values of the
multiple number of the lensed signal, ˜̀ X = 2000, 4000, top to bottom. See Fig. 3 for additional details.

lensing kernels K ˜̀ T E (` T E , `Φ) are not always positive because
they contain the products of two different Wigner 3j coefficients
and TE power spectra, which may be non-positive, rendering
the corresponding accuracy function not strictly monotonic.
Hereafter, we excluded this spectrum from our analysis, noting
that any band limits prescriptions derived for T and E will also
apply directly to TE.

4. Numerical analysis

In this section, we present results of simulations of lensed polar-
ized maps of the CMB anisotropies and their spectra. We address
two aspects here. First, we numerically study self-consistency
of the pixel-domain approach to simulating the lensing effect.
Second, we demonstrate how the consideration from the previ-
ous section can be used to optimize numerical calculations in-
volved in these simulations.

We start this section by introducing a new implementation of
the pixel-domain algorithm, which we refer to as lenS2HAT.

4.1. lenS2HAT

lenS2HAT is a simple implementation of the pixel-domain
algorithm for simulating effects of lensing on the CMB
anisotropies. The hallmark of the code is its algorithmic sim-
plicity and robustness, with its performance rooted in efficient,
memory-distributed parallelization. The code is therefore par-
ticularly well-adapted to massively parallel supercomputers. Its

implementation follows the blueprint described in Lewis (2005)
that summarized in Sect. 2.2.1. The main features of the code are
listed below.

Grids. The code can produce lensed maps in a number of pix-
elizations used in cosmological applications, but internally it
uses grids based on the equidistant cylindrical projection (ECP)
pixelization where grid points, or pixel centers, are arranged in
a number of equidistant iso-latitudinal rings, with points along
each ring assumed to be equidistant. This pixelization supports a
perfect quadrature for band-limited functions, which in the con-
text of this work permits minimizing undesirable leakages that
typically plague codes of this type. It can be shown, Driscoll &
Healy (1994), that an ECP grid made of 2 L iso-latitudinal rings,
each with 2 L points and a weight, as given by

w j =
2π
L2 sin(θ j)

L−1∑
`=0

sin
(
(2` + 1)θ j

)
2` + 1

, θ j =
π

2L
j, (21)

is required and sufficient to ensure a perfect quadrature for any
function with a band not larger than L.

Interpolation. For the interpolation, the code employs the near-
est grid point (NGP) assignment, e.g., we assign to every de-
flected direction a value of the sky signal computed at the nearest
center of a pixel of the assumed pixelization scheme, therefore
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the respective sky signal values are calculable at the fast spher-
ical harmonic speed. The NGP assignment is extremely quick
and simple, but it requires the computations to be performed at
a very high resolution to ensure that the results are reliable. The
sufficient resolution required for this will in general depend on
the intrinsic sky signal prior to the lensing procedure, as well
as the resolution of the final maps to be produced, as is dis-
cussed in Sect. 4.2. As discussed above, in a typical case these
are expected to be very high and the computations involved in
the problem may quickly become very expensive. Nevertheless,
as we show in Sect. 4.8, the overall computational time in this
case is only somewhat longer than that involved in some other in-
terpolation schemes, while the memory requirement can be sig-
nificantly lower. However, the major advantage of this scheme
for the purpose of this work is its simplicity and in particular the
fact that its precision is driven by a single parameter defining the
grid resolution.

Spherical harmonic transforms. To sidestep the problem of
computing spherical harmonic transforms with a huge number of
grid points and a very high band limit, lenS2HAT resorts to par-
allel computers and massively parallel numerical applications.
With these becoming quickly more ubiquitous and affordable
this solution is becoming progressively more attractive.

Parallelization of the fast spherical harmonic transforms is
difficult due to the character of the input and output objects
and the involved computations, where a calculation of each out-
put datum requires knowledge of, and access to, all input data.
This is clearly not straightforward to achieve without extensive
data redundancy, as done e.g., in LensPix or parallel routines
of HEALPix, or complex data exchanges between the CPUs in-
volved in the computation. To avoid such problems in our imple-
mentation we used the publicly available scalable spherical har-
monic transform (S2HAT) library6. This library provides a set of
routines designed to perform harmonic analysis of arbitrary spin
fields on the sphere on distributed memory architectures (though

6 http://www.apc.univ-paris7.fr/APC_CS/Recherche/
Adamis/MIDAS09/software/s2hat/s2hat.html

it has an efficient performance even when working in the serial
case). It has a nearly perfect memory scalability obtained via
a memory distribution of all main pixel and harmonic domain
objects (i.e., maps and harmonic coefficients), and ensures very
good load balance from the memory and calculation points of
view. It is a very flexible tool that allows a simultaneous, multi-
map analysis of any iso-latitude pixelization, symmetric with re-
spect to the equator, with pixels equally distributed in the az-
imuthal angle, and provides support for a number of pixelization
schemes, including the above mentioned ECP; see Szydlarski
et al. (2011) for more details. The core of the library is writ-
ten in F90 with a C interface and it uses the message passing
interface (MPI) to institute distributed memory communication,
which ensures its portability. The latest release of the library also
includes routines suitable for general purpose graphic processing
units (GPGPUs) coded in CUDA (Hupca et al. 2012; Szydlarski
et al. 2011; Fabbian et al. 2012).

We emphasize that if a sufficient resolution can be indeed at-
tained, the approach implemented here can produce results with
essentially arbitrary precision. In the following we demonstrate
that thi is indeed the case for the described code.

4.2. Code parameters

4.2.1. Overview

In this section we describe how we fixed the essential parame-
ters of the code. We first emphasize important relations between
them. A detailed description of the procedures used to assign
specific values to them, is given in the following sections.

1. We start by defining a target value in terms of the highest
value of the harmonic mode, ˜̀ Y

req, that we aim to recover
and its desired precision, ε. We then use the reasoning from
Sect. 3.2 to translate this requirement into corresponding
bandwidths, ` X and `Φ, of the relevant unlensed signals, X
and Φ. These ensure that the precision of all modes of the
lensed signal up to ˜̀ Y

req will be not lower than ε, barring any
unaccounted-for, numerical inaccuracies. The values of ` X

and `Φ are then used to estimate the bandwidth of the out-
put, lensed map, ˜̀ Y

out.
2. We then simulate two unlensed maps, mX and mΦ, of the

signal X and potential field, Φ, with their band limits set to
` X and `Φ, as estimated earlier. The number of pixels of the
displacement map, mΦ, is equal to that in the output map of
the lensed signal, and for the ECP grid, equal therefore to
NΦ

pix = 4 ˜̀ Y
out

2. The number of pixels in the X-signal map,

mX is then given by NX
pix = 4 κ2 ` X 2, where κ is an over-

pixelization factor introduced in Sect. 2.2.1 and discussed in
detail below, Sect. 4.2.4. For simplicity, we assume that the
grid for which the unlensed field X is computed is a subgrid
of the grid used for Φ.

