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ABSTRACT

Aims. The Galileon model is a modified gravity theory that may provide an explanation for the accelerated expansion of the Universe.
This model does not suffer from instabilities or ghost problems (normally associated with higher-order derivative theories), restores
local General Relativity — thanks to the Vainshtein screening effect — and predicts late-time acceleration of the expansion.

Methods. We derive a new definition of the Galileon parameters that allows us to avoid having to choose initial conditions for the
Galileon field. We tested this model against precise measurements of the cosmological distances and the rate of growth of cosmic
structures.

Results. We observe a weak tension between the constraints set by growth data and those from distances. However, we find that the
Galileon model remains consistent with current observations and is still competitive with the ACDM model, contrary to what was

concluded in recent publications.

Key words. supernovae: general — cosmology: observations — dark energy

1. Introduction

The discovery of the accelerated expansion of the Universe
(Riess et al. 1998; Perlmutter et al. 1999) led cosmologists to
introduce dark energy to explain our Universe. Adding a cos-
mological constant (A) to Einstein’s General Relativity is the
simplest way to interpret observational data. However, even if
adding a new fundamental constant is satisfactory, the value of
A obtained from numerous measurements results in significant
fine-tuning and coincidence problems. Thus, there is theoreti-
cal motivation to find alternative explanations, such as modified
gravity models.

The Galileon model is just such a formulation. It was first
proposed by Nicolis et al. (2009) as a general theory involving
a scalar field, hereafter called x, and a second-order equation
of motion invariant under a Galilean shift symmetry (9,7 —
Oy + by, where b, is a constant vector). This symmetry was
first noticed in braneworld theories such as the DGP model of
Dvali et al. (2000). The DGP model has the advantage of pro-
viding a self-accelerating solution to explain the expansion of
the Universe, but it is plagued by ghost and instability problems.
Galileon theories are a generalization of the DGP model that
avoid these problems. The Galileon model was derived in a co-
variant formalism by Deffayet et al. (2009). It was also shown
that this model forms a subclass of the general tensor-scalar the-
ories involving only up to second-order derivatives originally
found by Horndeski (1974).

In a four-dimension spacetime, only five Lagrangian terms
are possible when forming an equation of motion for 7 in-
variant under the Galilean symmetry. Therefore, the Galileon
Lagrangian has only five parameters. In the Galileon theory, as
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in the DGP theory, a screening mechanism called the Vainshtein
effect (Vainshtein 1972) arises near massive objects due to non-
linear derivative self-couplings of the 7 field. These ensure that
the Galileon fifth force is screened near massive objects, and pre-
serves General Relativity on local scales where it has been ex-
perimentally tested to high precision. However, this screening is
only effective below a certain distance from massive objects (the
Vainshtein radius) that depends on the mass of the object and on
the values of the Galileon parameters (Burrage & Seery 2010).
Experimental constraints on the Galileon parameters based on
local tests of gravity have been proposed by Brax et al. (2011)
and Babichev et al. (2011).

Recently, the Galileon model has been tested against ob-
servational cosmological data by Appleby & Linder (2012b),
Okada et al. (2013), and Nesseris et al. (2010). These au-
thors tend to reject the Galileon model because of tensions be-
tween growth-of-structure constraints and the other cosmologi-
cal probes. The evolution of the Universe in the Galileon theory
is based on differential equations involving the r field, which re-
quires one to set initial conditions, and the above studies resorted
to different methods for setting these initial conditions. In this
work, we avoid this problem by introducing a new parametriza-
tion of the Galileon model that renders it independent of ini-
tial conditions. Combined with theoretical constraints derived in
Appleby & Linder (2012a) and De Felice & Tsujikawa (2011),
we compare our model with cosmological observables, and find
that the Galileon model is not significantly disfavored by current
observations.

We used the most recent measurements of Type Ia su-
pernovae (SN Ia) luminosity distances, the cosmic microwave
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background (CMB), and baryon acoustic oscillations (BAO).
The highest-quality SN Ia sample currently available is the
SNLS3 sample described in Guy et al. (2010), Conley et al.
(2011), and Sullivan et al. (2011). For the CMB, we used the
observables from WMAP7 (Komatsu et al. 2011) and the set
of BAO distances of the BOSS analysis (Sdnchez et al. 2012).
The growth of structures is an important probe for distinguish-
ing modified gravity models from standard cosmological models
such as ACDM, so it has to be used carefully. In this work, we
used fog(z) measurements from several surveys, corrected for
the Alcock-Paczynski effect.

Section 2 provides the Galileon equations used to compute
the evolution of the Universe and the theoretical constraints im-
posed on the Galileon field. Section 3 describes the likelihood
analysis, data samples, and the computing of cosmological ob-
servables. Section 4 gives the constraints on the Galileon model
derived from data, and Sect. 5 discusses these results and their
implications. We conclude in Sect. 6.

