Skip to Main content Skip to Navigation
Journal articles

Planck intermediate results X. Physics of the hot gas in the Coma cluster

P. A. R. Ade N. Aghanim 1 M. Arnaud 2 M. Ashdown F. Atrio-Barandela J. Aumont 1 C. Baccigalupi A. Balbi A. J. Banday 3 R. B. Barreiro J. G. Bartlett 4 E. Battaner K. Benabed A. Benoît 5 J.-P. Bernard 3 M. Bersanelli I. Bikmaev H. Böhringer A. Bonaldi J. R. Bond J. Borrill F. R. Bouchet 6 H. Bourdin M. L. Brown S. D. Brown R. Burenin C. Burigana P. Cabella J.-F. Cardoso 4, 6, 7 P. Carvalho A. Catalano 8, 9 L. Cayón L.-Y Chiang G. Chon P. R. Christensen E. Churazov D. L. Clements S. Colafrancesco L. P. L. Colombo A. Coulais 10 B. P. Crill F. Cuttaia A. da Silva H. Dahle L. Danese R. J. Davis P. de Bernardis G. de Gasperis A. de Rosa G. de Zotti J. Delabrouille 4 J. Démoclès 2 F.-X. Désert C. Dickinson J. M. Diego K. Dolag H. Dole 6, 1 S. Donzelli O. Doré U. Dörl M. Douspis 1 X. Dupac T. A. Enßlin H. K. Eriksen F. Finelli I. Flores-Cacho 3 O. Forni 3 M. Frailis E. Franceschi M. Frommert S. Galeotta K. Ganga 4 R. T. Génova-Santos M. Giard 3 M. Gilfanov J. González-Nuevo K. M. Górski A. Gregorio A. Gruppuso F. K. Hansen D. Harrison S. Henrot-Versillé 11 C. Hernández-Monteagudo S. R. Hildebrandt E. Hivon 6 M. Hobson W. A. Holmes A. Hornstrup W. Hovest K. M. Huffenberger G. Hurier 9 T. R. Jaffe 3 T. Jagemann W. C. Jones M. Juvela E. Keihänen I. Khamitov R. Kneissl J. Knoche L. Knox M. Kunz 1 H. Kurki-Suonio Guilaine Lagache 1 A. Lähteenmäki J.-M. Lamarre 10 A. Lasenby C. R. Lawrence M. Le Jeune 4 R. Leonardi P. B. Lilje M. Linden-Vørnle M. López-Caniego P. M. Lubin J. F. Macías-Pérez 9 B. Maffei D. Maino N. Mandolesi M. Maris F. Marleau E. Martínez-González S. Masi M. Massardi S. Matarrese F. Matthai P. Mazzotta S. Mei 12, 13 A. Melchiorri J.-B. Melin 14 L. Mendes A. Mennella Subhabrata Mitra M.-A. Miville-Deschênes 1 A. Moneti 6 L. Montier 3 G. Morgante D. Munshi J. A. Murphy P. Naselsky P. Natoli H. U. Nørgaard-Nielsen F. Noviello D. Novikov I. Novikov S. Osborne F. Pajot 1 D. Paoletti O. Perdereau 11 F. Perrotta F. Piacentini M. Piat 4 E. Pierpaoli R. Piffaretti 14, 2 Stéphane Plaszczynski 11 E. Pointecouteau 3 G. Polenta N. Ponthieu 15, 1 L. Popa T. Poutanen G. W. Pratt 2 S. Prunet 6 J.-L. Puget 1 J. P. Rachen R. Rebolo M. Reinecke M. Remazeilles 4, 1 C. Renault 9 S. Ricciardi T. Riller I. Ristorcelli 3 G. Rocha M. Roman 4 C. Rosset 4 M. Rossetti J. A. Rubiño-Martín L. Rudnick B. Rusholme M. Sandri G. Savini B. M. Schaefer D. Scott G. F. Smoot 16 F. Stivoli 17 R. Sudiwala R. Sunyaev D. Sutton A.-S. Suur-Uski J.-F. Sygnet 6 J. A. Tauber L. Terenzi L. Toffolatti M. Tomasi M. Tristram 11 J. Tuovinen M. Türler G. Umana L. Valenziano B. van Tent 18 J. Varis P. Vielva F. Villa N. Vittorio L. A. Wade B. D. Wandelt 6 N. Welikala 1 S. D. M. White D. Yvon 14 A. Zacchei S. Zaroubi A. Zonca
Abstract : We present an analysis of Planck satellite data on the Coma cluster observed via the Sunyaev-Zeldovich effect. Thanks to its great sensitivity, $Planck$ is able, for the first time, to detect SZ emission up to $r$ $\approx$ 3 × $R_{500}$. We test previously proposed spherically symmetric models for the pressure distribution in clusters against the azimuthally averaged data. In particular, we find that the Arnaud et al. (2010, A&A, 517, A92) “universal” pressure profile does not fit Coma, and that their pressure profile for merging systems provides a reasonable fit to the data only at $r < R_{500}$; by $r$ = 2 × $R_{500}$ it underestimates the observed $y$ profile by a factor of $\simeq$2. This may indicate that at these larger radii either: i) the cluster SZ emission is contaminated by unresolved SZ sources along the line of sight; or ii) the pressure profile of Coma is higher at $r > R_{500}$ than the mean pressure profile predicted by the simulations used to constrain the models. The $Planck$ image shows significant local steepening of the $y$ profile in two regions about half a degree to the west and to the south-east of the cluster centre. These features are consistent with the presence of shock fronts at these radii, and indeed the western feature was previously noticed in the ROSAT PSPC mosaic as well as in the radio. Using Plancky profiles extracted from corresponding sectors we find pressure jumps of 4.9$_{-0.2}^{+0.4}$ and 5.0$^{+1.3}_{−0.1}$ in the west and south-east, respectively. Assuming Rankine-Hugoniot pressure jump conditions, we deduce that the shock waves should propagate with Mach number $M_w$ = 2.03$^{+0.09}_{−0.04}$ and $M_{se}$ = 2.05$^{+0.25}_{−0.02}$ in the west and south-east, respectively. Finally, we find that the $y$ and radio-synchrotron signals are quasi-linearly correlated on Mpc scales, with small intrinsic scatter. This implies either that the energy density of cosmic-ray electrons is relatively constant throughout the cluster, or that the magnetic fields fall off much more slowly with radius than previously thought.
Document type :
Journal articles
Complete list of metadatas

Cited literature [36 references]  Display  Hide  Download
Contributor : Edp Sciences <>
Submitted on : Wednesday, March 25, 2015 - 12:17:22 PM
Last modification on : Thursday, October 15, 2020 - 4:07:21 AM
Long-term archiving on: : Monday, April 17, 2017 - 10:35:25 PM


Publisher files allowed on an open archive



P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, F. Atrio-Barandela, et al.. Planck intermediate results X. Physics of the hot gas in the Coma cluster. Astronomy and Astrophysics - A&A, EDP Sciences, 2013, 554, pp.A140. ⟨10.1051/0004-6361/201220247⟩. ⟨cea-01135390⟩



Record views


Files downloads