3. The reassignment procedure (step 5 of the algorithm,
Sect. 2.2.1) is then straightforwardly performed, leading
to the map containing power potentially up to ˜̀ Y

out, which
maybe needed to be filtered down to the band limit of ˜̀ Y

req, as
initially required.

4.2.2. Intrinsic bandwidths

We employ the procedure described earlier in this work in
Sect. 3.2 to set the intrinsic band limits. Instead of using generic
predictions, we aim at optimizing their values to ensure the
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Fig. 6. Numerical cost gain by using the optimized set of `Φ, ` E parameters compared with assumin `Φ = ` E as a function of the accuracy of
the computed spectrum for several values of the highest multipole of interest. An oversampling factor of κ = 8 was assumed to compute the cost
function.

lowest possible computational overhead. To do so we need to
provide a model of the cost of numerical calculations involved in
lenS2HAT. This is dominated by large spherical harmonic trans-
forms, one needed to calculate the map of Φ and the other to cal-
culate that of signal X. Given the parameters introduced above
and because the total cost of a spherical harmonic transform is
proportional to Npix `max we therefore obtain

C ≡ C(`Φ, ` X) ∝ 2 NΦ
pix`

Φ + nstokes NX
pix`

X

= 8 ˜̀ Y
out

2
+ 4 nstokes κ

2 ` X 2

= 8 η2 (`Φ + ` X)2 `Φ + 4 nstokes κ
2 ` X 3

. (22)

Here nstokes stands for the number of signal maps, that we aim
to produce and is equal 1 – T -only, 2 – E and B, or 3 – T , E,
and B, while for the field Φ the pre-factor is fixed and equal
to 2, reflecting the number of components of a vector field on
the sphere. In deriving the last equation above we have assumed
that ˜̀ Y

out = η (`Φ + ` X). This is justified below, as are the val-
ues that should be adopted for η and κ. The expression above
includes neither the cost of the interpolation nor reshuffling, but
because in both these cases the number of involved operations is
proportional to Npix, their cost is negligible with respect to that
of the transforms.

Solving for the optimized values of the bandwidths, which
simultaneously ensure the desired precision, ε, at a selected mul-
tipole, ˜̀ Y

req, involves minimizing the cost function in Eq. (22),
with a constraint, AY

˜̀ Y
req

(`Φ, ` X) = ε, Eqs. (17) and (20). This
is implemented as follows. First, we define a grid of levels of
the cost function and for each level calculate the best accu-
racy achievable on its corresponding contour. If this accuracy
for some of the levels is close to our target, we find a corre-
sponding pair of bandwidth values, (`Φ, ` X), which then defines
our optimized solution. If none of the accuracies is sufficiently
close to the required precision, we take two levels for which the
assigned accuracies bracket the target value and insert an inter-
mediate level for which we calculate the corresponding best ac-
curacy. We repeat this procedure until the best accuracy found
for the newly added contour is sufficiently close to the target
one. We then use it to find the pair of the optimized bandwidths
as above. As mentioned before, in general, the two optimized
bandwidth values will not be equal. This appears to be partic-
ularly the case when simulating the CMB spectra at very high
multipoles and especially in the cases involving the B modes,
which have broader kernels and are more demanding in terms of
bandwidth requirements. The procedure allows one to gain a fac-
tor of nearly 40% in terms of runtime inthea range of accuracy of
interest for lensed B multipoles close to 4000, especially if high

oversampling is required. For temperature and E-mode polariza-
tion, where less extra power is required in Φ to obtain an accu-
rate result, the gain can be quantified to be nearly 20%–30%.
We report in Fig. 7 the dependence of the optimized bandwidth
parameters as a function of the required accuracy imposed at dif-
ferent lensed multipoles of T , E, and B spectra, in the right col-
umn, and contrast them with the bandwidths obtained in the case
when both of them are assumed to be equal. In Fig. 6 we show
typical runtime gains as a function of the required accuracy.

We note that here that whether we choose to optimize the
bandwidths or just assume that they are equal, we find that im-
posing a certain accuracy level at some multipole, ˜̀′, ensures that
the same accuracy requirement will be fulfilled for all ˜̀ ≤ ˜̀′.

4.2.3. Lensed map band-limit

For the resolution of the final map, we note that in an absence of
numerical effects, such as those due to the pixelization and inter-
polation, the lensing procedure would be described by Eq. (12)
and the bandwidth of the lensed map would be simply given
by ` X + `Φ. In the presence of the numerical effects, the out-
put map will have an effective bandwidth typically higher than
that, which will lead to some power-aliasing at the high-` end if
this theoretical band limit is imposed. We find this to be indeed
the case in our numerical calculations. However, we also find
that once the overpixelization factor is set correctly, the aliasing
is localized to at most 25% of the bandwidth and therefore easy
to deal with in post-processing, e.g., step 6 of the algorithm out-
line in Sect. 2.2.1. Consequently, we used ˜̀ Y

out = η (` X + `Φ) in
our numerical simulations, with η = 1.25 as the band limit.

It is important to emphasize that NGP is one of the sources
of the aliasing, because it does not preserve the bandwidth of the
interpolated function, like some of the other, ad hoc procedures
proposed in this context. Clearly, an interpolation that preserves
the function bandwidth would be a significant improvement for
this type of algorithms, if it comes without prohibitive numerical
cost. We leave such an investigation to future work.