2. Cosmology with Galileons
2.1. Lagrangians

The Galileon model is based on the assumption that the scalar
field equation of motion is invariant under Galilean symmetries:
Oymt — 0, + b, where b, is a constant four vector. By imposing
this symmetry, Nicolis et al. (2009) showed that there are only
five possible Lagrangian terms L; for the Galileon model action.
The covariant formulation of the Galileon Lagrangian was de-
rived in Deffayet et al. (2009). In this paper we start with this
covariant action with the parametrization of Appleby & Linder
(2012a):

MR 1L
S =fd4x\/—g[TP—§ ¢ili = Lin |, (D
i=1

with Ly, the standard-matter Lagrangian, Mp the Planck mass,
R the Ricci scalar, and g the determinant of the metric. The c¢;s
are the arbitrary dimensionless parameters of the Galileon model
that weight the different terms. The Galileon Lagrangians have a
covariant formulation derived in Deffayet et al. (2009):

L =
Ly

M’r, L= (V,n)(Vn), Ls= (@) (V,x)(Vr)/M>
(V,70)(V¥7) [2(un)2 — 27,y = R(V,70)(VF) /2] /M®

Ls = (V,m)(V¥r) [(Elir)3 = 3(@m)m ot + 21y, Yy, Py

- 67r;,,7r;”v7r;pGVp] /M, )

where M is a mass parameter defined as M3 = HgMp, where H
is the current value of the Hubble parameter. With this definition
the ¢;s are dimensionless.

L, is the usual kinetic term for a scalar field, while L3 to
Ls are non-linear couplings of the Galileon field to itself, to the
Ricci scalar R, and to the Einstein tensor Gy, providing the nec-
essary features for modifying gravity and mimicking dark en-
ergy. L, is a tadpole term that acts as the usual cosmological con-
stant, and may furthermore lead to vacuum instability because it
is an unbounded potential term. Therefore, in the following we
setcy; = 0.

Appleby & Linder (2012a) proposed additional direct lin-
ear couplings to matter to add to the action: a linear coupling
to matter Ly = CoﬂTﬁ /Mp and a derivative coupling to mat-
ter Lg = ¢g0um0,nTH/ (MpM?), which arises in some brane-
world theories (see e.g. Trodden & Hinterbichler 2011), where
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TH is the matter energy-momentum tensor. These couplings
may modify the physical origin of the accelerated expansion
of the Universe. Without coupling, the Universe is accelerated
only because of the back-reaction of the metric to the energy-
momentum tensor of the scalar field, and the Galileon acts as
a dark energy component. If the Galileon is coupled directly to
matter, instead, it can give rise to accelerated expansion in the
Jordan frame, while the Einstein-frame expansion rate is not ac-
celerating. In that case, the cosmic acceleration stems entirely
from a genuine modified gravity effect. In this work, we do not
consider these optional extensions to the theory, so the Einstein
frame and Jordan frame coincide. For more information about
the Einstein and Jordan frames, see e.g. Faraoni et al. (1999).

Action 1 leads to three differential equations: two Einstein
equations ((00) temporal component and (ij) spatial component)
coming from the variation of the action with respect to the metric
guv» and the scalar field equation of motion from the variation of
the action with respect to the r field. The equations are given
explicitly in Appendix B of Appleby & Linder (2012a). With
these three differential equations the evolution of the Universe
and the dynamics of the field can be computed.

To solve the cosmological equations, we chose the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric. With
no direct couplings, the functions to compute are the Hubble
parameter H = a/a (with a the cosmic scale factor), and x =
7’ /Mp, with a prime denoting d/dlna (see Appleby & Linder
2012a and Sect. 2.3).

2.2. Initial conditions

To compute the solutions of the above equations, we need to set
one initial condition for x. We arbitrarily chose to define this
initial condition at z = 0, which we denote xy = x(z = 0).
Unfortunately, we have no prior information about the value of
the Galileon field or its derivative at any epoch. Fortunately, x
can be absorbed by redefining the ¢;s as follows:

E‘,‘ = C,')CB (3)
X=x/xp 4)
H = H/H. o)

This redefinition allows us to avoid treating xo as an extra free
parameter of the model. Doing so, the ¢;s remain dimensionless,
and the initial conditions are simple:

Hy=1. (6)

Note that the (00) Einstein equation could also be used as a
constraint equation to fix xo (see Appendix A) given a set of
cosmological parameters ¢;s, QO and QU. If we were to adapt
this, we would observe a degeneracy between the parameters:
the same cosmological evolution can be obtained with small ¢;s
and a high xp, or with high ¢;s and a small xj. In other words,
different sets of parameters {c;, xo} produce the same cosmology,
i.e., the same p,(z), which is undesirable. Our parametrization
avoids this problem by absorbing the degeneracy between the
¢;s and xg into our ¢;s.