4.2.4. Overpixelization factor

As we explained already our interpolation procedure consists of
two steps: an overpixelization that is followed by an NGP as-
signment. The overpixelization involves producing maps with
the sky signal sampled at significantly higher rate than is neces-
sary given from the signal’s band limit. For the ECP grids used
internally by lenS2HAT, this is implemented by using κ-times
more points in each of the φ and θ directions. The remaining
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Fig. 7. Left column: examples of band-limit requirements for unlensed CMB and lensing potential as a function of obtainable accuracy, assuming
they are equal, on several multipoles of lensed T , E and B spectra. Right column: summary of the optimized choice of bandwidth parameters
for CMB (dot-dashed) and Φ field (dashed) compared with the cost function of the algorithm, as defined in Eq. (22). The diagonal bandwidth
parameters are shown as a solid line for comparison.

problem is then to fix the appropriate value of κ. To do so, we
first observe that for the overpixelized grid, the NGP assign-
ment can be seen in two ways. Either as approximating the true
value of the sky signal, which needs to be calculated in one of
the displaced directions, which are precisely computed in turn,
which is the standard perspective and the only one available if
a more sophisticated interpolation scheme is applied. Or it can

be seen as approximating each displaced direction by a direction
pointing toward the nearest grid point, with a correct sky signal
value assigned to it. This second viewpoint provides us with an
independent test to check if the density of our overpixelized grid
is sufficiently high. The involved procedure involves first calcu-
lating the approximate displacement field and its power spec-
trum, which is then compared with the input power spectrum
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Fig. 8. Comparison between the E-modes power spectra of the input
displacement field (black) and the displacement field after NGP assign-
ment for several values of the oversampling factor κ. The input displace-
ment is computed on an ECP grid with a number of pixel Npix = 16 3842

while the discretized one is the result of an NGP assignment on a grid
of κ2Npix. With progressively higher resolution the extra power due to
discretization becomes negligible and the two spectra become almost
indistinguishable. The discretization-induced error power spectrum is
shown as a dotted line for reference; both E and B modes of the dis-
cretization error have the same power spectra.

for the gravitational potential, Φ. We note that the approxima-
tion used here can in general generate a non-zero curl and there-
fore there will be two non-vanishing spectra of the approximate
displacement field, corresponding to its E (gradient) and B (curl)
components. We then require that the recovered B spectrum is
significantly smaller than that of E, and that both the recov-
ered E spectrum and the input one agree sufficiently well up
to the angular scales, which are of interest given the `-range of
the lensed spectrum we are after and its precision. These lat-
ter two are turned into the `-range requirement using one of the
2D kernels.

Examples of such comparisons are shown in Fig. 8 for a
number of values of the oversampling factor ranging from κ = 1
up to 8. We see that for the latter value the approximate E spec-
trum is consistent over the entire shown range of ` values and
the recovered B is there significantly smaller. We therefore con-
tinue to use this value in the runs discussed later in this work,
even if, as noted in the next section, κ = 4 could be sufficient at
least for ˜̀ B . 2000. We also point out that, as it might have been
expected, the departures of the recovered E spectrum for the dis-
placement from the input one are consistent with the presence
of the non-zero B-type mode in the approximated displacement
field with an amplitude similar to that of its E-mode spectrum,
which renders our two criteria redundant. In addition, if only T
and E CMB spectra are of interest, then κ ≈ 2 is usually suffi-
cient to obtain accurate results on the scales of interest because
the long-tails of the displacement spectrum are less relevant in
these cases.

For completeness, in Fig. 9 we show the relevant CMB
B-spectra computed with the same values κ as shown in Fig. 8
and aiming at a high-precision reconstruction for ˜̀ B ≤ 2000,
demonstrating that both overpixelization rates, as inferred above,
ensure a satisfactory recovery of this spectrum in the tar-
geted range of `. We provide more details about this Fig. in
Sect. 4.3.2.

Fig. 9. Lensed B-modes spectrum computed for different values of over
sampling factor compared with the lensed spectrum obtained with the
analytical Boltzmann code CAMB (red dashed).

4.3. Validation and tests

4.3.1. Simulated kernels

As a first step of validation of our code, we investigated whether
its results agree with the prediction of the semi-analytical ap-
proach used to model convolution in the harmonic domain. We
focus here on numerically feasible studies of the 1D kernels, as
defined in Eq. (13). For this purpose we assumed that the un-
lensed CMB signal, i.e., E-modes polarization in the case of
the lensed B-modes spectrum, contains power only in a single
harmonic mode, `0 i.e., CEE

` ∝ δKronecker
` `0

and computed the re-
sulting lensed B-modes spectrum for several values of `0 using
lenS2HAT. We compared them with the analytic results obtained
for the same multipole and displayed in Fig. 2. The results of
this calculation are shown in Fig. 10, where we see that in a
range where the analytic model is more reliable the agreement
between the two curves is excellent if only a sufficient resolution
for the unlensed grid is used. On the other hand, in the region
where the analytic approximation we used is not accurate any-
more because amplitudes of the CMB signal and its gradient are
comparable and therefore the truncation in the series expansion
introduces a non-negligible error, the discrepancy between our
analytical model and the simulated 1D kernels becomes more
evident. Such an approximation tends to overestimate the con-
tribution of each single mode to its neighboring angular scales
of a factor of nearly 50% with respect to simulated kernels and
to slightly underestimate the contribution of each mode to the
kernel tails, i.e., to the multipoles higher than the one in exam.
Nevertheless, the analytically-approximated and simulated ker-
nels are found to be qualitatively quite similar, which validates
therefore our semi-analytic bandwidth requirements presented
earlier.

4.3.2. Simulated spectra

Another batch of performed tests consisted in comparing
the spectra obtained from lenS2HAT and those derived with
Boltzmann codes such as CAMB or CLASS. In particular, the
black solid line in Fig. 9 shows an example of the result ob-
tained for a simulation of lensed B-modes designed to reach an
accuracy of up to 0.1% at `B . 2000. Because no band-limit
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Fig. 10. Comparison of the simulated, solid black lines, and analytical, solid red lines, 1D B-modes kernels, H` E ( ˜̀ B), shown as a function of ˜̀ B,
and computed for the unlensed CMB E power contained initially only in a single mode, ` E = 500, 1000, 4000 and 5000. For low values of ` E ,
left panels, the agreement between the analytic expression, Eq. (12), and numerical results is very good all the way to `B . 2000, as expected. For
higher values of ` E , though the agreement is poorer, it remains qualitatively very good, which justifies our semi-analytic considerations presented
in Sect. 3.

optimization is performed, and it is therefore assumed that `Φ =
` E = `max, the latter value has to be at least `max = 4000, Fig. 4.
The lensing convolution of signals with such a band limit leads
to polarized maps with power up to 2 `max, which means that
to avoid any aliasing, we would need a grid for the lensed sky
and the displacement field with at least Nθ ≈ 2`max rings with
Nφ ≈ 2`max pixels per ring, i.e., Npix ≈ 16 3842, where we have
rounded the number of rings and pixels per rings to a power of 2.
Once the band limit of the signals and the respective grid for
the lensed sky is set, we still need to define the overpixelization
rate as required by our interpolation. As noted in the previous
section, there seem to be a general reasoning based on the dis-
cretized displacement spectra, which points toward κ = 8 as a
sufficient value. Because calculating the overpixelized map, al-
beit with a restricted band-limit, is the most time-consuming part
of the code, there may be an interest on occasion to tune κ to
be as small as possible. In this context we find, as illustrated in
Figs. 8 and 9, that if the extra power introduced by discretiza-
tion of displacement field does not exceed 10% of the power in
the non-discretized displacement field on scales ` ≈ 1.5 `B, an
oversampling factor of 4 is sufficient to render a power spectrum
on scales ` . `B with an accuracy as determined by the assumed
bandwidth. However, the factor 4 should be treated as a lower
bound and be used with care because there will typically be a
significant amount of extra power in the B-mode spectrum for
` & ˜̀ B, which may need to be efficiently filtered out before the
respective map can be further used. In contrast, if the extra power
found in the discretized displacement does not exceed 10% of
the original power for all angular scales up to `Φ

max, then no over-
shooting takes place and the results remain highly accurate also
beyond the scale of interest `B.

In Fig. 11 we present the spectra for the two polarized com-
ponents E and B as well as the displacement field, Φ, computed
in a run aiming at recovering of these signals in a band up to
˜̀ X . 5500 with precision better than to 0.1%. For this run we
assumed the value of the required bandlimits to be ` E

max = `Φ
max =

8000. These values were extrapolated from Fig. 7, where to ob-
tain a 0.1% accuracy on B-modes on similar angular scales (e.g.
˜̀ X = 4000) we needed to include power up to `max ≈ ˜̀ X + 2500.
Following the same prescription as given for the previously de-
tailed case of Fig. 9, we set the resolution of the unlensed sky

and displacement field to Npix = 32 7682 while, to ensure the
highest possible reliability of the result, we pushed the oversam-
pling factor to 16. The discretization errors introduced by this
setup are found to stay under the 1% level on all the angular
scales involved in the calculation and no significant overshoot-
ing is shown (see Fig. 11). Though the band limit and resolution
involved may look exaggerated from the practical point of view,
they simultaneously demonstrate the capability of the numerical
code while illustrating our conclusions concerning the precision
of these calculations.

In general, we find that a simple algorithm as proposed in
lenS2HAT is capable of simulating effects of lensing on CMB
over the range of angular scales of interest for current and fore-
seeable experimental efforts. Moreover, if used properly, it does
so with an accuracy that on very small scales is limited rather
by the precision of the input power spectrum of unlensed CMB
than by the employed numerical algorithm.

4.4. Convergence tests

To investigate the precision and reliability of our approach it
is interesting to investigate the numerical convergence of the
results without relying on a direct comparison to an external
Boltzmann code. Since several experiments in the future will be
able to target non-Gaussianities in CMB polarization, i.e., the
statistical moments beyond the power spectrum, we decided to
study the convergence of the results not only on the power spec-
trum level, but also in the real domain, i.e., on the map level.

4.5. Power spectrum convergence

We first investigate the convergence of the power spectrum up
to a given scale of interest ˜̀ X as a function of the bandwidths.
This procedure allows us to simultaneously show the precision
of our code and also to indirectly prove the validity of the band-
width requirements given in Sect. 4.1. For this purpose we as-
sumed the bandwidths for CMB and Φ fields to be equal and
then fixed the resolution of the grid following the prescriptions
of Sect. 4.3.2 assuming κ = 8. We simulated CMB maps off
all three Stokes parameters T , Q, and U and then computed
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Fig. 11. Example of a single realization of a high-accuracy and high-precision simulation of the lensed CMB polarization spectra obtained with
lenS2HAT. The run required an unprecedented resolution and bandwidth and was performed as a demonstration of the code capabilities. The
bandwidth parameters have been set to obtain 0.1% accuracy of modes up to ` ≈ 5500 for both B and E spectra. For the polarization signals,
top and middle panels, the left panels show the spectra recovered from the lenS2HAT run, black solid line, and the theoretical one obtained from
CAMB (red solid line). The right panels show the relative difference between these two with the dashed lines outlining the expected 1σ uncertainty
due to sampling variance. The bottom-left panel shows the E-modes power spectrum of the recovered displacement before the NGP assignment,
red solid line, and the E-modes and B-modes power spectra of the displacement field after the NGP, black dashed lines, with the former E-modes
spectrum overlapping the latter nearly perfectly. The bottom-right panel shows the relative discretization error.

the precision of the amplitude of the power in some multipole
of interest, ˜̀ X , recovered from the simulation. The precision
is defined as the fractional difference between the amplitudes
obtained from two simulations performed for two considered
values of `max. For these specific tests we verified that the ran-
dom realization of the harmonic coefficients used in the simu-
lation is the same when changing the value of the bandwidth
from `max to a value `′max for ` ≤ `max. We report the result of
the numerical convergence for ˜̀ X = 2000 in Table 1. We note
that the results agree with the analytic calculation of Sect. 4.1,
where we saw that extending the band limit has no visible ef-
fect on the recovered results on the scale of interest if a proper
amount of power has already been convolved. As expected, a sig-
nificant fraction of E-modes power is converted into B-modes
for angular scales `E ∈ [3000, 4000] but no significant im-
provement is seen if power beyond `E = 4000 is included. We
also performed a test case for ˜̀ X = 4000, i.e., in the regime
where the gradient approximation is expected to be less accu-
rate, Table 2. The B-modes accuracies are consistent with those
derived in Sect. 4.3.2 except for the last set of bandwidth param-
eters, where the fractional difference between simulated spectra
seems to saturate at a level of 0.1%. This may be related to a

Table 1. Numerical convergence of simulated lensed CMB power spec-
tra at multipole ˜̀ X = 2000.

˜̀ X ∆3000
2000 ∆4000

3000 ∆6000
4000 ∆8000

6000

TT 43% 0.04% 0.02% 0.003%
EE 31% 0.01% 0.01% 0.005%
BB 35% 3% 0.02% 0.004%
TE 32% 0.04% 0.01% 0.002%

Notes. Each column shows a fractional change in the lensed spectra
amplitude due to an increase of the bandwidths of both the unlensed
CMB and potential field, assumed here to be equal, as denoted by super-
and sub-scripts of ∆

`′max
`max

.

small residual aliasing due to an underestimated oversampling
parameter.

4.6. Map convergence

After showing the convergence on the power spectrum level,
which provides information on the overall variance of the
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Fig. 12. Maps of the recovered χE (upper row) and χB (lower row) fields as defined in Zaldarriaga & Seljak (1997) (left column) and difference
maps normalized by the input map rms, E E/B

`max,1 ,`max,2
, Eq. (23), computed for

(
`max,1, `max,2

)
= (4000, 2000) (middle column) and

(
`max,1, `max,2

)
=

(8000, 4000) (right). There is a factor of 10 difference between the color scales of the middle and left column.