X0 =1,

2.3. Cosmological equations

To compute cosmological evolution in the Galileon model, we
assume for simplicity that the Universe is spatially flat, in

' If the optional coupling parameters ¢y and cg are included, they

should be redefined as ¢y = coxg and ¢ = chg. But if ¢y # 0, two
initial conditions are needed (o and 7ry)). With our new parametrization
we would have to introduce and fit a new parameter ro = mo/7;.
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agreement with current observations. We used the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric in a flat space:

ds* = —dF* + a’5,;;dx'dx’. (7)

When writing the cosmological equations, we can mix the (ij)
Einstein equation and the 7 equation of motion to obtain the fol-
lowing system of differential equations for ¥ and H:

al —oy

¥=-i+—2" (8)
of - aw
H = wy =4 9)
op — aw
with
C2 5o ae 322 o ops3 35 7
a = ng— 363H X + 15¢,H° X — 705H X (10)
o i 5
y= %H%—c ~&H'E + SesH Y (1
B= %Flz — 263 H%% + 98, HOF — 105537 (12)
o =20 +26:H% - 156, % + 21¢6sH' % (13)
QY 5 _
A=30+ 2T+ 2R 0 A'Y
a 2
15 6.4 - 785
+ 7C4H —-9¢sH x (14)
w =26H* 7 — 1264H % + 1565H8 2, (15)

as derived in the formalism of Appleby & Linder (2012a), but
using our normalization for the c¢;s. We obtain the same equa-
tions except that the c;s are changed into ¢;s, and that we have
a different treatment for the initial conditions. Equations (8)
and (9) depend only on the ¢s and Q. The radiation energy
density in Eq. (14) is computed from the usual formula Q¥ =
92(1 + 0.2271N,g) with Neg = 3.04 the standard effective num-
ber of neutrino species (Mangano et al. 2002). The photon en-
ergy density at the current epoch is given by ny)h2 =2.469x1073

(where, as usual, 7 = Hy/(100 km s Mpc‘l) for Temp = 2.725 K.

2.4. Perturbation equations

To test the Galileon model predictions for the growth of struc-
tures, we also need the equations describing density perturba-
tions. We followed the approach of Appleby & Linder (2012a)
for the scalar perturbation. Appleby & Linder (2012a) performed
their computation in the frame of the Newtonian gauge, for
scalar modes in the subhorizon limit, with the following per-
turbed metric:

ds? = —(1 + 2¢)dr* + a*(1 — 2¢)6;,dx'dx’. (16)

In this context, the perturbed equations of the (00) Einstein equa-
tion, the (ij) Einstein equation, the  equation of motion, and the
equation of state of matter are in the quasi-static approximation

1 - _ B}

Emvzw - i3V%p = kK, V6y (17)
2

P26y — V2 = 2P s 18

K5 Y — KysV°p HSM]% m (18)
1 - _ }

Exsvzw -1 V2¢ = ksV?6y (19)

_ _ _ 1 -
H*s) + HH'6,,+2H°6), = =V, (20)
a

where 6y = on/Mp is the perturbed Galileon, V. = V/Hy, pm
is the matter density, and d;, = 9pom/om 1S the contrast matter
density. k;s are the same as in Appleby & Linder (2012a), but
rewritten following our parametrization:

_ _ _ Hx
K = —6C,H % (H')"c + HY + Tx)

+esH P (12HY + 15H'% + 3H%) (1)
k3 =—1- %41-_14 v —3csH (A’ % + HY) (22)
Ky = =2+ 3c,H* 7 — 6¢5HO (23)
ks = 263 H? % — 1264H*% + 1565H°% (24)
Ke = % —2¢3(H*% + HH' % + 2H%%)

+ e (12H*%% + 18H*FPH + 130*%)

—es(18HRY + 30’ H + 12H°%). (25)

With Egs. (17) to (20), we can obtain a Poisson equation for ¢,

with an effective gravitational coupling Gé‘ff) that varies with time
and depends on the Galileon model parameters ¢;s:

_ dra>GY m
Vi = Tgffpam (26)
0
4 (k3K — K2
v - ( ) (27)

Ns
Ks (KaK1 — K5Kk3) — K4 (K4Ke — K5K1)

with Gy Newton’s gravitational constant. These equations can be
used to compute the growth of matter perturbations in the frame
of the Galileon model (see Sect. 3.2.4). Tensorial perturbations
modes also exist, and are studied in Sect. 2.5.4.

2.5. Theoretical constraints

With so many parameters, it is necessary to restrict the parame-
ter space theoretically before comparing the model to data. The
theoretical constraints arise from multiple considerations: the
(00) Einstein equation, requiring positive energy densities, and
avoiding instabilities in scalar and tensorial perturbations.

2.5.1. The (00) Einstein equation and ¢s

Because we used only the (ij) Einstein equation and the 7 equa-
tion of motion to compute the dynamics of the Universe (Egs. (8)
and (9)), we are able to use the (00) Einstein equation as a con-
straint on the model parameters:

o QO Qg a3 15 - _
H* = —;“+—;+C—62H2 V=26 + e HOR - Tes YR . (28)
a a

More precisely, we used this constraint both at z = 0 to fix one
of our parameters and, at other redshifts, to check the reliability
of our numerical computations (see Sect. 3.1). The parameter we
chose to fix at z = 0 is

1 ¢ 1
&5 == (-1 +Q?n+§2?+—2—253+754).

G (29)

We chose to fix ¢5 based on the other parameters because allow-
ing it to float introduces significant numerical difficulties when
solving Egs. (8) and (9), since it represents the weight of the
most non-linear term in these equations. As QU is fixed given A,
our parameter space has been reduced to Q?n, h, ¢,, ¢3 and ¢4.
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2.5.2. Positive energy density

We require that the energy density of the Galileon field be posi-
tive from z = 0 to z = 107 (see Sect. 3.2.2 and Appendix B). At
every redshift in this range, this constraint amounts to

Pr _Copro o opas A5 64 - 7385
H(Z)Mg = EH —6c3H +764H X =21¢sH°x > 0. (30)

This constraint is not really necessary for generic scalar field
models. But as we will see in the following, it has no impact on
our analysis because the other theoretical conditions described
below are stronger.

2.5.8. Scalar perturbations

As suggested by Appleby & Linder (2012a), outside the quasi-
static approximation the propagation equation for 6y leads to two
conditions, which we again checked from z = O to z = 107 to
ensure the viability of the linearly perturbed model:

1. a no-ghost condition, which requires a positive energy for
the perturbation

2

3 K5 )

Ky + —— <O,
2K4

€2

2. aLaplace stability condition for the propagation speed of the
perturbed field

) Ak K4Ks5 — 2K3K§ - 2KZK6

S

c >0 (32)

Kk4(2K4K0 + 3K§)
with

Ky = —%2 + 65 H2 % — 276, + 3065 HOR. (33)

2.5.4. Tensorial perturbations

We also addrd two conditions derived by De Felice & Tsujikawa
(2011) for the propagation of tensor perturbations. Considering
a traceless and divergence-free perturbation dg;; = a*h;;, these
authors obtained identical perturbed actions at second order for
each of the two polarisation modes /g and hg. For hg

1

. C2
oS = 3 f dtd® xa® Or [hg - a—g(wz@)z] (34)

with Or and cr as defined below. From that equation, we ex-
tracted two conditions in our parametrization that have to be sat-
isfied (again from z = 0 to z = 107):

1. a no-ghost condition:

Or 1 3. 74 =4 3. 775 =5 .
V[Z’ = 5 — ZC4H X+ ECSH x>0 (35)
2. a Laplace stability condition:
Lo 1= g4z4 3= 540/ 4 [+
5+ 7CaH* X" + 5¢6sH° X" (H'x + HX
2 =214 26X ( ) o, (36)

1 - 35, % + 365 HO X

AS53, page 4 of 18

These conditions allowed us to reduce our parameter space sig-
nificantly. The Galileon model contains degeneracies between
the ¢;s, as pointed out in e.g. Barreia et al. (2012). The above
theoretical constraints and our new parametrization allowed us to
break degeneracies between the ¢; parameters that would make it
difficult to converge to a unique best-fit with current cosmologi-
cal observations. As an example, the tensorial theoretical condi-
tions lead to a significant reduction of the parameter space (see
dark dotted regions in Fig. 2), so that closed probability contours
are obtained.

3. Likelihood analysis method and observables

In the following, we define a scenario to be a specific realisa-
tion of the cosmological equations for a given set of parameters
{Q),. 22,85, 24).

To perform the likelihood analysis, the method used in
Conley et al. (2011) for the analysis of SNLS data? was adapted
to the Galileon model. For each cosmological probe, a likeli-
hood surface £ was derived by computing the y? for each vis-
ited scenario: £(Q0,¢,,¢3,84) eX'12_ The way h is treated is
described in Sect. 3.2.2. Then we report the mean value of the
marginalized parameters as the fit values of QY and the &;s.

3.1. Numerical computation method

To compute numerical solutions to Egs. (8) and (9), we used a
fourth-order Runge-Kutta method to compute H(z) and X(z) iter-
atively starting from the current epoch, where the initial condi-
tions for H and ¥ are specified (see 2.2), and propagating back-
wards in time to higher z. We used a sufficiently small step size in
z to avoid numerical divergences. This is challenging because of
the significant non-linearities in our equations. To determine the
step size, we therefore required that Eq. (28), normalized by A2,
be satisfied at better than 107> for each step.

At each step of the computation, we also checked that
all previously discussed theoretical conditions were satisfied
(Egs. (30)—(32), (35), and (36)). Cosmological scenarios that fail
any of these conditions were rejected and their likelihood set to
zero. The result of these requirements is shown e.g. in Fig. 2 as
dark dotted regions. Equation (30) concerns a negligible num-
ber of Galileon scenarios, but the four other constraints lead to a
significant reduction of the parameter space.