Table 2. As Table 1, but for ˜̀ X = 4000.

˜̀ X ∆5000
4000 ∆6000

5000 ∆7000
6000 ∆8000

7000

TT 31% 0.2% 0.09% 0.1%
EE 32% 0.2% 0.05% 0.03%
BB 7% 4.6% 0.1% 0.09%
TE 21% 0.7% 0.2% 0.2%

simulated maps, we investigated if the convergence of our nu-
merical result is also realized in the real domain. For this pur-
pose we first defined an error map obtained as a difference of two
maps computed assuming two different bandwidths `max,1, `max,2
rescaled by the rms value of one of the two maps, i.e.,

E X
`max,1,`max,2

=
mX
`max2 −mX

`max1√
Var (mX

`max2)
X ∈ {T,Q,U}, (23)

where mX
`max,1

is a simulated map of the field X obtained assuming
`max,1 as the bandwidth. After deriving the harmonic coefficients
with the procedure outlined in the previous section, we filtered
out all modes on angular scales ` ≥ ˜̀ X and resampled the signal
on a grid that properly samples the signal up to multipole ˜̀ X . To
take advantages of the HEALPix visualization tools, we use for

this purpose an HEALPix grid having nside = 1024 (2048) for
˜̀ X = 2000 (4000). After resampling the harmonic coefficients
we computed the power spectrum of the error field E X

`max,1,`max,2
,

which demonstrates the precision obtained on the map level. In
Fig. 12 we report the result of this analysis for the test case
˜̀ T,E,B = 2000. The error-field power spectrum is found to be
very similar to a white noise spectra with r.m.s below 1%. If the
power is properly resolved, an accuracy equivalent to 0.1% on
the map level can indeed be obtained, while the error slightly in-
creases to 0.3% for polarization (see Fig. 13). However, this test
case does not include the effect of any realistic experiment setup;
in a real-life case the criterion for the convergence is set by the
noise level on the pixel, if instrumental noise has to be added to
the simulated maps.

The results presented above show that the systematic uncer-
tainties inherent to the pixel-domain simulation method can be
controlled with high accuracy, demonstrating that this method
can provide a sufficiently precisely framework within which to
compare and study different physical assumptions entering such
calculations and in particular to investigate the impact of cos-
mological models on the B-mode lensing predictions. We em-
phasize that the pixel-domain method is sufficiently general to
be applicable to a range of diverse physical contexts of this kind.
Even more importantly, the applicability of the considerations
presented here goes beyond the pixel-domain method and can
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Fig. 13. T , E, and B power spectrum of the error field obtained from
maps simulated with different values of bandwidth parameters (col-
ored lines). For reference, the dot-dashed and dashed lines show the
spectra of a white-noise process with variance equal to 0.01 and 0.001,
respectively.

be straightforwardly extended to, for instance, ray-tracing ap-
proaches, which do not involve Born-approximation.

4.7. Monte Carlo simulations

To test whether our method produces any significant bias in the
power spectrum we produced Nr = 100 independent realizations
of lensed T , Q, and U maps that were required to reach 0.1%
accuracy up to ˜̀ B = 3000 and investigated the statistical prop-
erties of the power spectra averaged over these realizations. The
latter is expected to be nearly Gaussian-distributed since the non-
Gaussian correlations in the lensed power- spectrum covariance
induced by lensing itself are negligible for T , E and TE spec-
tra. However, for all the power spectra including the B field, we
expect the latter statement to be only partially correct since the
the covariance of this spectrum is non-Gaussian, especially on
small angular scale. Identifying the expected scatter of the av-
eraged spectrum with the theoretical Gaussian sample variance
therefore tends to underestimate the scatter itself.

For each pair of the Stokes parameters, X and Y , we define a
quantity

GXY
` =

√
(2` + 1)Nr[

(C̄XY
`

)2 + CXX
`,thCYY

`,th

] (C̄XY
` −CXY

`,th), (24)

where the bar denotes a power spectrum averaged over Nr re-
alizations. The ensemble of all values of GXY

` is expected to be
Gaussian-distributed with 0 mean and variance 1, which can be
tested by means of a Kolmogorov-Smirnov (KS) test. In addi-
tion, we define a reduced χ2 statistics, Eq. (24) and following
Basak et al. (2009), as

χ̃2
XY =

`max∑
`=2

∣∣∣GXY
`

∣∣∣2
`max − 1

· (25)

We report in Table 3 the results of these two tests expressed
as the significance level probability of the null hypothesis. We
found that the method does not produce any significant biases
on T B and EB cross spectra either; these were not shown in the
previous analysis but are of potential interest, because they are
a sensitive test of any artificially induced correlation. Moreover,

Table 3. Results of statistical tests on the recovered lensed power spec-
tra averaged over 100 realizations.

C̄XY
` Significance PKS Significance Pχ̃2

XY

TT 0.19 0.92
EE 0.97 0.65
BB 0.79 0.14
TE 0.58 0.84
TB 0.20 0.34
EB 0.71 0.67

Notes. The significance-level probability for the null hypothesis using a
Kolmogorov-Smirnov test (PKS) and a reduced chi-square χ̃2 statistics
(Pχ̃2

XY
) show no bias on a statistical level.

the precision and accuracy of the result can be tested quite in-
dependently of analytical models by devising a custom conver-
gence procedure as explained in the previous section.

4.8. Numerical performance and requirements

In this section we evaluate the strong scaling relations for numer-
ical cost and memory requirements of lenS2HAT, i.e., we run the
code with the same parameters and test its scalability as a func-
tion of the number of MPI processes used in the calculation. For
this benchmark test we used `E/B

max = `Φ
max = 8000 and a grid for

lensed sky and displacement field of 32 7682 pixels.
The main data volume involved in the calculations is given

by harmonic coefficients and maps that are evenly distributed
between processors through the S2HAT library. Their distribu-
tion is optimized for all spherical harmonics transform steps in-
volved. The remapping method itself only depends on structures
that are also distributed between processors, allowing us to pre-
serve the scalability features inherited from the S2HAT library.
The overall memory requirements per processors for a lenS2HAT
run are on the order of O(Npix/n), where Npix is the total number
of pixels of both the lensed map and displacement field and n is
the number of MPI tasks (or processors) used for the simulation,
which is assumed to be one for the physical core available on our
test architecture. The prefactor varies as a function of the over-
sampling rate and is equal to (3 + κ2) for the temperature and to
(4 + (1 + κ2)nStokes) for polarized cases. We report in Fig. 14 the
results of strong- and weak-scaling tests performed on the Cray
XE6 Hopper cluster of the NERSC7 supercomputing center us-
ing the integrated performance monitoring library8 (IPM). The
discrepancy between our model and the actual memory resource
requirements per processors are due to MPI buffer allocations for
collective communications and duplications of auxiliary objects
describing the properties of the pixelization and observed sky
patch used in the simulations as required by the S2HAT library
and remapping method. They have a size O(11(1 + κ)