3.2. Data

Here we describe the cosmological observations we used in our
analysis. Special care was taken to choose data that do not de-
pend on additional cosmological assumptions.

3.2.1. Type la supernovae

The SN Ia data sample used in this work is the SNLS3 sam-
ple described in Conley et al. (2011). It consists of 472 well-
measured supernovae from the SNLS, SDSS, HST, and a variety
of low-z surveys.

A Type la supernova with intrinsic stretch s and color C has
arest-frame B-band apparent magnitude mp that can be modeled
as follows:

my°® = 51og,o Dy (zhel, Zomp, cosmo) —a(s— 1) +B.C+ Mg, (37)

2 http://casa.colorado.edu/~aaconley/Software.html
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where D is the Hubble-constant free luminosity distance,
which in a flat Universe is given by

"ZCMB dZ

H(z, cosmo) (38)

D1 (Zhel, ZcmB» €0SMO) = (1 + Zhel)

Znel and zemp are the SN Ia redshift in the heliocentric and CMB
rest frames, respectively, “cosmo” represents the cosmological
parameters of the model. @ and g are parameters describing the
light-curve width-luminosity and color-luminosity relationships
for SNe Ia. Mg is defined as Mg = Mp + Slog,,c/Hy + 25,
where Mp is the rest-frame absolute magnitude of a fiducial
(s = 1,C = 0) SN Ia in the B-band, and c¢/Hj is expressed
in Mpc. @, and Mg are nuisance parameters that are fit si-
multaneously with the cosmological parameters. As in Conley
et al. (2011) and Sullivan et al. (2011), we allowed for differ-
ent Mg in galaxies with the host galaxy stellar mass below and
above 10'° M, to account for relations between SN Ia brightness
and host properties that are not corrected for via the standard s
and C relations. When computing Type Ia supernova distance
luminosities in Sect. 4, we neglect the radiation component in
H(z), since all measurements are restricted to redshifts below 1.4
where the effects of radiation density are negligible.

Systematic uncertainties must be treated carefully when us-
ing SN Ia data, because they depend on @ and S and due to co-
variances between different supernovae. We followed the treat-
ment of Conley et al. (2011) and Sullivan et al. (2011).

3.2.2. Cosmological microwave background

The CMB is a powerful probe to constrain the expansion his-
tory of the Universe because it gives high-redshift cosmological
observables. The power spectrum provides much information on
the content of the Universe and the relations between the differ-
ent fluids, as long as we are able to model the thermodynamics of
these fluids before recombination. The Galileon model does not
modify the standard baryon-photon flux physics as long as the
Galileon field does not couple directly to matter, as is assumed
in this work. Thus, the usual formulae and predictions used in
the standard analysis of the CMB power spectrum remain valid.

The positions of the acoustic peaks can be quantified by three
observables: {/,, R, z.} (see e.g. Komatsu et al. 2011 and Komatsu
et al. 2009), where [, is the acoustic scale related to the comov-
ing sound speed horizon, R is the shift parameter related to the
distance between us and the last scattering surface, and z. is the
redshift of the last scattering surface. These quantities are de-
rived from the angular diameter distance, which in a flat space is
given by

c 1 ©od7
Da(z) = ——— —, 39
M= T ) B o
and from the comoving sound speed horizon:
c (™ a@
= — d ——- 40
n@ =g [ datee (40)

Cs is the usual normalized sound speed in the baryon-photon fluid
before recombination:

B 1
Cs =

N )
1 +3390/4Q%a

where Qg is the baryon energy density parameter today.

(41)

With the above definitions, the acoustic scale /, is given by

Da(zs
L= (1 + 2,)"PAG). (42)
75(2+)
and the shift parameter R by
JQOH? ¢ A
milg © dz
R=—"—(1+2z)Dx(z) = ,/Q&f —_— (43)
" ( N . A

Z. 1s given by the fitting formula of Hu & Sugiyama (1996):

2. = 10481 +0.00124(Q)*) 7| [1 + g1 Q) 1) (44)
0.0783(Q0K?)~0-238 )
I T 395007
0.560
g2 = (46)

1+21.1(Q0R2) 81

According to Hu & Sugiyama (1996), formula (44) is valid for a
wide range of Q) h* and Qh?.

To compare these observables with the seven-year WMAP
data (WMAP7), we followed the numerical recipe given in
Komatsu et al. (2009). The key point of this recipe is that for
each cosmological scenario, ,\%MB must be minimized over 4 and
QPh%, which appear in Eq. (44) and in the computation of H(z)
through Q? (see Eq. (14)).

An important feature to note is that we have to solve Egs. (8)
and (9) from a = 1 to a = 0 to compute the CMB observables.
Numerically, however, we cannot reach a = 0 (z = o0) because
of numerical divergences. To avoid them, we carried out these
computations up to @ = 1077 and then linearly extrapolated the
value of the integral to a = 0O (for more details on the reliabil-
ity of this approximation see Appendix B). Thus, the theoretical
constraints of 2.5 were checked froma = 1toa = 1077,

Finally, because CMB observables depend explicitly on Hy,
we imposed a Gaussian prior on its value, 7 = 0.737 = 0.024 as
measured by Riess et al. (2011) from low-redshift SNe Ia and
Cepheid variables.

The WMAP7 recommended best-fit values of the CMB ob-
servables are

Ly 302.09 £ 0.76
(Vems) = { (R) ] = { 1.725 + 0.018], 47)
(z4) 1091.3 £ 0.91
with the corresponding inverse covariance matrix:
2305 29.698 —1.333
C(_ZI]\/IB = [ 29.698 6825.270 —1 13.180] (48)
—1.333 —113.180 3.414

from Komatsu et al. (2011). As pointed out by Nesseris et al.
(2010), the uncoupled Galileon model fulfils the assumptions
required in Komatsu et al. (2009) to use these distance priors,
namely a FLRW Universe with the standard number of neutri-
nos and a dark energy background with negligible interactions
with the primordial Universe. Once the observables {/,, R, z.}
were computed in a cosmological scenario, we built the differ-
ence vector:

la
AVems = [R ] —(Vems) (49)
Zs
and computed the CMB contribution to the total y? :
_ (h —0.738)%
X%ZMBH—[O = AVEMBCCII\ABAVCMB + 00242 (50)
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Table 1. BAO measurements.

z yI(2) Survey Reference

0.106 0.336 +0.015 6dFGS Beutler et al. (2011)
0.35 0.1126 + 0.0022 SDSS LRG Padmanabhan et al. (2012)
0.57 0.0732 £ 0.0012 | BOSS CMASS Anderson et al. (2012)

3.2.3. Baryonic acoustic oscillations

BAO distances provide information on the imprint of the co-
moving sound horizon after recombination on the distribution of
galaxies. The BAO observable is defined as ys(z) = r5(zq4)/Dv(2),
where 7y is the comoving sound horizon at the baryon drag epoch
redshift z4, and Dy(z) is the effective distance (Eisenstein et al.
2005) given by

Dy(z) = (1)

1/3
212 <
(1+72) DA(Z)%] :

zq 1s computed using the Eisenstein & Hu (1998) fitting formula:

1291(Q0 42)0-251 b
W T 0.659(Q0 )05 [1+ buemy”] (52)
by = 0.313(Q0 p?)~041 [1 + 0.607(92]]12)0.674] (53)
by = 0.238(Q04*H)**. (54)

This formula remains valid for a Galileon field not coupled to
matter.

Therefore BAO distances depend on & and Qg as the CMB
observables so we followed the same recipe as previously men-
tioned to compute them, including the Hy prior from Riess et al.
(2011). We also made the same approximation as for the CMB
to compute 7. The minimization over & and Qgh2 was performed
independently for CMB and BAO when their individual con-
straints are derived and simultaneously when combined con-
straints were computed.

We used the dataset of distances derived from galaxy sur-
veys as published in the SDSS-IIT BOSS cosmological analysis
(Anderson et al. 2012 and Sanchez et al. 2012) to avoid redshift
overlaps in the measurements (see Table 1).

For a cosmological constraint derived from BAO distances
alone, the BAO contribution to the total y? is given by

> o @ -y @)* | (h—0.738)?
XBAO+H, = Z p= + 0.0242
Z Ys N
(Qgh2 - 0.02249)?
: (55)
0.000572

where we added a Gaussian prior on Qgh2 when dealing with
this probe alone.

When BAO and CMB probes were combined, we com-
puted their contributions to the y? simultaneously to avoid over-
counting the Hubble constant prior. Therefore, the combined
contribution is

X %MB+BAO+HO = AV;F:MBCEII\ABAVCMB
(h—0.738)?
0.0242

__ ,,mes 2
N Z(ys(z) a-ZS @ . (56)
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3.2.4. Growth rate of structures

The cosmological growth of structures is a critical test of the
Galileon model, as noted by many authors (see Linder 2005 for
example). It is a very discriminant constraint for distinguish-
ing dark energy and modified gravity models. Many models
can mimic ACDM behavior for the expansion history of the
Universe, but all modify gravity and structure formation in a dif-
ferent manner.