√
Npix)

and accounts for nearly 25Mb of data duplicated on each pro-
cessor. The memory-overhead of the communication part of the
lenS2HAT algorithm depends instead on the number of pixels in
the local memory of each processor that is lensed on an area of
the map stored on the memory of another processor. This quan-
tity controls the size of MPI buffers, but cannot be precisely de-
termined a priori since it depends on the specific realization of
the displacement field used in the simulation.We found for this

7 https://www.nersc.gov
8 http://ipm-hpc.sourceforge.net/
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Fig. 14. Performance benchmarks of the lenS2HAT code. From left to right, we show the memory, runtime, and total CPU time, summed over all
MPI processes, as a function of the number of processors (or MPI tasks). In all cases the simulations have been made for three Stokes parameters
and used a ECP grid of 32 7682 points, `CMB

max = `Φ
max = 8000 and oversampling factor κ = 8. In each panel the dashed lines show a theoretical

scaling as expected in the ideal circumstances. The thick lines show the indicative results from the LensPix code run on a HEALPix grid with
nside = 4096, band limit `max = 8000 and an oversampling factor of 2. In the right panel, the LensPix alm2map curve includes the time required
to generate the oversampled ECP grid used for interpolation and the interpolation time itself. See Sect. 4.8 for a detailed discussion.

specific test case that the memory-overhead for the communica-
tion has a size of roughly 75Mb per processor.

The computational cost of our method is driven by the syn-
thesis of the unlensed map, which is the highest-resolution ob-
ject to be computed and has a number of pixels κ2 higher than
the displacement field. As can also be seen from the right panel
of Fig. 14, the runtime connected to the inverse spherical har-
monic transform of the unlensed sky, despite being perfectly
load-balanced, tends to flatten due to required internal commu-
nication steps and precomputations to initialize the recurrence
to compute spherical harmonics. These are per se subdominant
steps, but they are expected to play a role for a very fine paral-
lelization (Szydlarski et al. 2011). The overall remapping pro-
cedure of pixel values requires a number of operation of about
O(Npix/n) and is subdominant, since it operates on a lower-
resolution map, and perfectly scalable because it does not require
any communication. The step involving the reconstruction of the
lensed map after reshuffling the pixels (denoted as communica-
tion part in Fig. 14) is subdominant, but the walltime required
by this step is expected to slightly grow because it potentially
involves the collective communication of small amounts of data
between processors and is expected to approach the latency limit
for message sending.

In Fig. 14 we also mark the performance of the
LensPix code. However, because these two codes follow differ-
ent algorithmic approaches and perform different operations to
obtain a lensed map, it is not straightforward to set up a proper
comparison. The presented results should therefore be viewed
as merely indicative. In this case, we have attempted to set the
code parameters to obtain an accurate spectrum up to ` ' 5000.
We assumed the same bandwidth for the LensPix runs as for
lenS2HAT, i.e., `max = 8000, and used the lowest resolution
capable of supporting the corresponding harmonic modes on a
HEALPix grid, setting nside = 4096. This value may be some-
what on the low side given the increase of the bandwidth due
to the lensing. LensPix also requires as an input an oversam-
pling parameter that defines the unlensed sky resolution in the
ECP pixelization. We chose this parameter to be 2 because this
is a value commonly used and has been reported to be suffi-
cient to produce accurate results (e.g. Benoit-Lévy et al. 2012).
With this choice of the input parameters we find that the LensPix
code displays a better performance in terms of the runtime for an
intermediate number of employed MPI-process, but the gain is
quickly offset by the superior scaling properties of the lenS2HAT

code and its ability to employ many processors. Moreover, for
the sake of comparison, no bandwidth optimization procedure
was applied here, which would result in about a factor ∼1.4 im-
provement in the lenS2HAT runtimes. We note that the memory
and communication bottlenecks prevented us from successfully
running LensPix on more than ∼800 MPI processors of our com-
putational platform. The performance of lenS2HAT can be fur-
ther improved by performing a simultaneous, multi-map analysis
(see Appendix B), made feasible thanks to its low memory over-
head and near perfect scalability of the memory requirements.
However, as they are, the two codes seem to be complementary
and to address the needs of different computational platforms.

5. Conclusions

We have investigated and clarified details of modeling and sim-
ulations of the gravitational lensing effect on CMB. We partic-
ularly aimed at elucidating the role and impact of bandwidths
of considered signals on the precision of the pixel-domain ap-
proaches (e.g., Lewis 2005) to simulating the lensing effect on
polarized anisotropies, paying special attention to recovering of
the B component. These bandwidths play a crucial role in ensur-
ing a sufficient accuracy of the produced lensed maps and need to
be carefully taken into account if numerical effects such as power
aliasing are to be kept under control. We developed a semi-
analytic approach based on the formalism of Hu (2000) to study
these effects, and with its help investigated the necessary require-
ments for the signal’s bandwidths. In particular, we found out
that the simple convolution picture, where the convolution ker-
nel has a limited width of at most few hundred in ` space due to
the gravitational potential, though it works very well for the total
intensity, T , and E polarization up to ˜̀ T/E . 2000, is adequate
neither for much smaller angular scales in these two cases nor for
the B-mode signal. Instead, the proposed semi-analytic formal-
ism should be used to guide a selection of the simulation parame-
ters to ensure the final precision of the result, but also to optimize
the computational time. We point out that the accuracy consid-
erations we presented are sufficiently generic that they should
be applicable to other CMB lensing simulation techniques pro-
viding sound guidelines for choices of suitable parameters, that
these techniques involve. For the pixel-domain-based methods,
our main object of study here, we find that sufficiently high pre-
cision can indeed be ensured and permits meaningful simula-
tions of small effects due to different physical assumptions.
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Furthermore, we validated our semi-analytic results with the
help of extensive numerical computations, for which we de-
veloped a simple, massively-parallel lensing simulation code,
lenS2HAT. The code uses an extremely simple but robust ap-
proach to the interpolation, involving sky overpixelization and a
simple NGP assignment scheme, which, as we showed, leads to
easily understandable and controllable numerical effects. These
effects are minimized because the code, thanks to its efficient
parallelization, permits analyses of extremely large sky maps
with very dense sky grids/pixelization. In this way the simulated
sky power can be resolved all the way to its actual bandwidths,
which are carefully kept track of in the code.