In linear perturbation theory, the growth of a matter pertur-
bation 6,y = dpm/pm 1S governed by the equation

S + 2HSp — 47Gxpmdm = 0. (57)

But as argued in Linder (2005) and as used in Komatsu et al.
(2009), it is better to study the growth evolution with the func-
tion g(a) = D(a)/a = 6m(a)/(adn(1)). In the Galileon case, the
Newton constant is replaced by Gi‘?(a) as given in Eq. (27). The
g(a) is obtained by solving the following second-order differen-
tial equation

d’¢ 1 a dH\ dg
— +—[5+=—|-"
da? a( Hda)da
i W)
LS 3+£d—H—§Geff Oy =0. (58)
a? Hda 2 Gy a3H? )

A natural choice for the initial conditions iS g(@iniia1) = 1 and
dg/da |4,;;,,= 0 (Komatsu et al. 2009), where dipiia 1s 0.001 =
1/(1 + z.). We checked that our results do not depend on this
choice as long as ajyial is taken between 1072 and 107,

Measurements of the rate of growth of cosmic structures
from redshift space distortions can be expressed in terms of
f(a) = dinD(a)/dlna or fog(a), where oy is the normaliza-
tion of the matter power spectrum. fog(a) is known to be less
sensitive to the overall normalization of the power spectrum
model used to derive the measurements (Song & Percival 2009).
Accordingly this is the observable we chose in this work. To pre-
dict fog(a) in our analysis, we solved Eq. (58) to obtain g(a),
from which we deduced f(a) and D(a), and we computed og(a)
in the following way (Samushia et al. 2012a):

N N
og(a) = O-S(almtlal)D(ammal) s (59)
where
DACDM (.
3 amiia) = oM (a = 1) (@) (60)

D/\CDM(a — 1)’
and oy™MA¥7 (@ = 1) = 0811730 is the present value
of the CMB power spectrum normalization published by
Komatsu et al. (2011) in the framework of the ACDM model.
Equation (60) states that the normalization of the CMB power
spectrum at decoupling is the same in the ACDM and Galileon
models, which is consistent with our assumption that the
CMB physics is not modified by the Galileon presence. This
equation holds if D(a) has no scale dependence, which is the
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Table 2. Growth data.

z fos(2) F(2) r Survey Reference

0.067 0.423 +0.055 - . 6dFGRS (a) Beutler et al. (2012)
0.17 0.51 £0.06 - - 2dFGRS (a) Percival et al. (2004)
0.22 0.53+0.14 0.28 +0.04 0.83 WiggleZ Blake et al. (2011b)
0.25 0.351 £ 0.058 - - SDSS LRG (b)  Samushia et al. (2012a)
0.37 0.460 +0.038 - - SDSS LRG (b)  Samushia et al. (2012a)
041 0.40 +£0.13 0.44 +£0.07 0.94 WiggleZ Blake et al. (2011b)
0.57 0.430 £0.067 0.677 £0.042 0.871 BOSS CMASS Reid et al. (2012)
0.6 0.37 +£0.08 0.68 = 0.06 0.89 WiggleZ Blake et al. (2011b)
0.78 0.49 +£0.12 0.49 +£0.12 0.84 WiggleZ Blake et al. (2011b)

Notes. r is the cross-correlation in (F, fos). (a) Alcock-Paczynski effect is negligible at low redshift. (b) Values of fog are corrected for the

Alcock-Paczynski effect but no F(z) values are provided.

Table 3. Cosmological constraints on the Galileon model from the SNLS3 sample.

Method Q0 153 C3 Cy a B M, M X’

Stat+sys+aB  0.27370957 523511875 _1779¢103  _( 58740515 | 40840121 326310121 23997 23950 4154
Stat+sys 02737005 _5240+18%0  _1 78171071 _0,588+0316 1428 3263 23997 23950 420.1
Stat only 0.294%005  —4.765*1725  —1.58670957  —0.541*03% 1.451 3.165 24.022 23951 4418

Notes. Results were computed using either statistical and systematic uncertainties combined, or statistical uncertainties only. In the first line, we
marginalized over @ and S, whereas in the last two lines, @ and 8 were kept fixed to their marginalized values. No errors are given on M}, and M3,
because they were analytically marginalized over (see Conley et al. 2011).

case in both models in the linear regime. Equation (59) takes
into account the different growth histories since recombination
in the two models.

However, stand-alone fog(a) measurements extracted from
observed matter power spectra usually use a fiducial cosmology,
which assumes General Relativity. This hypothesis is no longer
necessary when taking into account the Alcock-Paczynski ef-
fect (Alcock & Paczynski 1979) in the power spectrum analysis.
This results in joint measurements of fog(a) and the Alcock-
Paczynski parameter F(a) = ¢ 'Da(a)H(a)/a, which are to be
preferred when constraining modified gravity models (see e.g.
Beutler et al. 2012 and Samushia et al. 2012b). Note that Egs. (8)
and (9) are all we need to predict F(a) in the Galileon model.

The measurements of fog(z) and F(z) used in this work are
summarized in Table 2. To compare these with our model, we
first solved Egs. (8) and (9) from a = 1 to djpjja to obtain values
of H(a), F(a) and G%)(a)/Gy, and then solved Eq. (58) from
Qinitial t0 @ = 1, which provides us with fog(z) predictions.