The developed code, lenS2HAT, is suitable for massively
parallel computational platforms, with either shared or dis-
tributed memory. It displays nearly perfect scalability in terms
of runtime and allocated memory per processor up to the max-
imal number of CPUs it can employ. This last is determined
by the lowest value of the band-limit parameters for either the
CMB or the displacement field that is to be used in the runs,
nmax

proc = min(` E
max, `

Φ
max)/2. It therefore permits extensive simu-

lations involving hundreds of simulated maps in a reasonable
time. The major bottleneck of the code performance is due to the
need of calculating a single inverse spherical harmonic transform
which is required to obtain the overpixelized map of the unlensed
signal. This can certainly be alleviated further by using better
algorithms and/or numerical implementations, e.g., capitalizing
on hardware accelerators such as GPGPU (Hupca et al. 2012;
Szydlarski et al. 2011; Fabbian et al. 2012; Reinecke & Seljebotn
2013). We leave these code optimizations for future work. The
code and its forthcoming version will be publicly available.
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Appendix A: Precision of the accuracy formula

The harmonic approximation of Hu (2000), which we used
throughout the paper, is known to reproduce the lensed CMB
spectra with an accuracy of only a few percent (Challinor &
Lewis 2005). In this appendix we discuss the validity of the def-
inition of the approximate accuracy function, Eq. (20), which is
based on this approximation.

Assuming that we have access to the exact 2D convolution
kernels instead of the one derived with the gradient approxima-
tion, such that

CX,exact
`

=

∞∑
`Φ
∗ =0

∞∑
`X
∗ =0

K exact
˜̀ X (` X

∗ , `
Φ
∗ ), (A.1)

we can express the exact accuracy formula as

AX,true
`

(`Φ, ` X) = 1 −
α`
` X ,`Φ + ζ` X ,`Φ

α`
`X

max,`
Φ
max

+ ε
, (A.2)

where α`
` X ,`Φ and α`

` X
max,`

Φ
max

correspond to the numerator and dom-
inator in Eq. (20), and the two extra terms that quantify the cor-
responding, effective errors, which themselves may depend on

the cutoff assumed in the computation of both the numerator and
denominator, are given as

ε =

∞∑
`Φ
∗ =0

∞∑
`X
∗ =0

K exact
˜̀ X (` X

∗ , `
Φ
∗ ) − α`

` X
max,`

Φ
max

(A.3)

ζ` X ,`Φ =

`Φ∑
`Φ
∗ =0

` X∑
`X
∗ =0

K exact
˜̀ X (` X

∗ , `
Φ
∗ ) − α`

` X ,`Φ . (A.4)

Hereafter, we assume that the absolute cutoff for the CMB and
lensing potential, `max, is chosen sufficiently high so that all
the relevant power is included when computing the considered
lensed multipole. Because the accuracy of the harmonic expan-
sion β ≡ ε/α`

`X
max

is on the order of percent, we can Taylor-expand
the previous expression to the first order in β, i.e.,

AX,true
`

(
`Φ, ` X

)
≈ 1 −

(α`
` X ,`Φ + ζ` X ,`Φ )

α`
`X

max,`
Φ
max

(1 − β) + O(β2) (A.5)

= AX
` (`Φ, ` X) + βAX

` (`Φ, ` X) + β −
ζ` X ,`Φ

α`
`X

max,`
Φ
max

·

From now on, we denote the last term on the rhs as δ` X ,`Φ . We
can then rewrite the precision of the accuracy function as∣∣∣∣∣∣∆AX

` (`Φ, ` X)

AX
`

(`Φ, ` X)

∣∣∣∣∣∣ ≈
∣∣∣∣∣∣ 1
AX
`

(`Φ, ` X)

(
β
(
1 − AX

` (`Φ, ` X)
)
− δ` X ,`Φ

)∣∣∣∣∣∣
≈

∣∣∣∣∣∣∣∣
(
+β − δ` X ,`Φ

)
+ O(β2)

AX
`

(`Φ, ` X)

∣∣∣∣∣∣∣∣ , (A.6)

where we have assumed that the accuracy function is at most
O(β) in the regime of interest here.

The overall precision of the accuracy function, as expressed
by Eq. (A.6), is then driven by the difference between the two
terms, which by construction tend to cancel each other because
ζ` X ,`Φ goes to ε as ` X , `Φ approach `max. The formula therefore
becomes more and more accurate as we approach the cutoff
limit.

Appendix B: lenS2HAT code

The code outline follows the general simulation guidelines dis-
cussed in Sect. 2.2.1, but we detail here several features of po-
tential interest of the code structure.

1. When generating a Gaussian random realization of a har-
monic coefficients for the unlensed CMB and the displace-
ment field, both the correlation between temperature or
E-modes and the displacement field generated by the Sachs-
Wolfe effect can be taken into account if requested. However,
since both are negligible for most multipoles, we neglected
them in the runs performed for this paper. We do not expect
this correlation to affect the results of our analysis, especially
in the high ` tail of the spectrum because the correlation is
confined to large angular scales.

2. The effects of nonlinear LSS evolution, which consequently
affect the lensing potential, are naturally taken into account
in the code if they are included in an effective lensing po-
tential power spectrum. Even though nonlinear evolution of
matter perturbations induces non-Gaussianities in the matter
power spectrum, the contributions of higher-order statistical
moments to the lensing potential have been proven to be on
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the subpercent level (Merkel & Schäfer 2011).The assump-
tion of a purely Gaussian lensing potential is thus well ap-
plicable and usually sufficient for this kind of simulations.
As an alternative, the code can accept pre-computed maps
of the potential on the input, which can be therefore arbi-
trarily non-Gaussian, and which will be used to produce the
displacement field.

3. Since harmonic coefficients are distributed between pro-
cessors and generated directly in a distributed way, we
used the scalable parallel random number generator li-
brary9 (SPRNG) to avoid correlation between random num-
ber streams on each processors.

4. The computation of the displaced coordinates and the remap-
ping of the pixel locations are managed by two separate
routines, one optimized for grids with equidistant rings (e.g.
ECP) and the other developed for any pixelization conform-
ing with the requirements imposed by S2HAT. Since maps
are distributed between processors, it can happen that the
remapping procedure on a given processor identifies the re-
quired displaced pixel to be located in a region of the sky
map that is not stored in the local memory. For this reason
the code has to manage pixel indexing using two different
indexing scheme (one for the full-sky map and one for the
chunk of the full map stored locally) and has to be able to
switch from one to the other. To performed this operation ef-
ficiently we have to allocate on each processor an auxiliary
bi-dimensional array, that encodes the indices of the pixels
required by the processors and that are not present in its
memory and the processors on which these are effectively
located. The total volume of this structure is therefore equal
to that of the part of the lensed sky stored locally and consti-
tutes the only memory overhead required by the remapping
procedure.