Because F(z) and fos(z) measurements are correlated, a co-
variance matrix Cgos Was built using data presented in Table 2.
Moreover, our fog prediction relies on the WMAP7 measure-
ment of og(a = 1) (Eq. (60)), so the WMAP7 experimental
uncertainty is also propagated to the diagonal and off-diagonal
terms of Cges. Then a vector Vges containing all predictions at
each z; was built

_ fUé(Zi)

| F@) 1)

VGos

The contribution of the growth rate of structures to the total y?
is then

XGos = AVGosCausAV Goss (62)

with AVgos = Vigos — (Vios), Where (Vos) contains the mea-
surements of Table 2.

Note that Eq. (14) requires a value for Q?, and hence in
principle this equation should be simultaneously solved with the
BAO and CMB constraints using the same prior on Hy. However,
we found that this has essentially no effect on our 2. Therefore,
we set here & to the value derived from the Hy measurements of
Riess et al. (2011) to accelerate the computation.

4. Results

In the following we present the results of the experimental con-
straints on the Galileon model derived from the cosmological
probes.

4.1. SN constraints

Results from SN Ia data are presented in Fig. 2 and Table 3.

4.1.1. SN results

Despite the large number of free parameters in the model, we ob-
tained closed probability contours in any two-dimensional pro-
jection of the parameter space. We observed strong correlations
between the ¢;s, especially between ¢, and ¢3.

We note that the best-fit value for Q% ~ 0.27 is compatible
with the current constraints obtained in the ACDM or FWCDM
models. The ¢;s are found to be globally of the order of ~—1.
From the best-fit values of the parameters, we derived the value
of &5 using Eq. (29) and find &5 = —0.349*0¢32  including sys-
tematic uncertainties.

In the following we discuss the impact of fixing the nuisance
parameters @ and S and the effect of systematics on the best-fit
values.
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Table 4. Galileon model best-fit values from different data samples.

A&A 555, A53 (2013)

Probe Qom Cr C3 C4 h Qgh2 )(2

SNLS3 0.273%00%%  —5.2407)8%0 —1.781*17L —0.588*0318 - - 420.1
Growth 02007007 —5.430798%0  —1.757+03%  —0.6350372 - - 19.83
BAO+WMAP7+HO 0.272%00  —=5.59172913  —1.926*1908  —0.6197035% 0713 0.0224  2.14
SNLS3+BAO+WMAP7+HO 02727000 —=5.565%123  —1.91741%L  —0.6197035% 0713 0.0224 4231
SNLS3+BAO+WMAP7+HO+Growth ~ 0.27170913  —4.352*03)8  —1.597+0203  —0.771*09%  0.735 0.0220 450.4

Notes. SNLS3 with systematics included, o and g fixed to their marginalized value. & and Qgh2 have been minimized so no error bars are provided.

3.8

3.6

3.4

3.2

3.0

2.8

4
L

2.6

Fig. 1. Confidence contours for the SN nuisance parameters o and
when marginalizing over all other parameters of the model. Dashed red
contours represent 68.3%, 95.4%, and 99.7% probability contours for
the ACDM model. Filled blue contours are for the Galileon model. Note
that they are nearly identical, the Galileon one is just 2.8% wider, which
is likely due to larger steps in @ and 8. See Table 3 for numerical values.

4.1.2. Impact of nuisance parameters

When marginalizing over the cosmological parameters, the best-
fit values of the SN nuisance parameters «, 3, Mllg, and M% in the
Galileon context are identical to those published for the ACDM
model, as shown in Fig. 1 and Table 3. This is a truly important
point to note. It means that the modeling of the SN Ia physics
contained in these nuisance parameters is adequate for these two
cosmological models despite their differences.

In principle, the correct method to use when analyzing SN Ia
data is to scan and marginalize over the nuisance parameters.
However, once the best-fit values of @ and 3 are known, keeping
them fixed to their best-fit values in any study using the same
SN sample has a negligible impact on our results (see Table 3).
In the Galileon case, the contour areas decrease by only 0.7%
and have the same shape as in Fig. 2. For future studies with the
SNLS3 sample in the ACDM or Galileon models, our analysis
therefore demonstrates that it is reasonable to keep the nuisance
parameters fixed to the values published the SNLS papers.

4.1.3. Impact of systematic uncertainties

From the results in Table 3, we note that the identified systematic
uncertainties shift the best-fit values of the Galileon parameters
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by less than their statistical uncertainties. With systematics in-
cluded, the area of the inner contours increases by about 53%.
This is less than what is observed in fits to the ACDM or
FWCDM models (103% and 80% respectively, see Conley et al.
2011).

4.2. Combined CMB, BAO, and H, constraints

The results using CMB, BAO, and H, data are presented in Fig. 3
and Table 4.

The combined WMAP7+BAO+HO0 data provide a very pow-
erful constraint on Q?n, but no tighter constraints on the ¢; than
SNe Ia alone. Q) = 0.272*00% is, as for the SNLS3 sample,
close to the current best estimates for this parameter in the stan-
dard cosmologies, but this time with very sharp error bars com-
petitive with the most recent studies on other cosmological mod-
els. However, the ¢; best-fit v