5. A collective MPI_All2allv communication step is per-
formed to redistribute the information on pixels, that are
needed by a processor to build the final lensed map, but
is not stored in its local memory. This pattern ensures an
even distribution of memory between all cores and a very
good scalability up to several thousand MPI processes. On
the numerical level the communication time is subdominant,
although it can in principle be further optimized with non-
blocking MPI local communication calls or by exploiting an
hybrid MPI/OpenMP approach.

6. The code can perform simulations in an arbitrary pixelization
scheme that meets the S2HAT requirements. Though we have
found that ECP is preferred for the internal computation, the
output results can be delivered on a grid selected by the user,
e.g. the HEALPix grid.

7. The code supports simultaneous multi-map analysis on the
spherical harmonics step of the algorithm, when memory
available for a given processor is sufficient. In this case, the

9 http://sprng.cs.fsu.edu

gain in the runtime of the code is roughly equal to the num-
ber of maps processed at the same time. This option makes
the code particularly appealing for the data analysis steps
involving massive use of Montecarlo realizations of lensed
CMB maps.

References
Basak, S., Prunet, S., & Benabed, K. 2009, A&A, 508, 53
Benoit-Lévy, A., Smith, K. M., & Hu, W. 2012, Phys. Rev. D, 86, 123008
Blanchard, A., & Schneider, J. 1987, A&A, 184, 1
Carbone, C., Springel, V., Baccigalupi, C., Bartelmann, M., & Matarrese, S.

2008, MNRAS, 388, 1618
Challinor, A., & Lewis, A. 2005, Phys. Rev. D, 71, 103010
Das, S., & Bode, P. 2008, ApJ, 682, 1
Das, S., & Linder, E. V. 2012, Phys. Rev. D, 86, 063520
Das, S., Sherwin, B. D., Aguirre, P., et al. 2011, Phys. Rev. Lett., 107, 021301
de Putter, R., Zahn, O., & Linder, E. V. 2009, Phys. Rev. D, 79, 065033
Driscoll, J. R., & Healy, D. M. 1994, Adv. Appl. Math., 15, 202
Errard, J., & Stompor, R. 2012, Phys. Rev. D, 85, 083006
Fabbian, G., Szydlarski, M., Stompor, R., Grigori, L., & Falcou, J. 2012, in

Astronomical Data Analysis Software and Systems XXI, eds. P. Ballester,
D. Egret, & N. P. F. Lorente, ASP Conf. Ser., 461, 61

Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Hall, A. C., & Challinor, A. 2012, MNRAS, 425, 1170
Hirata, C. M., Padmanabhan, N., Seljak, U., Schlegel, D., & Brinkmann, J. 2004,

Phys. Rev. D, 70, 103501
Hirata, C. M., Ho, S., Padmanabhan, N., Seljak, U., & Bahcall, N. A. 2008,

Phys. Rev. D, 78, 043520
Hu, W. 2000, Phys. Rev. D, 62, 043007
Hu, W., & Okamoto, T. 2002, ApJ, 574, 566
Hupca, I., Falcou, J., Grigori, L., & Stompor, R. 2012, in Euro-Par 2011: Parallel

Processing Workshops (Springer), 355
Kamionkowski, M., Kosowsky, A., & Stebbins, A. 1997, Phys. Rev. D, 55, 7368
Kermish, Z. D., Ade, P., Anthony, A., et al. 2012, in SPIE Conf. Ser., 8452
Kesden, M., Cooray, A., & Kamionkowski, M. 2002, Phys. Rev. Lett., 89,

011304
Lavaux, G., & Wandelt, B. D. 2010, ApJS, 191, 32
Lewis, A. 2005, Phys. Rev. D, 71, 083008
Lewis, A., & Challinor, A. 2006, Phys. Rep., 429, 1
McMahon, J. J., Aird, K. A., Benson, B. A., et al. 2009, in AIP Conf. Ser. 1185,

eds. B. Young, B. Cabrera, & A. Miller, 511
Merkel, P. M., & Schäfer, B. M. 2011, MNRAS, 411, 1067
Niemack, M. D., Ade, P. A. R., Aguirre, J., et al. 2010, in SPIE Conf. Ser., 7741
Okamoto, T., & Hu, W. 2003, Phys. Rev. D, 67, 083002
Oxley, P., Ade, P. A., Baccigalupi, C., et al. 2004, in SPIE Conf. Ser., 5543, ed.

M. Strojnik, 320
Planck Collaboration 2013, A&A, submitted [arXiv:1303.5077]
Reinecke, M., & Seljebotn, D. S. 2013, A&A, 554, A112
Seljak, U., & Hirata, C. M. 2004, Phys. Rev. D, 69, 043005
Smith, K. M., Zahn, O., & Doré, O. 2007, Phys. Rev. D, 76, 043510
Smith, K. M., Hanson, D., LoVerde, M., Hirata, C. M., & Zahn, O. 2012, J.

Cosmology Astropart. Phys., 6, 14
Szydlarski, M., Esterie, P., Falcou, J., Grigori, L., & Stompor, R. 2011

[arXiv:1106.0159]
Tomaru, T., Hazumi, M., Lee, A. T., et al. 2012, in SPIE Conf. Ser., 8452
van Engelen, A., Keisler, R., Zahn, O., et al. 2012, ApJ, 756, 142
Zaldarriaga, M., & Seljak, U. 1997, Phys. Rev. D, 55, 1830
Zaldarriaga, M., & Seljak, U. 1998, Phys. Rev. D, 58, 023003

A109, page 20 of 20

http://sprng.cs.fsu.edu
http://arxiv.org/abs/1303.5077
http://arxiv.org/abs/1106.0159

	Introduction
	Simulating weak lensing of the CMB
	Algebraic background
	Pixel-domain simulations
	Basics
	Challenges and goals


	Exploring the bandlimits
	CMB lensing in the harmonic domain
	Accuracy

	Numerical analysis
	lenS2HAT
	Code parameters
	Overview
	Intrinsic bandwidths
	Lensed map band-limit
	Overpixelization factor

	Validation and tests
	Simulated kernels
	Simulated spectra

	Convergence tests
	Power spectrum convergence
	Map convergence
	Monte Carlo simulations
	Numerical performance and requirements

	Conclusions
	Precision of the accuracy formula
	lenS2HAT code
	References

